An Efficient Multi-Level Convolutional Neural Network Approach for White Blood Cells Classification
<p>Scheme of identification and classification of white blood cells by the proposed method.</p> "> Figure 2
<p>Representation of Faster R-CNN segmentation.</p> "> Figure 3
<p>Depthwise separable convolution of the MobileNet, which factorizes the convolution into depthwise and pointwise convolutions.</p> "> Figure 4
<p>Mononuclear cells classified by the proposed multi-level convolutional neural network. (<b>upper-left</b>) Lymphocytes correctly classified; (<b>upper-right</b>) monocytes Correctly classified; (<b>lower-left</b>) lymphocytes incorrectly classified as monocytes; (<b>lower-right</b>) monocytes incorrectly classified as lymphocytes.</p> "> Figure 5
<p>Polymorphonuclear cells classified by the proposed multi-level convolutional neural network. (<b>upper-left</b>) Eosinophils correctly classified; (<b>upper-right</b>) neutrophils correctly classified; (<b>lower-left</b>) eosinophils incorrectly classified as neutrophils; (<b>lower-right</b>) neutrophils incorrectly classified as eosinophils.</p> ">
Abstract
:1. Introduction
2. State of the Art
3. Materials and Methods
3.1. White Blood Cell Images Datasets
- Blood Cell Detection (BCD) dataset (Aslan [52]): Contains 100 annotated images in png format, with 2237 labeled as Red Blood Cells and only 103 as White Blood Cells. Each image consists of 256 pixels in height and width of RGB channels. (More information can be found at https://github.com/draaslan/blood-cell-detection-dataset. Accessed date: 30 June 2020)
- Complete Blood Count (CBC) dataset (Alam et al. [53]): Contains 360 blood smear images along with their annotation files. (More information can be found at [54], https://github.com/MahmudulAlam/Complete-Blood-Cell-Count-Dataset. Accessed date: 20 June 2021)
- White Blood Cells (WBC) dataset (Zheng et al. [55,56]): Contains 300 images of size , and 100 color images of size . (More information can be found at http://www.doi.org/10.17632/w7cvnmn4c5.1. Accessed date: 15 May 2019)
- Kaggle Blood Cell Images (KBC) dataset (Mooney [57]): Contains 12,500 augmented images of blood cells (JPEG) with accompanying cell type labels (CSV). There are approximately 3000 images for each of 4 different cell types. (More information can be found at https://www.kaggle.com/paultimothymooney/blood-cells. Accessed date: 15 May 2019)
- Leukocyte Images for Segmentation and Classification (LISC) dataset (Rezatofighi et al. [58]): Corresponds to a dataset of 250 blood smear images in BMP format. It contains a set of 25 basophil images. (More information can be found at http://users.cecs.anu.edu.au/~hrezatofighi/Data/Leukocyte%20Data.htm. Accessed date: 15 May 2019)
3.2. A Multi-Level Convolutional Neural Network Approach
- Mononuclear (MN), whose nuclei show morphological unity, and includes lymphocytes and monocytes.
- Polymorphonuclear (PMN), whose nuclei are divided, and includes segmented neutrophils and eosinophils.
3.3. Performance Metrics
- Accuracy: the accuracy value refers to how close a measurement is to the true value, and the equation is given by
- Recall: the measure of sensitivity or recall is the percentage of positive cases that were correctly labeled by the model. The recall equation is given by
- Precision: precision is the percentage of correct classifications. This metric is defined with the following equation:
- F_Score: F_score corresponds to the harmonic mean between precision and sensitivity and gives a trade-off measure between the recall and the precision:
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adewoyin, A. Peripheral blood film-a review. Ann. Ib. Postgrad. Med. 2014, 12, 71–79. [Google Scholar] [PubMed]
- Bonilla, M.; Menell, J. Chapter 13–Disorders of White Blood Cells. In Lanzkowsky’s Manual of Pediatric Hematology and Oncology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 209–238. [Google Scholar]
- Gurcan, M.N.; Boucheron, L.E.; Can, A.; Madabhushi, A.; Rajpoot, N.M.; Yener, B. Histopathological image analysis: A review. IEEE Rev. Biomed. Eng. 2009, 2, 147–171. [Google Scholar] [CrossRef] [Green Version]
- Xing, F.; Yang, L. Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: A comprehensive review. IEEE Rev. Biomed. Eng. 2016, 9, 234–263. [Google Scholar] [CrossRef]
- Saraswat, M.; Arya, K. Automated microscopic image analysis for leukocytes identification: A survey. Micron 2014, 65, 20–33. [Google Scholar] [CrossRef]
- Janowczyk, A.; Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J. Pathol. Inform. 2016, 7, 29. [Google Scholar] [CrossRef]
- Su, M.C.; Cheng, C.Y.; Wang, P.C. A neural-network-based approach to white blood cell classification. Sci. World J. 2014, 2014, 796371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegde, R.B.; Prasad, K.; Hebbar, H.; Singh, B.M.K.; Sandhya, I. Automated decision support system for detection of leukemia from peripheral blood smear images. J. Digit. Imaging 2020, 33, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Prinyakupt, J.; Pluempitiwiriyawej, C. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers. Biomed. Eng. Online 2015, 14, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautam, A.; Singh, P.; Raman, B.; Bhadauria, H. Automatic classification of leukocytes using morphological features and naïve Bayes classifier. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 1023–1027. [Google Scholar]
- Acevedo, A.; Alférez, S.; Merino, A.; Puigví, L.; Rodellar, J. Recognition of peripheral blood cell images using convolutional neural networks. Comput. Methods Programs Biomed. 2019, 180, 105020. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Qian, J.; Li, Q.; Wang, B.; Gupta, D.; Khanna, A.; Rodrigues, J.J.; de Albuquerque, V.H.C. Detection of subtype blood cells using deep learning. Cogn. Syst. Res. 2018, 52, 1036–1044. [Google Scholar] [CrossRef]
- Hegde, R.B.; Prasad, K.; Hebbar, H.; Singh, B.M.K. Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells: A study. Australas. Phys. Eng. Sci. Med. 2019, 42, 627–638. [Google Scholar] [CrossRef]
- Ullah, A.; Muhammad, K.; Hussain, T.; Baik, S.W. Conflux LSTMs network: A novel approach for multi-view action recognition. Neurocomputing 2021, 435, 321–329. [Google Scholar] [CrossRef]
- Mellado, D.; Saavedra, C.; Chabert, S.; Torres, R.; Salas, R. Self-improving generative artificial neural network for pseudorehearsal incremental class learning. Algorithms 2019, 12, 206. [Google Scholar] [CrossRef] [Green Version]
- Castro, J.S.; Chabert, S.; Saavedra, C.; Salas, R.F. Convolutional neural networks for detection intracranial hemorrhage in CT images. CRoNe 2019, 2564, 37–43. [Google Scholar]
- Chabert, S.; Mardones, T.; Riveros, R.; Godoy, M.; Veloz, A.; Salas, R.; Cox, P. Applying machine learning and image feature extraction techniques to the problem of cerebral aneurysm rupture. Res. Ideas Outcomes 2017, 3, e11731. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Yang, J.; Zhang, J.; Li, M. Natural scene recognition based on convolutional neural networks and deep Boltzmannn machines. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015; pp. 2369–2374. [Google Scholar]
- Mellado, D.; Saavedra, C.; Chabert, S.; Salas, R. Pseudorehearsal approach for incremental learning of deep convolutional neural networks. In Proceedings of the Computational Neuroscience: First Latin American Workshop, LAWCN 2017, Porto Alegre, Brazil, 22–24 November 2017; Springer: Cham, Switzerland, 2017; pp. 118–126. [Google Scholar]
- Yildirim, M.; Cinar, A.C. Classification of White Blood Cells by Deep Learning Methods for Diagnosing Disease. Rev. d’Intell. Artif. 2019, 33, 335–340. [Google Scholar] [CrossRef]
- Toğaçar, M.; Ergen, B.; Cömert, Z. Classification of white blood cells using deep features obtained from Convolutional Neural Network models based on the combination of feature selection methods. Appl. Soft Comput. 2020, 97, 106810. [Google Scholar] [CrossRef]
- Honnalgere, A.; Nayak, G. Classification of normal versus malignant cells in B-ALL white blood cancer microscopic images. In ISBI 2019 C-NMC Challenge: Classification in Cancer Cell Imaging; Springer: Singapore, 2019; pp. 1–12. [Google Scholar]
- Çınar, A.; Tuncer, S.A. Classification of lymphocytes, monocytes, eosinophils, and neutrophils on white blood cells using hybrid Alexnet-GoogleNet-SVM. SN Appl. Sci. 2021, 3, 503. [Google Scholar] [CrossRef]
- H Mohamed, E.; H El-Behaidy, W.; Khoriba, G.; Li, J. Improved White Blood Cells Classification based on Pre-trained Deep Learning Models. J. Commun. Softw. Syst. 2020, 16, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Qin, X.; Fan, H.; Lai, T.; Li, Z. WBC-Net: A white blood cell segmentation network based on UNet++ and ResNet. Appl. Soft Comput. 2021, 101, 107006. [Google Scholar] [CrossRef]
- Khouani, A.; Daho, M.E.H.; Mahmoudi, S.A.; Chikh, M.A.; Benzineb, B. Automated recognition of white blood cells using deep learning. Biomed. Eng. Lett. 2020, 10, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Zhong, W.; Gu, F. A multi-level deep learning system for malware detection. Expert Syst. Appl. 2019, 133, 151–162. [Google Scholar] [CrossRef]
- Kuang, Z.; Yu, J.; Li, Z.; Zhang, B.; Fan, J. Integrating multi-level deep learning and concept ontology for large-scale visual recognition. Pattern Recognit. 2018, 78, 198–214. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.; Liu, H.; Tong, L.; Wang, M.D. Improve Model Generalization and Robustness to Dataset Bias with Bias-regularized Learning and Domain-guided Augmentation. arXiv 2019, arXiv:1910.06745. [Google Scholar]
- Khan, S.; Sajjad, M.; Hussain, T.; Ullah, A.; Imran, A.S. A Review on Traditional Machine Learning and Deep Learning Models for WBCs Classification in Blood Smear Images. IEEE Access 2020, 9, 10657–10673. [Google Scholar] [CrossRef]
- Deshpande, N.M.; Gite, S.; Aluvalu, R. A review of microscopic analysis of blood cells for disease detection with AI perspective. PeerJ Comput. Sci. 2021, 7, e460. [Google Scholar] [CrossRef]
- Abou El-Seoud, S.; Siala, M.; McKee, G. Detection and Classification of White Blood Cells Through Deep Learning Techniques. Int. J. Online Biomed. Eng. (iJOE). 2020, 16, 15. [Google Scholar] [CrossRef]
- Togacar, M.; Ergen, B.; Sertkaya, M.E. Subclass separation of white blood cell images using convolutional neural network models. Elektron. Elektrotech. 2019, 25, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, J.; Zhou, M.; Li, Q.; Wen, Y.; Chu, J. A 3D attention networks for classification of white blood cells from microscopy hyperspectral images. Opt. Laser Technol. 2021, 139, 106931. [Google Scholar] [CrossRef]
- Basnet, J.; Alsadoon, A.; Prasad, P.; Al Aloussi, S.; Alsadoon, O.H. A novel solution of using deep learning for white blood cells classification: Enhanced loss function with regularization and weighted loss (ELFRWL). Neural Process. Lett. 2020, 52, 1517–1553. [Google Scholar] [CrossRef]
- Jiang, M.; Cheng, L.; Qin, F.; Du, L.; Zhang, M. White blood cells classification with deep convolutional neural networks. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1857006. [Google Scholar] [CrossRef]
- Yao, X.; Sun, K.; Bu, X.; Zhao, C.; Jin, Y. Classification of white blood cells using weighted optimized deformable convolutional neural networks. Artif. Cells Nanomed. Biotechnol. 2021, 49, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Li, W.; Zhang, B.; Li, Q.; Tao, R.; Lovell, N.H. Blood cell classification based on hyperspectral imaging with modulated Gabor and CNN. IEEE J. Biomed. Health Inform. 2019, 24, 160–170. [Google Scholar] [CrossRef]
- Khan, A.; Eker, A.; Chefranov, A.; Demirel, H. White blood cell type identification using multi-layer convolutional features with an extreme-learning machine. Biomed. Signal Process. Control 2021, 69, 102932. [Google Scholar] [CrossRef]
- Imran Razzak, M.; Naz, S. Microscopic blood smear segmentation and classification using deep contour aware CNN and extreme machine learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; IEEE Press: Piscataway, NJ, USA, 2017; pp. 49–55. [Google Scholar]
- Özyurt, F. A fused CNN model for WBC detection with MRMR feature selection and extreme learning machine. Soft Comput. 2020, 24, 8163–8172. [Google Scholar] [CrossRef]
- Patil, A.; Patil, M.; Birajdar, G. White blood cells image classification using deep learning with canonical correlation analysis. IRBM 2021, 42, 378–389. [Google Scholar] [CrossRef]
- Baydilli, Y.Y.; Atila, Ü. Classification of white blood cells using capsule networks. Comput. Med. Imaging Graph. 2020, 80, 101699. [Google Scholar] [CrossRef]
- Baghel, N.; Verma, U.; Nagwanshi, K.K. WBCs-Net: Type identification of white blood cells using convolutional neural network. Multimed. Tools Appl. 2021, 1–17. [Google Scholar] [CrossRef]
- Tran, T.; Kwon, O.H.; Kwon, K.R.; Lee, S.H.; Kang, K.W. Blood cell images segmentation using deep learning semantic segmentation. In Proceedings of the 2018 IEEE International Conference on Electronics and Communication Engineering (ICECE), Xi’an, China, 10–12 December 2018; pp. 13–16. [Google Scholar]
- Banik, P.P.; Saha, R.; Kim, K.D. An automatic nucleus segmentation and CNN model based classification method of white blood cell. Expert Syst. Appl. 2020, 149, 113211. [Google Scholar] [CrossRef]
- Hegde, R.B.; Prasad, K.; Hebbar, H.; Singh, B.M.K. Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybern. Biomed. Eng. 2019, 39, 382–392. [Google Scholar] [CrossRef]
- Kutlu, H.; Avci, E.; Özyurt, F. White blood cells detection and classification based on regional convolutional neural networks. Med. Hypotheses 2020, 135, 109472. [Google Scholar] [CrossRef]
- Liang, G.; Hong, H.; Xie, W.; Zheng, L. Combining convolutional neural network with recursive neural network for blood cell image classification. IEEE Access 2018, 6, 36188–36197. [Google Scholar] [CrossRef]
- Yu, W.; Chang, J.; Yang, C.; Zhang, L.; Shen, H.; Xia, Y.; Sha, J. Automatic classification of leukocytes using deep neural network. In Proceedings of the 2017 IEEE 12th International Conference on ASIC (ASICON), Guiyang, China, 25–28 October 2017; pp. 1041–1044. [Google Scholar]
- Aslan, A. WBC & RBC Detection Dataset from Peripheral Blood Smears. 2020. Available online: https://github.com/draaslan/blood-cell-detection-dataset (accessed on 10 June 2020).
- Alam, M.M.; Islam, M.T. Machine learning approach of automatic identification and counting of blood cells. Healthc. Technol. Lett. 2019, 6, 103–108. [Google Scholar] [CrossRef]
- Alam, M.; Islam, M. Complete Blood Count (CBC) Dataset. 2019. Available online: https://github.com/MahmudulAlam/Complete-Blood-Cell-Count-Dataset (accessed on 10 June 2020).
- Zheng, X.; Wang, Y.; Wang, G.; Liu, J. Fast and Robust Segmentation of White Blood Cell Images by Self-supervised Learning. Micron 2018, 107, 55–71. [Google Scholar] [CrossRef]
- Zheng, X. Data for: Fast and Robust Segmentation of Cell Images by Self-Supervised Learning. Mendeley Data, V1. 2018. Available online: https://data.mendeley.com/datasets/w7cvnmn4c5/1 (accessed on 10 June 2020).
- Mooney, P. Blood Cell Images. 2018. Available online: https://www.kaggle.com/paultimothymooney/blood-cells (accessed on 10 June 2020).
- Rezatofighi, S.H.; Soltanian-Zadeh, H. Automatic recognition of five types of white blood cells in peripheral blood. Comput. Med. Imaging Graph. 2011, 35, 333–343. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girshick, R. Fast r-cnn. arXiv 2015, arXiv:1504.08083. [Google Scholar]
- Chabert, S.; Castro, J.S.; Muñoz, L.; Cox, P.; Riveros, R.; Vielma, J.; Huerta, G.; Querales, M.; Saavedra, C.; Veloz, A.; et al. Image Quality Assessment to Emulate Experts’ Perception in Lumbar MRI Using Machine Learning. Appl. Sci. 2021, 11, 6616. [Google Scholar] [CrossRef]
- Cantor, E.; Salas, R.; Rosas, H.; Guauque-Olarte, S. Biological knowledge-slanted random forest approach for the classification of calcified aortic valve stenosis. BioData Min. 2021, 14, 35. [Google Scholar] [CrossRef] [PubMed]
Authors | Model Description |
---|---|
Abou et al. [33] | CNN model with ad hoc structure. |
Baghel et al. [45] | CNN model. |
Banik et al. [47] | CNN with fusing features in the first and last convolutional layer. |
Basnet et al. [36] | DCNN model with image pre-processing and a modified loss function. |
Baydilli et al. [44] | WBC classification using a small dataset via capsule networks. |
Çınar et al. [23] | Hybrid AlexNet, GoogleNet networks, and support vector machine. |
Hegde et al. [48] | AlexNet and CNN model with ad hoc structure. |
Huang et al. [39] | MFCNN CNN with hyperspectral imaging with modulated Gabor wavelets. |
Jiang et al. [37] | Residual convolution architecture. |
Khan et al. [40] | AlexNet model with feature selection strategy and extreme learning machine (ELM). |
Kutlu et al. [49] | Regional CNN with a Resnet50. |
Liang et al. [50] | Combining Xception-LSTM. |
Özyurt [42] | Ensemble of CNN models (AlexNet, VGG16, GoogleNet, ResNet) for feature extraction combined with the MRMR feature selection algorithm and ELM classifier. |
Patil et al. [43] | Combining canonical correlation analysis CCANet and convolutional neural networks (Inception V3, VGG16, ResNet50, Xception) with recursive neural network (LSTM). |
Razzak [41] | CNN combined with extreme learning machine (ELM). |
Togacar et al. [34] | AlexNet with QDA. |
Wang et al. [35] | Three-dimensional attention networks for hyperspectral images. |
Yao et al. [38] | Two-module weighted optimized deformable convolutional neural networks. |
Yu et al. [51] | Ensemble of CNN (Inception V3, Xception, VGG19, VGG16, ResNet50). |
ML-CNN (Our proposal) | Multi-level convolutional neural network approach with multi-source datasets. Combines Faster R-CNN for cell detection with a MobileNet for type classification. |
Layer | Layer Type | Stride | Kernel Size | Input Size | N°Parameters | ||
---|---|---|---|---|---|---|---|
MobileNet Base Model | 1 | Conv. 2D | s2 | 496 | |||
2 | Conv. dw | s1 | 208 | ||||
3 | Conv. pw | s1 | 640 | ||||
4 | Conv. dw | s2 | 416 | ||||
5 | Conv. pw | s1 | 2304 | ||||
6 | Conv. dw | s1 | 832 | ||||
7 | Conv. pw | s1 | 4352 | ||||
8 | Conv. dw | s2 | 832 | ||||
9 | Conv. pw | s1 | 8704 | ||||
10 | Conv. dw | s1 | 1664 | ||||
11 | Conv. pw | s1 | 16,896 | ||||
12 | Conv. dw | s2 | 1664 | ||||
13 | Conv. pw | s1 | 33,792 | ||||
14–23 | Conv. dw | s1 | |||||
Conv. pw | s1 | ||||||
24 | Conv. dw | s2 | 3328 | ||||
25 | Conv. pw | s1 | 133,120 | ||||
26 | Conv. dw | s1 | 6656 | ||||
27 | Conv. pw | s1 | 264,192 | ||||
Dense | – | Global Avg. Pool | s1 | Pool | - | ||
28 | FC | – | – | 512 | 262,656 | ||
– | Softmax | – | Output | 2 | 1026 | ||
Total Parameters: 1,093,218 | |||||||
Trainable Parameters: 263,682 |
Cells | Classification Model | Accuracy | Recall | Precision | F_Score |
---|---|---|---|---|---|
Mononuclear | Lymphocytes | ||||
Monocytes | |||||
Polymorphonuclear | Eosinophils | ||||
Segmented Neutrophils | |||||
Average |
Authors | Accuracy (%) | Recall (%) | F Score(%) | Layers | Parameters |
---|---|---|---|---|---|
Abou et al. [33] | 96.8 | NI | NI | 5 | NI |
Baghel et al. [45] | 98.9 | 97.7 | 97.6 | 7 | 519,860 |
Baydilli et al. [44] | 96.9 | 92.5 | 92.3 | 6 | 8,238,608 |
Banik et al. [47] | 97.9 | 98.6 | 97.0 | 10 | |
Basnet et al. [36] | 98.9 | 97.8 | 97.7 | 4 | NI |
Çınar et al. [23] | 99.7 | 99 | 99 | 8 22 | (AlexNet) (GoogleNet) |
Hegde et al. [48] | 98.7 | 99 | 99 | 8 | (AlexNet) |
Huang et al. [39] | 97.7 | NI | NI | 4 | NI |
Jiang et al. [37] | 83.0 | NI | NI | 33 | NI |
Khan et al. [40] | 99.1 | 99 | 99 | 8 3 | (AlexNet) (ELM) |
Kutlu et al. [49] | 97 | 99 | 98 | 50 | (Resnet50) |
Liang et al. [50] | 95.4 | 96.9 | 94 | 71 | (Xception) |
Özyurt [42] | 96.03 | NI | NI | 8 22 16 50 | (AlexNet) (GoogleNet) (VGG16) (Resnet) |
Patil et al. [43] | 95.9 | 95.8 | 95.8 | 71 | (Xception) |
Razzak et al. [41] | 98.8 | 95.9 | 96.4 | 3 | NI |
Togacar et al. [34] | 97.8 | 95.7 | 95.6 | 8 | (AlexNet) |
Wang et al. [35] | 97.7 | NI | NI | 18 | |
Yao et al. [38] | 95.7 | 95.7 | 95.7 | 55 | |
Yu et al. [51] | 90.5 | 92.4 | 86.6 | 48 71 19 50 | (InceptionV3) (Xception) (VGG19) (Resnet50) |
ML-CNN (Our proposal) | 98.4 | 98.4 | 98.4 | 28 | (MobileNet) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheuque, C.; Querales, M.; León, R.; Salas, R.; Torres, R. An Efficient Multi-Level Convolutional Neural Network Approach for White Blood Cells Classification. Diagnostics 2022, 12, 248. https://doi.org/10.3390/diagnostics12020248
Cheuque C, Querales M, León R, Salas R, Torres R. An Efficient Multi-Level Convolutional Neural Network Approach for White Blood Cells Classification. Diagnostics. 2022; 12(2):248. https://doi.org/10.3390/diagnostics12020248
Chicago/Turabian StyleCheuque, César, Marvin Querales, Roberto León, Rodrigo Salas, and Romina Torres. 2022. "An Efficient Multi-Level Convolutional Neural Network Approach for White Blood Cells Classification" Diagnostics 12, no. 2: 248. https://doi.org/10.3390/diagnostics12020248
APA StyleCheuque, C., Querales, M., León, R., Salas, R., & Torres, R. (2022). An Efficient Multi-Level Convolutional Neural Network Approach for White Blood Cells Classification. Diagnostics, 12(2), 248. https://doi.org/10.3390/diagnostics12020248