Preliminary Clinical Experience with a Novel Optical–Ultrasound Imaging Device on Various Skin Lesions
<p>The <span class="html-italic">Dermus SkinScanner</span> device with its main components, including an examination window with a silicone membrane cover, screen, charging dock, power button and slider (for mechanical scanning).</p> "> Figure 2
<p>The layout in which the results of examinations are presented in this article. On the left, photo-documentation of the visual information seen by a dermatologist on a basic examination is presented: clinical (macroscopic) and dermoscopic photo of the lesion. Image information provided by the <span class="html-italic">Dermus SkinScanner</span> device is presented on the middle: lesion location (as marked by the investigator, on a body schematic), optical image with a red line marker representing the location of the corresponding ultrasound image slice, and the corresponding ultrasound image. The ultrasound image of the reference device is presented on the right. The primary skin layers and the lesion itself are marked on both ultrasound images as an aid for the interpretation of the images. Scaling of the images is also presented in this figure for reference (the aspect ratio is 1:1 for all of the images). The lesion markers (white stars) are placed just above the investigated lesion.</p> "> Figure 3
<p>Typical elements of the ultrasound images of the <span class="html-italic">Dermus SkinScanner</span>. Ultrasound reflections from skin structures outline layers such as the epidermis, dermis and subcutis, and also other structures including lesions or hair follicles. These structures are preceded by reflections from the membrane and other structures of the imaging window of the device itself. The ultrasound gel filling the volume in between the imaging window membrane and the surface of the skin is reflection-free. However, reflections from hair or air bubbles may be present in this region, and they may even cause the appearance of acoustic shadows on the deeper regions of the image.</p> "> Figure 4
<p>Examination images of a melanoma and of a cutaneous metastasis of melanoma (see <a href="#diagnostics-12-00204-f002" class="html-fig">Figure 2</a> for figure layout information). (<b>a</b>) The ultrasound images of the melanoma lesion show the characteristic hypoechoic spindle-like depth morphology affecting the epidermal and dermal regions. (<b>b</b>) In the case of melanoma metastasis, no characteristic features can be observed in the optical images of the skin surface. In contrast, its ultrasound images show a clearly detectable hypoechoic, heterogeneous lesion in the deeper parts of the dermis, with irregular borders and asymmetric shape.</p> "> Figure 5
<p>Examination images of basal cell carcinomas (BCC) (see <a href="#diagnostics-12-00204-f002" class="html-fig">Figure 2</a> for figure layout and marking information). (<b>a</b>) A slightly elevated BCC. The ultrasound images show a relatively hypoechoic (with echoes from inside), compact, but asymmetric lesion. The dermal region of this example is more hyperechoic than those shown in <a href="#diagnostics-12-00204-f004" class="html-fig">Figure 4</a>; this represents the variability of skin echogenicity between patients and body locations. (<b>b</b>) A clinically flat, erythematosus BCC that was treated with cryotherapy one year before the examination. The ultrasound images show a relatively hypoechoic lesion with hypoechoic boundary regions. (<b>c</b>) A slightly sunken, scaly BCC that was treated with electrocautery therapy 3 months before the examination, being present in a location at which it is relatively hard to perform ultrasound imaging. The ultrasound images show a heterogeneously hypoechoic lesion with border irregularities.</p> "> Figure 6
<p>Examination images of seborrheic keratoses (SK) (see <a href="#diagnostics-12-00204-f002" class="html-fig">Figure 2</a> for figure layout and marking information). (<b>a</b>) A slightly elevated keratotic papule. The ultrasound images present the acoustic shadowing effect caused by the relatively strong reflectiveness of the keratotic surface of the lesion. (<b>b</b>) A slightly elevated SK with asymmetric shape and color. The intensity of the acoustic shadows shown on the ultrasound images follows the different scales of reflectivity of the surface of different areas of the asymmetric lesion. (<b>c</b>) An interesting case of SK. This lesion showed a suspicious spindle-like subsurface morphology (similar to those of melanoma, see <a href="#diagnostics-12-00204-f004" class="html-fig">Figure 4</a>c) on the ultrasound images, with its other features, such as the presence of acoustic shadow, the relatively high echogenicity of the lesion area and the dermoscopic features (sharply demarcated borders, comedo-like openings, cerebriform structures) suggesting the correct diagnosis (SK). This example underlines the importance of employing a holistic, complete evaluation of optical and ultrasound information.</p> "> Figure 7
<p>Examination images of a dermatofibroma (see <a href="#diagnostics-12-00204-f002" class="html-fig">Figure 2</a> for figure layout and marking information). The ultrasound images show a hypoechoic, heterogeneous lesion in the dermis.</p> "> Figure 8
<p>Examination images of naevi (see <a href="#diagnostics-12-00204-f002" class="html-fig">Figure 2</a> for figure layout and marking information). (<b>a</b>) An asymmetric, brownish naevus. The ultrasound images of the lesion show a hypoechoic, well delimited structure with a half-ellipse-like morphology. (<b>b</b>) The ultrasound images show a similar morphology to those of the above case. (<b>c</b>) A compound naevus. The ultrasound images show the relatively hypoechoic, well delimited lesion extending also to the non-elevated area of the dermis. Note that the acoustic shadow on the left of the <span class="html-italic">Dermus SkinScanner</span> ultrasound image was caused by a small air bubble inside the gel in intersection with the red line, slightly above the left side of the lesion.</p> "> Figure 9
<p>Examination images of the same skin area affected by atopic dermatitis before and after two weeks of topical treatment. (<b>a</b>) Atopic dermatitis lesion before treatment. The Subepidermal Low Echogenic Band (SLEB) can be seen on both ultrasound images. (<b>b</b>) Follow-up images after two weeks of topical treatment for atopic dermatitis. Shrinking of the SLEB as well as changes in echogenicity of the epidermis (decreased echogenicity) and dermis (increased echogenicity), due to an increased level of hydration, and slight shrinking of dermis thickness can be observed on the ultrasound images of (<b>b</b>) in comparison to those of (<b>a</b>).</p> "> Figure 10
<p>Examination images of psoriasis skin lesions (see <a href="#diagnostics-12-00204-f002" class="html-fig">Figure 2</a> for figure layout and marking information). (<b>a</b>) The ultrasound images show a clearly visible Subepidermal Low Echogenic Band (SLEB) as well as a relatively high thickness of the dermis (as signs of inflammation). (<b>b</b>) The ultrasound images show a clearly visible SLEB and a relatively thick dermis. Note the vessel-like hypoechoic structure in the dermis visualized in a parallel orientation to the image plane. (<b>c</b>) Guttate psoriasis. A SLEB with a relatively small lateral extent (compared to those of <a href="#diagnostics-12-00204-f009" class="html-fig">Figure 9</a>a and <a href="#diagnostics-12-00204-f010" class="html-fig">Figure 10</a>a,b) is shown on the ultrasound images.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Dermus SkinScanner Device
2.2. Study Design
2.2.1. Study Population
2.2.2. Data Acquisition
2.2.3. Evaluation of Skin Structure Detectability
3. Results
3.1. Skin Structure Detectability
3.2. Dermus SkinScanner Ultrasound Image Interpretation
3.3. Melanoma
3.4. Basal Cell Carcinoma
3.5. Seborrheic Keratosis
3.6. Dermatofibroma
3.7. Naevus
3.8. Dermatitis
3.9. Psoriasis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilhelm, K.P.; Elsner, P.; Berardesca, E.; Maibach, H.I. (Eds.) Bioengineering of the Skin: Skin Imaging & Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Wortsman, X.; Jemec, G. (Eds.) Dermatologic Ultrasound with Clinical and Histologic Correlations; Springer Science & Business Media: New York, NY, USA, 2013; pp. 39–586. [Google Scholar]
- Skin Cancer Foundation: Skin Cancer Facts & Statistics. Available online: https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/ (accessed on 16 June 2021).
- Rigel, D.S.; Carucci, J.A. Malignant melanoma: Prevention, early detection, and treatment in the 21st century. CA Cancer J. Clin. 2000, 50, 215–236. [Google Scholar] [CrossRef] [PubMed]
- Hanifin, J.M.; Reed, M.L.; Prevalence, E.; Impact Working Group. A population-based survey of eczema prevalence in the United States. Dermatitis 2007, 18, 82–91. [Google Scholar] [CrossRef]
- Abuabara, K.; Magyari, A.; McCulloch, C.E.; Linos, E.; Margolis, D.J.; Langan, S.M. Prevalence of atopic eczema among patients seen in primary care: Data from the Health Improvement Network. Ann. Intern. Med. 2019, 170, 354–356. [Google Scholar] [CrossRef]
- Fuxench, Z.C.; Block, J.K.; Boguniewicz, M.; Boyle, J.; Fonacier, L.; Gelfand, J.M.; Grayson, M.H.; Margolis, D.J.; Mitchell, L.; Silverberg, J.I.; et al. Atopic Dermatitis in America Study: A cross-sectional study examining the prevalence and disease burden of atopic dermatitis in the US adult population. J. Investig. Dermatol. 2019, 139, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Kardynal, A.; Olszewska, M. Modern non-invasive diagnostic techniques in the detection of early cutaneous melanoma. J. Dermatol. Case Rep. 2014, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Botar-Jid, C.M.; Cosgarea, R.; Bolboacă, S.D.; Şenilă, S.C.; Lenghel, L.M.; Rogojan, L.; Dudea, S.M. Assessment of cutaneous melanoma by use of very-high-frequency ultrasound and real-time elastography. Am. J. Roentgenol. 2016, 206, 699–704. [Google Scholar] [CrossRef]
- Polańska, A.; Dańczak-Pazdrowska, A.; Silny, W.; Woźniak, A.; Maksin, K.; Jenerowicz, D.; Janicka-Jedyńska, M. Comparison between high-frequency ultrasonography (Dermascan C, version 3) and histopathology in atopic dermatitis. Ski. Res. Technol. 2013, 19, 432–437. [Google Scholar] [CrossRef]
- Dańczak-Pazdrowska, A.; Polańska, A.; Silny, W.; Sadowska, A.; Osmola-Mańkowska, A.; Czarnecka-Operacz, M.; Żaba, R.; Jenerowicz, D. Seemingly healthy skin in atopic dermatitis: Observations with the use of high-frequency ultrasonography, preliminary study. Ski. Res. Technol. 2012, 18, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Polańska, A.; Silny, W.; Jenerowicz, D.; Knioła, K.; Molińska-Glura, M.; Dańczak-Pazdrowska, A. Monitoring of therapy in atopic dermatitis–observations with the use of high-frequency ultrasonography. Ski. Res. Technol. 2015, 21, 35–40. [Google Scholar] [CrossRef]
- Grajdeanu, I.A.; Statescu, L.; Vata, D.; Popescu, I.A.; Porumb-Andrese, E.; Patrascu, A.I.; Taranu, T.; Crisan, M.; Solovastru, L.G. Imaging techniques in the diagnosis and monitoring of psoriasis. Exp. Ther. Med. 2019, 18, 4974–4980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, K.A.; Raišutis, R.; Liutkus, J.; Valiukevičienė, S. Diagnostics of melanocytic skin tumours by a combination of ultrasonic, dermatoscopic and spectrophotometric image parameters. Diagnostics 2020, 10, 632. [Google Scholar] [CrossRef] [PubMed]
- Dinnes, J.; Bamber, J.; Chuchu, N.; Bayliss, S.E.; Takwoingi, Y.; Davenport, C.; Godfrey, K.; O’Sullivan, C.; Matin, R.N.; Deeks, J.J.; et al. High-frequency ultrasound for diagnosing skin cancer in adults. Cochrane Database Syst. Rev. 2018, 12, 1–96. [Google Scholar] [CrossRef]
- Schneider, S.L.; Kohli, I.; Hamzavi, I.H.; Council, M.L.; Rossi, A.M.; Ozog, D.M. Emerging imaging technologies in dermatology: Part I: Basic principles. J. Am. Acad. Dermatol. 2019, 80, 1114–1120. [Google Scholar] [CrossRef]
- Rigel, D.S.; Russak, J.; Friedman, R. The evolution of melanoma diagnosis: 25 years beyond the ABCDs. CA Cancer J. Clin. 2010, 60, 301–316. [Google Scholar] [CrossRef]
- Schneider, S.L.; Kohli, I.; Hamzavi, I.H.; Council, M.L.; Rossi, A.M.; Ozog, D.M. Emerging imaging technologies in dermatology: Part II: Applications and limitations. J. Am. Acad. Dermatol. 2019, 80, 1121–1131. [Google Scholar] [CrossRef]
- Szalai, K.; Hatvani, Z.; Hársing, J.; Somlai, B.; Kárpáti, S. CO07. High frequency ultrasonography in the diagnosis of cutaneous pigmented lesions and melanoma reduce the possibilities of diagnostic pitfalls. Melanoma Res. 2011, 21, e4–e5. [Google Scholar] [CrossRef]
- Hernandez-Ibanez, C.; Blazquez-Sanchez, N.; Aguilar-Bernier, M.; Fúnez-Liébana, R.; Rivas-Ruiz, F.; de Troya-Martin, M. Usefulness of high-frequency ultrasound in the classification of histologic subtypes of primary basal cell carcinoma. Actas Dermo-Sifiliográficas 2017, 108, 42–51. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Barcaui, E.; Carvalho, A.C.; Valiante, P.M.; Barcaui, C.B. High-frequency ultrasound associated with dermoscopy in pre-operative evaluation of basal cell carcinoma. An. Bras. Dermatol. 2014, 89, 828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfageme, F.; Wortsman, X.; Catalano, O.; Roustan, G.; Crisan, M.; Crisan, D.; Gaitini, D.E.; Cerezo, E.; Badea, R. European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) position statement on dermatologic ultrasound. Ultraschall Der Med. Eur. J. Ultrasound 2021, 42, 39–47. [Google Scholar] [CrossRef]
- Kimball, A.B.; Resneck, J.S., Jr. The US dermatology workforce: A specialty remains in shortage. J. Am. Acad. Dermatol. 2008, 59, 741–745. [Google Scholar] [CrossRef]
- Csány, G.; Szalai, K.; Füzesi, K.; Gyöngy, M. A low-cost portable ultrasound system for skin diagnosis. In Proceedings of Meetings on Acoustics 6ICU; Acoustical Society of America: Melville, NY, USA, 2017; Volume 32, p. 020002. [Google Scholar]
- Mlosek, R.K.; Migda, B.; Migda, M. High-frequency ultrasound in the 21st century. J. Ultrason. 2021, 20, e233. [Google Scholar] [CrossRef]
- Sciolla, B.; Le Digabel, J.; Josse, G.; Dambry, T.; Guibert, B.; Delachartre, P. Joint segmentation and characterization of the dermis in 50 MHz ultrasound 2D and 3D images of the skin. Comput. Biol. Med. 2018, 103, 277–286. [Google Scholar] [CrossRef]
- Stephens, K. Clarius Introduces First Ultra-High-Frequency Handheld Ultrasound Scanner; AXIS Imaging News: Overland Park, KS, USA, 2020. [Google Scholar]
- Przybysz, P.; Jackowska, T.; Wilińska, M.; Malinowska, S.; Wójtowicz, J.; Mlosek, R.K. Ultrasound image of healthy skin in newborns in the first 24 hours of life. J. Ultrason. 2021, 20, e242. [Google Scholar] [CrossRef]
- Chirikhina, E.; Chirikhin, A.; Dewsbury-Ennis, S.; Bianconi, F.; Xiao, P. Skin Characterizations by Using Contact Capacitive Imaging and High-Resolution Ultrasound Imaging with Machine Learning Algorithms. Appl. Sci. 2021, 11, 8714. [Google Scholar] [CrossRef]
- Chirikhina, E.; Chirikhin, A.; Xiao, P.; Dewsbury-Ennis, S.; Bianconi, F. In Vivo Assessment of Water Content, Trans-Epidermial Water Loss and Thickness in Human Facial Skin. Appl. Sci. 2020, 10, 6139. [Google Scholar] [CrossRef]
- Reginelli, A.; Belfiore, M.P.; Russo, A.; Turriziani, F.; Moscarella, E.; Troiani, T.; Brancaccio, G.; Ronchi, A.; Giunta, E.; Sica, A.; et al. A preliminary study for quantitative assessment with HFUS (High-Frequency Ultrasound) of nodular skin melanoma breslow thickness in adults before surgery: Interdisciplinary team experience. Curr. Radiopharm. 2020, 13, 48–55. [Google Scholar] [CrossRef]
- Gyöngy, M.; Csány, G. Method for Generating Ultrasound Image and Computer Readable Medium. U.S. Patent No. 10,928,515, 23 February 2021. [Google Scholar]
- Csány, G.; Szalai, K.; Gyöngy, M. A real-time data-based scan conversion method for single element ultrasound transducers. Ultrasonics 2019, 93, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.; Park, S.H.; Lee, K.H. How to demonstrate similarity by using noninferiority and equivalence statistical testing in radiology research. Radiology 2013, 267, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Gambichler, T.; Moussa, G.; Bahrenberg, K.; Vogt, M.; Ermert, H.; Weyhe, D.; Altmeyer, P.; Hoffmann, K. Preoperative ultrasonic assessment of thin melanocytic skin lesions using a 100-MHz ultrasound transducer: A comparative study. Dermatol. Surg. 2007, 33, 818–824. [Google Scholar]
- Grajdeanu, I.A.; Vata, D.; Statescu, L.; Popescu, I.A.; Porumb-Andrese, E.; Patrascu, A.I.; Stincanu, A.; Taranu, T.; Crisan, M.; Solovastru, L.G. Use of imaging techniques for melanocytic naevi and basal cell carcinoma in integrative analysis. Exp. Ther. Med. 2020, 20, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Szalai, K.; Hatvani, Z.; Artner, A.; Toth, K.; Harsing, J.; Karpati, S. Significance of ultrasound morphologic evaluation of basocellular cancers from the viewpoint of the therapeutic modalities and followup procedures. J. Investig. Dermatol. 2012, 132, S54. [Google Scholar]
- Wortsman, X.; Bouer, M. Common benign non-vascular skin tumors. In Dermatologic Ultrasound with Clinical and Histologic Correlations; Wortsman, X., Jemec, G., Eds.; Springer Science & Business Media: New York, NY, USA, 2013; pp. 119–175. [Google Scholar]
- Sorokina, E.; Mikailova, D.; Krakhaleva, J.; Krinitsyna, J.; Yakubovich, A.; Sergeeva, I. Ultrasonography patterns of atopic dermatitis in children. Ski. Res. Technol. 2020, 26, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Lacarrubba, F.; Pellacani, G.; Gurgone, S.; Verzì, A.E.; Micali, G. Advances in non-invasive techniques as aids to the diagnosis and monitoring of therapeutic response in plaque psoriasis: A review. Int. J. Dermatol. 2015, 54, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Șomlea, M.C.; Boca, A.N.; Pop, A.D.; Ilieș, R.F.; Vesa, S.C.; Buzoianu, A.D.; Tătaru, A. High-frequency ultrasonography of psoriatic skin: A non-invasive technique in the evaluation of the entire skin of patients with psoriasis: A pilot study. Exp. Ther. Med. 2019, 18, 4981–4986. [Google Scholar] [CrossRef] [PubMed]
- Catalano, O.; Roldán, F.A.; Varelli, C.; Bard, R.; Corvino, A.; Wortsman, X. Skin cancer: Findings and role of high-resolution ultrasound. J. Ultrasound 2019, 22, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Einstien, A.; Rangari, A.P.; Kumar, M.J.; Einstien, D. High Resolution Ultrasound in Cutaneous and Subcutaneous Lesions. Int. J. Contemp. Med. Surg. Radiol. 2018, 3, D66–D70. [Google Scholar] [CrossRef]
- Wortsman, X. Sonography of the primary cutaneous melanoma: A review. Radiol. Res. Pract. 2012, 2012, 814396. [Google Scholar] [CrossRef] [Green Version]
- Wortsman, X.; Carreño, L.; Morales, C. Skin cancer: The primary tumors. In Dermatologic Ultrasound with Clinical and Histologic Correlations; Wortsman, X., Jemec, G., Eds.; Springer Science & Business Media: New York, NY, USA, 2013; pp. 249–282. [Google Scholar]
- Bard, R.L. (Ed.) Image Guided Dermatologic Treatments; Springer Nature: New York, NY, USA, 2019. [Google Scholar]
- Polańska, A.; Dańczak-Pazdrowska, A.; Jałowska, M.; Żaba, R.; Adamski, Z. Current applications of high-frequency ultrasonography in dermatology. Adv. Dermatol. Allergol. Postȩpy Dermatol. I Alergol. 2017, 34, 535. [Google Scholar] [CrossRef]
- Goyal, U.; Pan, J.; Cui, H.; Stea, B. Does ultrasound measurement improve the accuracy of electronic brachytherapy in the treatment of superficial non-melanomatous skin cancer? J. Contemp. Brachyther. 2017, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Harland, C.C.; Kale, S.G.; Jackson, P.; Mortimer, P.S.; Bamber, J.C. Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound. Br. J. Dermatol. 2000, 143, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.; Wortsman, X.; Filippucci, E.; De Angelis, R.; Filosa, G.; Grassi, W. High-frequency sonography in the evaluation of psoriasis: Nail and skin involvement. J. Ultrasound Med. 2009, 28, 1569–1574. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.; Filippucci, E.; Bertolazzi, C.; Grassi, W. Sonographic monitoring of psoriatic plaque. J. Rheumatol. 2009, 36, 850–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dermus SkinScanner | Reference Device (Dramiński DermaMed) | |||||
---|---|---|---|---|---|---|
A 1 | B 2 | C 3 | A 1 | B 2 | C 3 | |
Lesion | 95% | 91% | 91% | 94% | 87% | 94% |
Epidermis | 96% | 98% | 92% | 96% | 100% | 97% |
Dermis | 96% | 91% | 96% | 94% | 96% | 96% |
Subcutis | 94% | 85% | 91% | 94% | 92% | 96% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csány, G.; Gergely, L.H.; Kiss, N.; Szalai, K.; Lőrincz, K.; Strobel, L.; Csabai, D.; Hegedüs, I.; Marosán-Vilimszky, P.; Füzesi, K.; et al. Preliminary Clinical Experience with a Novel Optical–Ultrasound Imaging Device on Various Skin Lesions. Diagnostics 2022, 12, 204. https://doi.org/10.3390/diagnostics12010204
Csány G, Gergely LH, Kiss N, Szalai K, Lőrincz K, Strobel L, Csabai D, Hegedüs I, Marosán-Vilimszky P, Füzesi K, et al. Preliminary Clinical Experience with a Novel Optical–Ultrasound Imaging Device on Various Skin Lesions. Diagnostics. 2022; 12(1):204. https://doi.org/10.3390/diagnostics12010204
Chicago/Turabian StyleCsány, Gergely, László Hunor Gergely, Norbert Kiss, Klára Szalai, Kende Lőrincz, Lilla Strobel, Domonkos Csabai, István Hegedüs, Péter Marosán-Vilimszky, Krisztián Füzesi, and et al. 2022. "Preliminary Clinical Experience with a Novel Optical–Ultrasound Imaging Device on Various Skin Lesions" Diagnostics 12, no. 1: 204. https://doi.org/10.3390/diagnostics12010204
APA StyleCsány, G., Gergely, L. H., Kiss, N., Szalai, K., Lőrincz, K., Strobel, L., Csabai, D., Hegedüs, I., Marosán-Vilimszky, P., Füzesi, K., Sárdy, M., & Gyöngy, M. (2022). Preliminary Clinical Experience with a Novel Optical–Ultrasound Imaging Device on Various Skin Lesions. Diagnostics, 12(1), 204. https://doi.org/10.3390/diagnostics12010204