WEA-Acceptance Data—A Dataset of Acoustic, Meteorological, and Operational Wind Turbine Measurements
<p>A schematic overview of the utilized measurement equipment. The equipment in orange was used for the short recordings only, while the rest was used in the long-term measurements.</p> "> Figure 2
<p>The state transition diagram for determining the operating states based on observations in the dataset. The following values are abbreviated: po = “power output”; rs(,min) = “(minimal) rotor speed”; pc[ws] = “manufacturer’s power curve value for the wind speed bin”; t = “timestamp”. Dashed arrows show state transitions that likely only occur due to the big averaged time intervals in the present data.</p> "> Figure 3
<p>The deduced operating states of WT1 during measurement campaign 5. Blue squares denote the state <tt>STOP</tt>, orange stars the state <tt>PARTIAL STOP</tt>, green triangles the state <tt>NORMAL</tt>, and red circles the state <tt>OUTLIER</tt>. During the time of measurement, no curtailment was applied, so these states are not depicted.</p> "> Figure 4
<p>A schematic map of the measurement site during the measurement campaign. The green diamond stands for the 100 m meteorological mast, the red to yellow hued crosses are the acoustical measurement stations, and the purple symbols surrounded by dashed circles indicating distances are the wind turbines.</p> "> Figure 5
<p>The measurement site with one of the acoustical measurement stations and its power supply.</p> "> Figure 6
<p>The measurement site with the acoustical measurement stations for short-term recordings.</p> ">
Abstract
:1. Summary
1.1. Predecessor Project “WEA-Acceptance”
1.2. Follow-Up Project “WEA-Acceptance Data”
1.3. About This Paper
2. Data Description
2.1. Metadata
2.2. Acoustical Data
2.3. Meteorological Data
2.4. SCADA Data
STOP
PARTIAL STOP
CURTAILMENT
PARTIAL CURTAILMENT
OUTLIER
NORMAL
3. Methods
3.1. General Measurement Setup
3.2. Equipment
3.3. Data Treatment
3.4. Data Anonymization
4. User Notes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | convolutional neural network |
FAIR | findable, accessible, interoperable, reusable |
MET | meteorological mast |
MIC | microphone |
NaN | not a number—equivalent to an empty/non-existent entry |
O&M | operation and maintenance |
SCADA | supervisory control and data acquisition |
SPL | sound pressure level |
WT | wind turbine |
References
- Preihs, S.; Bergner, J.; Schössow, D.; Peissig, J. Assessing Wind Turbine Noise Perception by means of Contextual Laboratory and Online Studies. In Proceedings of the 9th International Conference on Wind Turbine Noise, e-Conference from Europe, Online, 18–21 May 2021; pp. 331–344. [Google Scholar]
- Schössow, D.; Kawczynski, D.; Preihs, S.; Peissig, J. Der Einfluss visueller Präsentationsmodi auf die Wahrnehmung von WEA-Stimuli in Probandenstudien. In Proceedings of the Fortschritte der Akustik—DAGA 2023, 49. Jahrestagung für Akustik, Hamburg, Germany, 6–9 March 2023; pp. 534–537. [Google Scholar]
- Preihs, S.; Bergner, J.; Schössow, D.; Peissig, J. On Predicting the Perceived Annoyance of Wind Turbine Sound. In Proceedings of the Fortschritte der Akustik—DAGA 2021, 47. Jahrestagung für Akustik, Vienna, Austria, 15–18 August 2021; pp. 1589–1592. [Google Scholar]
- Bergner, J.; Preihs, S.; Peissig, J. Investigation on Ecological Validity within Higher Order Ambisonics Reproductions of Wind Turbine Noisescapes. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference 2019, Madrid, Spain, 16–19 June 2019; pp. 3635–3646. [Google Scholar]
- Pieren, R.; Heutschi, K.; Müller, M.; Manyoky, M.; Eggenschwiler, K. Auralization of wind turbine noise: Emission synthesis. Acta Acust. United Acust. 2014, 100, 25–33. [Google Scholar] [CrossRef]
- Preihs, S.; Bergner, J.; Peissig, J. Ansätze zur binauralen Erweiterung einer Algorithmik zur lästigkeitsbezogenen Analyse und Synthese der Schallemissionen von Windenergieanlagen. In Proceedings of the Fortschritte der Akustik—DAGA 2019, 45. Jahrestagung für Akustik, Rostock, Germany, 18–21 March 2019; pp. 315–318. [Google Scholar]
- Poschadel, N.; Gill, C.; Preihs, S.; Peissig, J. CNN-based multi-class multi-label classification of sound scenes in the context of wind turbine sound emission measurements. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference 2021, Washington, DC, USA, 1–5 August 2021; pp. 2687–2698. [Google Scholar] [CrossRef]
- Könecke, S.; Hörmeyer, J.; Bohne, T.; Rolfes, R. A new base of wind turbine noise measurement data and its application for a systematic validation of sound propagation models. Wind Energy Sci. 2023, 8, 639–659. [Google Scholar] [CrossRef]
- Martens, S.; Bohne, T.; Rolfes, R. An evaluation method for extensive wind turbine sound measurement data and its application. Proc. Meet. Acoust. 2020, 41, 040001. [Google Scholar] [CrossRef]
- Martens, S.; Bohne, T.; Rolfes, R. Analyzing the Sound Propagation of Wind Turbines Based on Measured Acoustical and Meteorological Parameters. In Proceedings of the Fortschritte der Akustik—DAGA 2019, 45. Jahrestagung für Akustik, Rostock, Germany, 18–21 March 2019; pp. 311–314. [Google Scholar]
- Martens, S.; Bohne, T.; Rolfes, R. Measuring and Analysing the Sound Propagation of Wind Turbines. In Proceedings of the 8th International Conference on Wind Turbine Noise, Lisbon, Portugal, 12–14 June 2019; pp. 384–396. [Google Scholar]
- Martens, S.; Bohne, T.; Rolfes, R. Entfernungsabhängige Refraktionseffekte in der Schallausbreitung von Windenergieanlagen. In Proceedings of the Fortschritte der Akustik—DAGA 2020, 46. Jahrestagung für Akustik, Hanover, Germany, 16–19 March 2020; pp. 472–475. [Google Scholar]
- Martens, S.; Findeisen, L.; Bohne, T.; Rolfes, R. Automatisiertes Clustering der Schallemissionen von Windenergieanlagen. In Proceedings of the Fortschritte der Akustik—DAGA 2021, 47. Jahrestagung für Akustik, Vienna, Austria, 15–18 August 2021; pp. 1548–1551. [Google Scholar]
- FAIR Principles. Available online: www.go-fair.org/fair-principles/ (accessed on 12 September 2023).
- Schössow, D.; Bergner, J.; Preihs, S.; Peissig, J. Concept for an open database of acoustical wind turbine measurements. In Proceedings of the Poster at WindEurope Technology Workshop 2022, Brussels, Belgium, 23–24 June 2022. [Google Scholar]
- Schössow, D.; Preihs, S.; Peissig, J. WEA-Acceptance Data—A FAIR wind turbine dataset. In Proceedings of the Presentation at Wind Energy Science Conference 2023, Glasgow, UK, 23–26 May 2023. [Google Scholar]
- Schössow, D.; Preihs, S.; Peissig, J.; Könecke, S.; Bohne, T.; Rolfes, R. A comparison of methods for identifying wind turbine sounds in big data sets. In Proceedings of the 10th International Conference on Wind Turbine Noise, Dublin, Ireland, 21–23 June 2023; pp. 374–394. [Google Scholar]
- IEC 61400-11:2012; Wind Turbines—Part 11: Acoustic Noise Measurement Techniques. IEC: Geneva, Switzerland, 2012.
- Van den Berg, F.G.P. Wind turbine power and sound in relation to atmospheric stability. Wind. Energy Int. J. Prog. Appl. Wind. Power Convers. Technol. 2008, 11, 151–169. [Google Scholar] [CrossRef]
- Do, M.T.; Huang, G. Performance Analysis of Wind Farm with SCADA data: From the methodology to a case study. In Proceedings of the Poster at WindEurope Technology Workshop 2022, Brussels, Belgium, 23–24 June 2022. [Google Scholar]
- Martens, S.; Boas, M.; Bohne, T.; Rolfes, R. Towards the use of secondary windscreens to improve wind turbine sound measurements. In Proceedings of the 15th EAWE PhD Seminar on Wind Energy, Nantes, France, 29–31 October 2019. [Google Scholar]
- Minimal Timestamp in Pandas. Available online: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.min.html (accessed on 12 September 2023).
Campaign | Location | Season | Duration | Measurements |
---|---|---|---|---|
1 | 1 | summer | 7 weeks | 3 × MIC, 2 × WT |
2 | 2 | spring | 11 weeks | 3 × MIC, 4 × WT, 1 × MET100 |
3 | 2 | autumn | 5 weeks | 3 × MIC, 4 × WT, 1 × MET100 |
4 | 3 | winter | 10 weeks | 3 × MIC, 3 × WT, 1 × MET100 |
5 | 3 | spring/summer | 22 weeks | 3 × MIC, 3 × WT, 1 × MET100 |
Height | Measurement | Unit |
---|---|---|
28 m | wind direction 1 | ° |
29 m | wind speed 1 | m/s |
53 m | temperature, relative humidity | °C, % |
54 m | wind direction | ° |
57 m | wind speed | m/s |
76 m | wind speed | m/s |
95 m | temperature 1, relative humidity 1, atmospheric pressure | °C, %, hPa |
96 m | wind direction | ° |
100 m | wind speed | m/s |
Stability Class | Wind Shear Exponent 1 |
---|---|
(moderately–very) stable | |
slightly stable | |
neutral | |
(very–slightly) unstable |
Class | Angles of Relative Wind Direction | Angles of Sound Propagation Direction |
---|---|---|
downwind | – | – |
slightly downwind | – and – | – and – |
crosswind | – and – | – and – |
slightly upwind | – and – | – and – |
upwind | – | – |
Column Name | (Original) Unit | Note |
---|---|---|
Time | UTC, 10 min steps | |
wind speed | m/s | - |
wind direction | ° | - |
power output | kW | had to be normalized, see Section 3.4 |
rotor speed 1 | rpm | had to be normalized, see Section 3.4 |
gear speed 1 | rpm | had to be normalized, see Section 3.4 |
generator speed 1 | rpm | had to be normalized, see Section 3.4 |
blade pitch | ° | - |
nacelle position 1 | ° | - |
nacelle temperature | °C | - |
outside temperature at nacelle | °C | - |
operating state | - | derived from the other values, see below |
Measurement Station | Parameters | Distance to WT1 |
---|---|---|
WT1 | Hub Height: 119 m | 0 m |
Rotor Diameter: 114 m | ||
WT2 | Hub Height: 90 m | 470 m |
Rotor Diameter: 120 m | ||
WT3 | Hub Height: 93.5 m | 880 m |
Rotor Diameter: 112.5 m | ||
MIC1/2/3 | Height: 1.70/1.70/1.70 m | 178/535/845 m |
MET100 | Height: 100 m | 2.27 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schössow, D.; Preihs, S.; Peissig, J. WEA-Acceptance Data—A Dataset of Acoustic, Meteorological, and Operational Wind Turbine Measurements. Data 2024, 9, 46. https://doi.org/10.3390/data9030046
Schössow D, Preihs S, Peissig J. WEA-Acceptance Data—A Dataset of Acoustic, Meteorological, and Operational Wind Turbine Measurements. Data. 2024; 9(3):46. https://doi.org/10.3390/data9030046
Chicago/Turabian StyleSchössow, Daphne, Stephan Preihs, and Jürgen Peissig. 2024. "WEA-Acceptance Data—A Dataset of Acoustic, Meteorological, and Operational Wind Turbine Measurements" Data 9, no. 3: 46. https://doi.org/10.3390/data9030046
APA StyleSchössow, D., Preihs, S., & Peissig, J. (2024). WEA-Acceptance Data—A Dataset of Acoustic, Meteorological, and Operational Wind Turbine Measurements. Data, 9(3), 46. https://doi.org/10.3390/data9030046