SEN2VENµS, a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms
<p>Spectral sensitivity response of corresponding spectral bands between Sentinel-2 (<b>top</b>) and VENµS (<b>bottom</b>).</p> "> Figure 2
<p>Map of Sentinel-2 coverage on Theia (orange), available VENµS sites (green) and 29 selected sites (red) for the dataset.</p> "> Figure 3
<p>Proportions of Copernicus 2019 Land-Cover [<a href="#B31-data-07-00096" class="html-bibr">31</a>] classes for each site. Sites are sorted by decreasing latitude (from north to south).</p> "> Figure 4
<p>Zenith viewing angles for the 29 selected VENµS sites.</p> "> Figure 5
<p>Distribution of the 579 selected pairs across selected VENµS sites, sorted by increasing zenith viewing angle.</p> "> Figure 6
<p>Distribution of acquisition dates of selected pairs for each site. Colors are used to increase readability. Sites are sorted by decreasing latitude (from north to south). European and equatorial sites are distinguished with background colors (light orange for European, light green for equatorial) to assess seasonal coverage.</p> "> Figure 7
<p>Distribution of time deltas in minutes between Venµs and Sentinel-2 local time (if negative, Venµs acquisition is later than Sentinel-2 acquisition). Colors are used to increase readibility. Sites are sorted by decreasing latitude (from north to south).</p> "> Figure 8
<p>Total number of patches sampled from each site.</p> "> Figure 9
<p>Statistics of number of patches per pair for each site.</p> "> Figure 10
<p>Mean average error per band and per site computed on a random selection of 200 patches from at most 20 pairs at Sentinel-2 resolution.</p> "> Figure 11
<p>Root mean square error per band and per site computed on a random selection of 200 patches from at most 20 pairs at Sentinel-2 resolution.</p> "> Figure 12
<p>Examples of patches from left to right: columns 1–8 and 9–16 show rendering of two different patches; columns 1 and 9: B4, B3, B7 (RGB natural) at 10 m; columns 2 and 10: B4, B3, B7 (RGB natural) at 5 m; columns 3 and 11: color-mapped B8 at 10 m (wide near infrared); columns 4 and 12: color-mapped B8 at 5m (wide near infrared); columns 5 and 13: B7, B6, B5 color composition (red edge 3 to 1) at 20 m; columns 6 and 14: B7, B6, B5 color composition (red edge 3 to 1) at 5 m; columns 7 and 15: color-mapped B8A at 20 m (narrow near infrared), columns 8 and 16: color-mapped B8A at 5 m (narrow near infrared). A total of 29 patches are displayed, one random patch for each site. Only 64 × 64 pixels crops of the patches are displayed to improve readability. High resolution and low resolution patches radiometries where scaled to 8 bits with the same scaling factors.</p> "> Figure 13
<p>Uncompressed files sizes for each site in gigabytes. The full dataset weighs 116 Gb.</p> ">
Abstract
:1. Introduction
2. Dataset Generation
2.1. Sentinel-2 and VENµS Missions
2.2. Product Levels and Processing
- Ortho-rectification (geometric processing);
- Atmospheric correction: Conversion of radiance to surface reflectance values, including estimation and compensation of aerosol content and water vapor amount;
- Screening of clouds and cloud shadows.
- A mask of no-data pixels, which are out of the sensor swath;
- A mask of clouds and clouds shadows;
- A mask of saturated pixels;
- A mask of geophysically invalid pixels (water, out of sight pixels due to relief, etc…).
2.3. Site Selection
2.4. Pair Selection
2.5. Sampling Patches in Pairs
2.5.1. Reprojection and Common Bounding Box Cropping
2.5.2. Spatial Registration
- Divide the downsampled VENµS image and the Sentinel-2 in non-overlapping corresponding patches of 366 × 366 pixels;
- For each patch, compute SIFT matches;
- Discard matches that are masked by the respective validity masks;
- Discard matches that are further that 15 m apart (obvious outliers);
- Compute the average shift in both directions from the collection of remaining matches.
2.5.3. Patchification and Invalid Patch Filtering
2.5.4. Radiometric Adjustments
2.5.5. Random Selection and Outlier Removal
3. Dataset Content
3.1. Quantitative Analysis
3.2. Qualitative Analysis
3.3. Format and Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lanaras, C.; Bioucas-Dias, J.; Baltsavias, E.; Schindler, K. Super-resolution of multispectral multiresolution images from a single sensor. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 20–28. [Google Scholar]
- Paris, C.; Bioucas-Dias, J.; Bruzzone, L. A hierarchical approach to superresolution of multispectral images with different spatial resolutions. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2589–2592. [Google Scholar]
- Lin, C.H.; Bioucas-Dias, J.M. An explicit and scene-adapted definition of convex self-similarity prior with application to unsupervised Sentinel-2 super-resolution. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3352–3365. [Google Scholar] [CrossRef]
- Gargiulo, M.; Mazza, A.; Gaetano, R.; Ruello, G.; Scarpa, G. Fast super-resolution of 20 m Sentinel-2 bands using convolutional neural networks. Remote Sens. 2019, 11, 2635. [Google Scholar] [CrossRef]
- Lanaras, C.; Bioucas-Dias, J.; Galliani, S.; Baltsavias, E.; Schindler, K. Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network. ISPRS J. Photogramm. Remote Sens. 2018, 146, 305–319. [Google Scholar] [CrossRef]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O. Sentinel-2 Image Fusion Using a Deep Residual Network. Remote Sens. 2018, 10, 1290. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Ulfarsson, M.O.; Sveinsson, J.R.; Dalla Mura, M. Sentinel-2 sharpening using a single unsupervised convolutional neural network with MTF-based degradation model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6882–6896. [Google Scholar] [CrossRef]
- Ciotola, M.; Ragosta, M.; Poggi, G.; Scarpa, G. A full-resolution training framework for Sentinel-2 image fusion. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1260–1263. [Google Scholar]
- Chan, T.; Wong, C.K. Total variation blind deconvolution. IEEE Trans. Image Process. 1998, 7, 370–375. [Google Scholar] [CrossRef]
- Krishnan, D.; Tay, T.; Fergus, R. Blind deconvolution using a normalized sparsity measure. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 233–240. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, S.; Barnes, N. A deep journey into super-resolution: A survey. ACM Comput. Surv. (CSUR) 2020, 53, 1–34. [Google Scholar] [CrossRef]
- Liu, H.; Qian, Y.; Zhong, X.; Chen, L.; Yang, G. Research on super-resolution reconstruction of remote sensing images: A comprehensive review. Opt. Eng. 2021, 60, 100901. [Google Scholar] [CrossRef]
- Agustsson, E.; Timofte, R. Ntire 2017 challenge on single image super-resolution: Dataset and study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 126–135. [Google Scholar]
- Shoeiby, M.; Robles-Kelly, A.; Wei, R.; Timofte, R. Pirm2018 challenge on spectral image super-resolution: Dataset and study. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Wang, Y.; Wang, L.; Yang, J.; An, W.; Guo, Y. Flickr1024: A large-scale dataset for stereo image super-resolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Rohith, G.; Kumar, L.S. Paradigm shifts in super-resolution techniques for remote sensing applications. Vis. Comput. 2021, 37, 1965–2008. [Google Scholar] [CrossRef]
- Pouliot, D.; Latifovic, R.; Pasher, J.; Duffe, J. Landsat super-resolution enhancement using convolution neural networks and Sentinel-2 for training. Remote Sens. 2018, 10, 394. [Google Scholar] [CrossRef]
- Galar, M.; Sesma, R.; Ayala, C.; Aranda, C. Super-Resolution for Sentinel-2 Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W16, 95–102. [Google Scholar] [CrossRef]
- Salgueiro Romero, L.; Marcello, J.; Vilaplana, V. Super-resolution of sentinel-2 imagery using generative adversarial networks. Remote Sens. 2020, 12, 2424. [Google Scholar] [CrossRef]
- Pineda, F.; Ayma, V.; Beltran, C. A generative adversarial network approach for super-resolution of sentinel-2 satellite images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 9–14. [Google Scholar] [CrossRef]
- Tao, Y.; Xiong, S.; Song, R.; Muller, J.P. Towards Streamlined Single-Image Super-Resolution: Demonstration with 10 m Sentinel-2 Colour and 10–60 m Multi-Spectral VNIR and SWIR Bands. Remote Sens. 2021, 13, 2614. [Google Scholar] [CrossRef]
- Galar, M.; Sesma, R.; Ayala, C.; Albizua, L.; Aranda, C. Super-resolution of sentinel-2 images using convolutional neural networks and real ground truth data. Remote Sens. 2020, 12, 2941. [Google Scholar] [CrossRef]
- Märtens, M.; Izzo, D.; Krzic, A.; Cox, D. Super-resolution of PROBA-V images using convolutional neural networks. Astrodynamics 2019, 3, 387–402. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 data for land cover/use mapping: A review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of phenological research using Sentinel-2 data: A review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Ferrier, P.; Crebassol, P.; Dedieu, G.; Hagolle, O.; Meygret, A.; Tinto, F.; Yaniv, Y.; Herscovitz, J. VENμS (Vegetation and environment monitoring on a new micro satellite). In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 3736–3739. [Google Scholar]
- Dedieu, G.; Hagolle, O.; Karnieli, A.; Ferrier, P.; Crébassol, P.; Gamet, P.; Desjardins, C.; Yakov, M.; Cohen, M.; Hayun, E. VENµS: Performances and First Results after 11 Months in Orbit. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 7756–7759. [Google Scholar] [CrossRef]
- Lonjou, V.; Desjardins, C.; Hagolle, O.; Petrucci, B.; Tremas, T.; Dejus, M.; Makarau, A.; Auer, S. Maccs-atcor joint algorithm (maja). In Proceedings of the Remote Sensing of Clouds and the Atmosphere XXI; International Society for Optics and Photonics: Bellingham, WA, USA, 2016; Volume 10001, p. 1000107. [Google Scholar]
- Buchhorn, M.; Smets, B.; Bertels, L.; Roo, B.D.; Lesiv, M.; Tsendbazar, N.E.; Herold, M.; Fritz, S. Copernicus Global Land Service: Land Cover 100m: Collection 3: Epoch 2019: Globe. 2020. Available online: https://doi.org/10.5281/zenodo.3939050 (accessed on 12 May 2022).
- Dick, A.; Raynaud, J.L.; Rolland, A.; Pelou, S.; Coustance, S.; Dedieu, G.; Hagolle, O.; Burochin, J.P.; Binet, R.; Moreau, A. VENμS: Mission Characteristics, Final Evaluation of the First Phase and Data Production. Remote Sens. 2022, 14, 3281. [Google Scholar] [CrossRef]
- Lowe, G. Sift-the scale invariant feature transform. Int. J. 2004, 2, 2. [Google Scholar]
- Michel, J.; Sarrazin, E.; Youssefi, D.; Cournet, M.; Buffe, F.; Delvit, J.; Emilien, A.; Bosman, J.; Melet, O.; L’Helguen, C. A new satellite imagery stereo pipeline designed for scalability, robustness and performance. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 2, 171–178. [Google Scholar] [CrossRef]
- Michel, J.; Inglada, J. Learning Harmonised Pleiades and SENTINEL-2 Surface Reflectances. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 265–272. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035. [Google Scholar]
- Michel, J.; Hagolle, O.; Puissant, A.; Herrault, P.A.; Corpetti, T.; Nabucet, J.; Faure, J.F.; Maurel, P.; Lelong, C.; Berthier, E.; et al. Sentinel-HR Phase 0 Report; Research Report; CNES-Centre National d’études Spatiales; CESBIO: Singapore, 2022. [Google Scholar]
- Ahn, N.; Kang, B.; Sohn, K.A. Fast, accurate, and lightweight super-resolution with cascading residual network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 252–268. [Google Scholar]
Sentinel-2 | 10 m bands | 20 m bands |
B2 B3 B4 B8 | B5 B6 B7 B8A | |
VENµS | 5 m bands | 5 m bands |
B3 B4 B7 B11 | B8 B9 B10 B11 |
Site Name | Country | Province | Longitude | Latitude |
---|---|---|---|---|
ALSACE | France | Alsace | 7.46897 | 48.379 |
FR-LQ1 | France | Auvergne | 2.72879 | 45.6397 |
ESGISB-1 | France | Aquitaine | −0.692399 | 45.1198 |
ESGISB-2 | France | Aquitaine | −0.767621 | 44.869 |
ESGISB-3 | France | Aquitaine | −0.865341 | 44.5389 |
FR-BIL | France | Aquitaine | −0.959032 | 44.49 |
SO2 | France | Midi-Pyrenees | 1.26464 | 43.6105 |
ES-LTERA | France | Midi-Pyrenees | 1.23902 | 43.5 |
FR-LAM | France | Midi-Pyrenees | 1.17814 | 43.44 |
SUDOUE-2 | France | Midi-Pyrenees | 1.09625 | 43.0986 |
SO1 | France | Midi-Pyrenees | 1.02816 | 42.97 |
SUDOUE-3 | France | Midi-Pyrenees | 1.01046 | 42.836 |
SUDOUE-4 | Spain | Catalonia | 0.924987 | 42.5734 |
SUDOUE-5 | Spain | Catalonia | 0.857221 | 42.3638 |
SUDOUE-6 | Spain | Catalonia | 0.742541 | 41.9899 |
ES-IC3XG | Spain | Galicia | −8.0173 | 41.9893 |
LERIDA-1 | Spain | Catalonia | 0.636121 | 41.6624 |
NARYN | Kyrgyzstan | Naryn | 76.5615 | 41.6096 |
ARM | United States of America | Oklahoma | −97.4884 | 36.6097 |
ANJI | China | Zhejiang Sheng | 119.839 | 30.58 |
BENGA | India | West Bengal | 87.6132 | 23.609 |
KUDALIAR | India | Telangana | 78.6974 | 17.9402 |
BAMBENW2 | Senegal | Diourbel | −16.3837 | 14.6176 |
ESTUAMAR | French Guyana | Guyane | −54.038 | 5.58975 |
ATTO | Brazil | Amazonas | −59.0103 | −2.15005 |
FGMANAUS | Brazil | Amazonas | −59.7905 | −2.43994 |
K34-AMAZ | Brazil | Amazonas | −60.2103 | −2.6098 |
MAD-AMBO | Madagascar | Vakinankaratra | 47.1392 | −19.6701 |
JAM2018 | Brazil | Sao Paulo | −47.5153 | −22.7496 |
File | Content |
---|---|
{id}_05m_b2b3b4b8.pt | 5 m patches ( pix.) for S2 B2, B3, B4 and B8 |
{id}_10m_b2b3b4b8.pt | 10 m patches ( pix.) for S2 B2, B3, B4 and B8 |
{id}_05m_b5b6b7b8a.pt | 5 m patches ( pix.) for S2 B5, B6, B7 and B8A |
{id}_20m_b5b6b7b8a.pt | 20 m patches ( pix.) for S2 B5, B6, B7 and B8A |
{id}_patches.gpkg | GIS file with footprint of each patch |
Column | Description |
---|---|
venus_product_id | ID of the sampled VENµS L2A product |
sentinel2_product_id | ID of the sampled Sentinel-2 L2A product |
tensor_05m_b2b3b4b8 | Name of the 5 m tensor file for S2 B2, B3, B4 and B8 |
tensor_10m_b2b3b4b8 | Name of the 10 m tensor file for S2 B2, B3, B4 and B8 |
tensor_05m_b5b6b7b8a | Name of the 5 m tensor file for S2 B5, B6, B7 and B8A |
tensor_20m_b5b6b7b8a | Name of the 20 m tensor file for S2 B5, B6, B7 and B8A |
s2_tile | Sentinel-2 MGRS tile |
vns_site | Name of VENµS site |
date | Acquisition date as YYYY-MM-DD |
venus_zenith_angle | VENµS zenith viewing angle in degrees |
patches_gpkg | Name of the GIS file with footprint for each patch |
nb_patches | Number of patches for this pair |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michel, J.; Vinasco-Salinas, J.; Inglada, J.; Hagolle, O. SEN2VENµS, a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms. Data 2022, 7, 96. https://doi.org/10.3390/data7070096
Michel J, Vinasco-Salinas J, Inglada J, Hagolle O. SEN2VENµS, a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms. Data. 2022; 7(7):96. https://doi.org/10.3390/data7070096
Chicago/Turabian StyleMichel, Julien, Juan Vinasco-Salinas, Jordi Inglada, and Olivier Hagolle. 2022. "SEN2VENµS, a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms" Data 7, no. 7: 96. https://doi.org/10.3390/data7070096
APA StyleMichel, J., Vinasco-Salinas, J., Inglada, J., & Hagolle, O. (2022). SEN2VENµS, a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms. Data, 7(7), 96. https://doi.org/10.3390/data7070096