Performing Learning Analytics via Generalised Mixed-Effects Trees
<p>Mixed-effects tree structure used to generate the conditional probability of success <math display="inline"><semantics> <msub> <mi>μ</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </semantics></math> in the simulation study.</p> "> Figure 2
<p>The estimated mixed-effects tree of model (<a href="#FD3-data-06-00074" class="html-disp-formula">3</a>) for the probability of graduation. Each node reports the percentage of observations belonging to the node (second line of the node) and the estimated probability that responses relative to these observations are equal to 1 (first line of the node). Regarding the splitting criteria, left branches correspond to the case in which the condition is satisfied, and right branches correspond to the complementary case.</p> "> Figure 3
<p>Estimated random intercept for each degree programme in model (<a href="#FD3-data-06-00074" class="html-disp-formula">3</a>). For each engineering programme, the blue dot and the horizontal line mark the estimate and the 95% confidence interval of the corresponding random intercept.</p> "> Figure 4
<p>ROC curve computed on the PoliMi test set. Standing on this evidence, we chose <math display="inline"><semantics> <mrow> <mn>0.6</mn> </mrow> </semantics></math> as the optimal value of <math display="inline"><semantics> <msub> <mi>p</mi> <mn>0</mn> </msub> </semantics></math> to be used in the prediction as the threshold value for classification.</p> "> Figure A1
<p>Fixed-effects trees estimated by the GMERT algorithm (<b>left panel</b>) and the BiMM algorithm (<b>right panel</b>) for the probability of graduation. GMERT tree leaves do not report probability of class 1 as GMET and BiMM leaves do, but they report the estimated linearised response variable (obtained using a first-order Taylor-series expansion). BiMM notation is 2 for graduate and 1 for dropout.</p> "> Figure A2
<p>Random intercept for each degree programme, estimated by GMERT (<b>left panel</b>) and BiMM (<b>right panel</b>). For each engineering programme, the blue dot and the horizontal line mark the estimate and the 95% confidence interval of the corresponding random intercept.</p> "> Figure A3
<p>ROC curve computed on the PoliMi test set for the GMERT model (<b>left panel</b>) and BiMM model (<b>right panel</b>), respectively. Standing on this evidence, we choose <math display="inline"><semantics> <mrow> <mn>0.6</mn> </mrow> </semantics></math> as the optimal value of <math display="inline"><semantics> <msub> <mi>p</mi> <mn>0</mn> </msub> </semantics></math> to be used in the prediction as the threshold value for classification.</p> ">
Abstract
:1. Introduction
2. Model and Methods
2.1. The Generalised Mixed-Effects Tree Model
2.2. Generalised Mixed-Effects Tree Estimation
- Initialise the estimated random effects to zero.
- Estimate the target variable through a generalised linear model (GLM), given fixed-effects covariates for and . Get estimate of target variable .
- Build a regression tree approximating f using as dependent variable and as vector of covariates. This regression tree identifies a number L of terminal nodes , for , and each observation , described by its set of covariates , belongs to one of the terminal nodes. Through this regression tree, we define a set of indicator variables , for , where takes value 1 if observation belongs to the ℓ-th terminal node and 0 otherwise.
- Fit the mixed effects model (2), using as a response variable and the set of indicator variables as fixed-effects covariates (dummy variables). Specifically, for and , we have . Extract from the estimated model.
- Replace the predicted response at each terminal node of the tree with the estimated predicted response from the mixed-effects model fitted in step 4.
Predictions for New Observations
- Predict response given a new observation for a group in the sample . We define it a group-level prediction.
- Predict response given an observation for a group for which there were no observations in our sample, or for which we do not know the relevant group. We define it a population-level prediction.
3. Simulation Study
- Leaf 1: if then ;
- Leaf 2: if then ;
- Leaf 3: if then ;
- Leaf 4: if then ;
- Leaf 5: if then ;
- Leaf 6: if then ;
- No random effects: ;
- Random intercept: and ;
- Random intercept and slope, which add a linear random effect for the fixed-effect covariate , uncorrelated from the random effect on the intercept. That is, and .
Simulation Results
- A standard binary classification tree model (Std);
- A random intercept GMET model (RI);
- A random intercept and slope GMET model (RIS);
- A parametric mixed-effects logistic regression model (MElog) that used the true model leaves’ indicators as fixed covariates and the true random effect structure;
- A parametric mixed-effects logistic regression model (GLMM) that used as fixed covariates and the true random effect structure;
- The GLMERT algorithm proposed in [11] considering as fixed covariates and the true random effect structure;
- The GMERT algorithm proposed in [10] considering as fixed covariates and the true random effect structure;
- The predictive mean absolute deviation
- The predictive misclassification rate (PMCR)
4. Case Study: Application of the Mixed-Effects Tree Algorithm to Education PoliMi Data
- status for studies definitely completed with graduation;
- status for studies definitely concluded with dropping out.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Application of GMERT Algorithm to PoliMi Case Study and Comparison with GMET Results
GMERT | BiMM | |||
---|---|---|---|---|
Index | Mean | Std Deviation | Mean | Std Deviation |
Accuracy | 0.861 | 0.008 | 0.849 | 0.012 |
Sensitivity | 0.818 | 0.021 | 0.806 | 0.023 |
Specificity | 0.891 | 0.013 | 0.874 | 0.015 |
Appendix B. Additional Simulations and Results
Appendix B.1. Recovery of the Right Tree Structure
DGP | Random Effect | Fixed Effect | Fitted Model | Number of Leaves | Right Tree Structure | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | SD | Min | Max | # Right Splits | # Right Cutpoints | ||||
1 | No RANDOM EFFECT | Large | Std | 6.11 | 6.00 | 0.39 | 6.00 | 8.00 | 84 | 78 |
RI | 10.08 | 10.00 | 1.73 | 6.00 | 13.00 | 0 | 0 | |||
RIS | 10.11 | 10.00 | 1.78 | 7.00 | 14.00 | 0 | 0 | |||
GLMERT | 6.39 | 6.00 | 0.59 | 6.00 | 8.00 | 94 | 63 | |||
GMERT | 6.13 | 6.00 | 0.66 | 6.00 | 10.00 | 89 | 61 | |||
BiMM | 2.74 | 3.00 | 0.69 | 2.00 | 5.00 | 0 | 0 | |||
2 | Small | Std | 7.21 | 6.00 | 3.07 | 3.00 | 15.00 | 24 | 16 | |
RI | 10.58 | 10.00 | 1.48 | 8.00 | 13.00 | 0 | 0 | |||
RIS | 10.58 | 10.00 | 1.43 | 8.00 | 14.00 | 0 | 0 | |||
GLMERT | 4.84 | 5.00 | 0.86 | 4.00 | 8.00 | 24 | 8 | |||
GMERT | 4.76 | 5.00 | 1.05 | 3.00 | 7.00 | 48 | 25 | |||
BiMM | 3.66 | 4.00 | 0.75 | 2.00 | 5.00 | 0 | 0 | |||
3 | Low | Large | Std | 7.24 | 6.00 | 2.14 | 4.00 | 14.00 | 31 | 21 |
RI | 10.32 | 11.00 | 1.97 | 6.00 | 13.00 | 2 | 0 | |||
RIS | 10.24 | 11.00 | 1.97 | 7.00 | 14.00 | 0 | 0 | |||
GLMERT | 6.24 | 6.00 | 0.63 | 5.00 | 8.00 | 75 | 60 | |||
GMERT | 5.95 | 6.00 | 1.09 | 3.00 | 9.00 | 87 | 68 | |||
BiMM | 3.11 | 3.00 | 0.83 | 2.00 | 5.00 | 0 | 0 | |||
4 | High | Std | 6.26 | 6.00 | 3.29 | 1.00 | 14.00 | 8 | 3 | |
RI | 10.11 | 10.50 | 1.98 | 5.00 | 14.00 | 3 | 1 | |||
RIS | 10.08 | 10.00 | 1.68 | 6.00 | 13.00 | 0 | 0 | |||
GLMERT | 5.53 | 6.00 | 1.16 | 3.00 | 8.00 | 44 | 21 | |||
GMERT | 4.45 | 5.00 | 1.80 | 1.00 | 8.00 | 45 | 26 | |||
INTERCEPT | BiMM | 3.18 | 3.00 | 0.56 | 2.00 | 4.00 | 0 | 0 | ||
5 | Low | Small | Std | 7.32 | 6.00 | 3.62 | 3.00 | 17.00 | 8 | 5 |
RI | 10.18 | 10.00 | 1.54 | 6.00 | 14.00 | 0 | 0 | |||
RIS | 10.29 | 10.00 | 1.71 | 6.00 | 13.00 | 0 | 0 | |||
GLMERT | 4.79 | 5.00 | 0.84 | 4.00 | 7.00 | 10 | 3 | |||
GMERT | 4.76 | 4.50 | 1.57 | 2.00 | 10.00 | 36 | 12 | |||
BiMM | 3.66 | 4.00 | 0.71 | 3.00 | 5.00 | 0 | 0 | |||
6 | High | Std | 5.82 | 4.00 | 3.75 | 2.00 | 16.00 | 0 | 0 | |
RI | 10.03 | 10.00 | 1.95 | 6.00 | 15.00 | 0 | 0 | |||
RIS | 10.65 | 11.00 | 1.84 | 7.00 | 15.00 | 0 | 0 | |||
GLMERT | 3.86 | 4.00 | 0.98 | 1.00 | 6.00 | 2 | 2 | |||
GMERT | 3.08 | 3.00 | 1.69 | 1.00 | 8.00 | 8 | 1 | |||
BiMM | 3.57 | 3.00 | 0.80 | 3.00 | 6.00 | 0 | 0 | |||
7 | Low | Large | Std | 6.19 | 6.00 | 1.85 | 4.00 | 11.00 | 31 | 15 |
RI | 9.73 | 10.00 | 1.95 | 5.00 | 13.00 | 0 | 0 | |||
RIS | 9.57 | 10.00 | 1.99 | 5.00 | 13.00 | 0 | 0 | |||
GLMERT | 6.27 | 6.00 | 0.61 | 5.00 | 8.00 | 80 | 52 | |||
GMERT | 6.30 | 6.00 | 0.81 | 5.00 | 9.00 | 70 | 30 | |||
BiMM | 3.14 | 3.00 | 0.63 | 2.00 | 5.00 | 0 | 0 | |||
8 | High | Std | 6.95 | 6.00 | 4.56 | 1.00 | 18.00 | 0 | 0 | |
RI | 9.30 | 9.00 | 1.79 | 5.00 | 12.00 | 0 | 0 | |||
RIS | 9.97 | 10.00 | 1.48 | 8.00 | 13.00 | 0 | 0 | |||
GLMERT | 4.95 | 5.00 | 1.35 | 3.00 | 8.00 | 23 | 15 | |||
GMERT | 4.92 | 5.00 | 1.82 | 2.00 | 9.00 | 53 | 23 | |||
High INTERCEPT &SLOPE | BiMM | 3.54 | 3.00 | 0.90 | 2.00 | 6.00 | 3 | 0 | ||
9 | Low | Small | Std | 7.35 | 6.00 | 3.17 | 2.00 | 15.00 | 21 | 5 |
RI | 10.27 | 11.00 | 1.79 | 7.00 | 13.00 | 0 | 0 | |||
RIS | 10.30 | 10.00 | 1.71 | 7.00 | 14.00 | 0 | 0 | |||
GLMERT | 4.84 | 5.00 | 0.96 | 3.00 | 7.00 | 23 | 0 | |||
GMERT | 4.95 | 5.00 | 1.82 | 1.00 | 10.00 | 40 | 16 | |||
BiMM | 3.73 | 4.00 | 0.73 | 2.00 | 5.00 | 0 | 0 | |||
10 | High | Std | 4.86 | 3.00 | 3.14 | 1.00 | 13.00 | 3 | 0 | |
RI | 10.30 | 10.00 | 1.70 | 6.00 | 13.00 | 0 | 0 | |||
RIS | 10.41 | 10.00 | 2.01 | 6.00 | 15.00 | 2 | 0 | |||
GLMERT | 3.89 | 4.00 | 0.81 | 2.00 | 5.00 | 3 | 0 | |||
GMERT | 3.35 | 3.00 | 1.55 | 1.00 | 9.00 | 9 | 6 | |||
BiMM | 3.49 | 3.00 | 0.84 | 2.00 | 6.00 | 0 | 0 |
Appendix B.2. Simulations Based on Data with Linear and Non-Linear Fixed Effects
DGP | Random Effect | Fixed Effect | Fitted Model | PMAD (%) | PMCR (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | SD | Min | Max | Mean | Median | SD | Min | Max | ||||
1 | NO RANDOM EFFECT | Large | Std | 10.25 | 10.53 | 1.30 | 8.12 | 12.29 | 12.97 | 12.84 | 1.21 | 10.76 | 15.44 |
RI | 7.38 | 7.38 | 0.60 | 6.15 | 8.46 | 13.55 | 13.28 | 2.14 | 11.16 | 23.08 | |||
RIS | 7.41 | 7.50 | 0.61 | 6.19 | 8.34 | 12.49 | 12.64 | 0.72 | 10.92 | 13.68 | |||
GLMM | 3.26 | 3.32 | 0.67 | 2.02 | 4.55 | 11.08 | 11.06 | 0.80 | 9.28 | 12.40 | |||
GLMERT | 8.32 | 8.20 | 0.73 | 6.94 | 9.54 | 16.54 | 14.36 | 5.10 | 12.32 | 35.24 | |||
GMERT | 11.65 | 11.46 | 0.97 | 9.79 | 13.58 | 13.32 | 13.18 | 1.16 | 11.56 | 16.20 | |||
BiMM | 10.88 | 10.94 | 0.98 | 8.61 | 12.96 | 13.24 | 13.48 | 1.03 | 10.56 | 15.00 | |||
2 | Small | Std | 4.97 | 4.95 | 0.49 | 4.12 | 6.31 | 4.72 | 4.64 | 0.51 | 3.80 | 6.36 | |
RI | 2.85 | 2.75 | 0.52 | 1.90 | 3.91 | 6.19 | 5.76 | 1.51 | 4.24 | 9.80 | |||
RIS | 2.95 | 2.89 | 0.59 | 2.20 | 4.23 | 7.14 | 6.92 | 1.28 | 4.32 | 9.20 | |||
GLMM | 2.51 | 2.43 | 0.61 | 1.40 | 3.76 | 7.39 | 7.10 | 1.34 | 5.20 | 11.40 | |||
GLMERT | 3.30 | 3.15 | 0.60 | 2.55 | 4.66 | 6.17 | 6.28 | 1.40 | 3.80 | 9.04 | |||
GMERT | 7.60 | 7.49 | 0.50 | 6.68 | 8.64 | 6.40 | 6.12 | 1.72 | 4.20 | 9.80 | |||
BiMM | 5.01 | 4.97 | 0.47 | 4.26 | 6.31 | 4.65 | 4.62 | 0.40 | 3.80 | 5.80 | |||
3 | Low | Large | Std | 16.22 | 16.24 | 1.46 | 13.63 | 19.25 | 17.15 | 16.80 | 1.17 | 15.28 | 20.20 |
RI | 9.50 | 9.49 | 0.68 | 7.92 | 10.91 | 13.47 | 13.36 | 1.03 | 11.48 | 15.44 | |||
RIS | 9.35 | 9.26 | 0.74 | 7.83 | 10.82 | 13.35 | 13.20 | 1.07 | 11.52 | 15.44 | |||
GLMM | 6.65 | 6.67 | 0.73 | 5.32 | 7.76 | 11.92 | 11.94 | 1.00 | 9.76 | 13.92 | |||
GLMERT | 10.31 | 10.27 | 0.84 | 8.86 | 12.87 | 14.23 | 14.32 | 1.02 | 12.44 | 16.20 | |||
GMERT | 16.80 | 16.77 | 0.61 | 15.70 | 18.07 | 15.78 | 15.84 | 1.35 | 13.24 | 18.44 | |||
BiMM | 16.43 | 16.21 | 1.23 | 14.14 | 18.59 | 17.19 | 16.86 | 1.14 | 15.32 | 19.08 | |||
4 | High | Std | 21.14 | 21.37 | 2.44 | 14.17 | 25.81 | 21.28 | 21.66 | 1.78 | 17.64 | 24.56 | |
RI | 9.89 | 9.88 | 0.76 | 8.26 | 11.92 | 13.54 | 13.46 | 1.02 | 11.56 | 16.52 | |||
RIS | 9.67 | 9.60 | 0.69 | 8.09 | 11.07 | 13.17 | 13.20 | 0.98 | 11.08 | 15.24 | |||
GLMM | 7.18 | 7.16 | 0.69 | 5.58 | 8.45 | 11.50 | 11.62 | 1.01 | 9.28 | 13.40 | |||
GLMERT | 10.76 | 10.92 | 0.82 | 8.96 | 12.18 | 14.18 | 14.18 | 0.97 | 12.32 | 15.84 | |||
GMERT | 21.29 | 21.51 | 1.73 | 16.31 | 24.91 | 18.85 | 18.72 | 2.73 | 14.92 | 27.80 | |||
INTERCEPT | BiMM | 21.18 | 21.37 | 2.31 | 14.63 | 25.81 | 20.85 | 20.56 | 1.81 | 16.44 | 24.56 | ||
5 | Low | Small | Std | 5.95 | 5.93 | 0.62 | 4.59 | 7.38 | 5.30 | 5.28 | 0.65 | 4.24 | 6.72 |
RI | 3.69 | 3.64 | 0.66 | 2.63 | 5.76 | 7.02 | 7.02 | 1.62 | 4.36 | 10.08 | |||
RIS | 3.73 | 3.70 | 0.73 | 2.94 | 6.80 | 7.94 | 7.88 | 1.27 | 5.52 | 10.60 | |||
GLMM | 3.30 | 3.16 | 0.68 | 2.41 | 6.01 | 8.13 | 8.06 | 1.04 | 6.40 | 11.80 | |||
GLMERT | 4.07 | 4.05 | 0.54 | 3.10 | 5.29 | 6.91 | 6.98 | 1.55 | 4.36 | 9.20 | |||
GMERT | 8.32 | 8.26 | 0.49 | 7.46 | 9.40 | 6.91 | 7.08 | 1.32 | 4.36 | 9.36 | |||
BiMM | 5.95 | 5.93 | 0.62 | 4.59 | 7.38 | 5.30 | 5.28 | 0.65 | 4.24 | 6.72 | |||
6 | High | Std | 12.28 | 12.40 | 2.00 | 8.26 | 15.67 | 9.98 | 9.92 | 1.76 | 6.32 | 13.84 | |
RI | 5.80 | 5.82 | 0.83 | 4.01 | 7.35 | 9.99 | 9.92 | 1.88 | 6.88 | 14.24 | |||
RIS | 5.78 | 5.83 | 0.83 | 4.00 | 7.22 | 9.84 | 9.84 | 1.70 | 6.88 | 13.20 | |||
GLMM | 5.03 | 4.98 | 0.78 | 3.41 | 6.65 | 9.49 | 9.48 | 1.61 | 6.80 | 13.12 | |||
GLMERT | 6.40 | 6.26 | 0.93 | 4.78 | 8.13 | 10.36 | 10.20 | 1.70 | 7.36 | 14.64 | |||
GMERT | 12.32 | 12.34 | 1.30 | 9.62 | 14.62 | 10.96 | 10.40 | 2.42 | 6.52 | 17.20 | |||
BiMM | 12.30 | 12.40 | 1.98 | 8.26 | 15.67 | 9.88 | 9.86 | 1.77 | 6.32 | 13.84 | |||
7 | Low | Large | Std | 14.96 | 15.08 | 1.41 | 11.61 | 17.73 | 16.31 | 16.42 | 1.23 | 13.56 | 18.16 |
RI | 9.52 | 9.42 | 0.70 | 8.17 | 11.26 | 14.05 | 14.04 | 0.96 | 12.08 | 16.48 | |||
RIS | 9.66 | 9.65 | 0.71 | 8.30 | 11.31 | 14.04 | 14.06 | 0.95 | 12.56 | 16.52 | |||
GLMM | 6.77 | 6.69 | 0.60 | 5.71 | 7.98 | 12.62 | 12.66 | 0.89 | 11.08 | 14.40 | |||
GLMERT | 10.73 | 10.79 | 0.93 | 8.95 | 12.47 | 14.90 | 14.84 | 1.15 | 12.72 | 17.00 | |||
GMERT | 15.50 | 15.62 | 1.05 | 13.52 | 17.77 | 15.61 | 15.26 | 1.17 | 13.44 | 18.88 | |||
BiMM | 15.20 | 15.12 | 1.35 | 11.91 | 17.73 | 16.86 | 16.90 | 1.34 | 13.56 | 19.92 | |||
8 | High | Std | 23.07 | 22.76 | 2.58 | 19.28 | 29.66 | 22.32 | 22.24 | 2.57 | 17.64 | 28.80 | |
RI | 10.71 | 10.44 | 1.11 | 9.11 | 13.27 | 14.47 | 14.36 | 1.69 | 11.76 | 19.12 | |||
RIS | 10.56 | 10.38 | 1.15 | 8.96 | 14.22 | 14.63 | 14.62 | 1.49 | 12.20 | 18.40 | |||
GLMM | 7.97 | 8.02 | 1.02 | 6.22 | 10.38 | 12.93 | 12.96 | 1.33 | 10.76 | 16.60 | |||
GLMERT | 12.13 | 11.77 | 0.97 | 10.55 | 14.80 | 16.00 | 15.84 | 1.65 | 12.92 | 20.32 | |||
GMERT | 18.52 | 18.57 | 1.01 | 16.82 | 21.02 | 18.77 | 18.70 | 2.12 | 15.76 | 23.68 | |||
INTERCEPT &SLOPE | BiMM | 23.20 | 23.08 | 2.49 | 19.45 | 29.66 | 22.76 | 22.50 | 2.62 | 17.32 | 28.56 | ||
9 | Low | Small | Std | 5.65 | 5.57 | 0.65 | 4.71 | 7.35 | 5.09 | 5.16 | 0.52 | 3.92 | 6.20 |
RI | 3.46 | 3.42 | 0.54 | 2.39 | 4.44 | 6.87 | 6.78 | 1.69 | 4.48 | 10.16 | |||
RIS | 3.63 | 3.73 | 0.61 | 2.68 | 4.80 | 7.71 | 7.64 | 0.99 | 6.28 | 10.44 | |||
GLMM | 3.14 | 3.08 | 0.67 | 2.01 | 4.67 | 8.02 | 7.76 | 1.13 | 6.16 | 10.52 | |||
GLMERT | 3.88 | 3.72 | 0.67 | 3.01 | 5.59 | 8.23 | 7.80 | 1.35 | 5.20 | 11.00 | |||
GMERT | 8.02 | 8.03 | 0.45 | 7.13 | 8.98 | 8.42 | 8.32 | 1.23 | 6.36 | 11.00 | |||
BiMM | 5.68 | 5.59 | 0.64 | 4.79 | 7.35 | 5.10 | 5.20 | 0.52 | 3.92 | 6.20 | |||
10 | High | Std | 9.34 | 9.31 | 1.49 | 6.33 | 13.26 | 7.93 | 7.84 | 1.49 | 5.00 | 10.68 | |
RI | 5.63 | 5.54 | 0.93 | 3.84 | 7.31 | 9.69 | 9.84 | 1.49 | 7.00 | 12.32 | |||
RIS | 5.71 | 5.61 | 0.95 | 3.70 | 7.45 | 9.94 | 10.24 | 1.71 | 6.36 | 13.88 | |||
GLMM | 5.14 | 5.19 | 0.96 | 3.11 | 7.72 | 9.79 | 9.92 | 1.56 | 6.40 | 12.92 | |||
GLMERT | 5.89 | 5.90 | 0.83 | 4.33 | 7.48 | 10.09 | 10.08 | 1.35 | 7.16 | 12.76 | |||
GMERT | 10.56 | 10.50 | 0.86 | 9.07 | 12.66 | 10.97 | 11.00 | 1.99 | 8.04 | 15.24 | |||
BiMM | 9.34 | 9.31 | 1.49 | 6.33 | 13.26 | 7.93 | 7.84 | 1.49 | 5.00 | 10.68 |
DGP | Random Effect | Fixed Effect | Fitted Model | PMAD (%) | PMCR (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | SD | Min | Max | Mean | Median | SD | Min | Max | ||||
1 | NO RANDOM EFFECT | Large | Std | 14.96 | 14.96 | 1.71 | 11.15 | 17.79 | 12.17 | 12.60 | 1.25 | 9.32 | 14.08 |
RI | 17.75 | 17.90 | 1.65 | 13.59 | 20.18 | 15.63 | 15.56 | 1.74 | 12.08 | 20.32 | |||
RIS | 18.00 | 17.91 | 1.80 | 14.00 | 21.95 | 15.67 | 15.52 | 1.69 | 11.96 | 20.72 | |||
GLMM | 9.45 | 9.49 | 0.72 | 7.91 | 10.55 | 8.49 | 8.44 | 0.67 | 7.36 | 9.72 | |||
GLMERT | 12.34 | 12.34 | 1.35 | 9.75 | 15.06 | 11.90 | 12.00 | 1.34 | 9.24 | 14.88 | |||
GMERT | 17.59 | 17.35 | 1.12 | 15.77 | 21.03 | 12.53 | 12.52 | 1.31 | 9.76 | 16.00 | |||
BiMM | 26.12 | 25.60 | 2.90 | 21.92 | 31.53 | 47.78 | 47.74 | 0.87 | 45.96 | 49.68 | |||
2 | Small | Std | 14.62 | 14.38 | 1.67 | 11.81 | 17.83 | 13.16 | 13.00 | 1.37 | 11.12 | 16.44 | |
RI | 16.74 | 16.72 | 1.58 | 13.80 | 20.19 | 16.89 | 16.68 | 1.83 | 14.28 | 20.88 | |||
RIS | 16.54 | 16.67 | 1.31 | 12.79 | 18.84 | 16.18 | 16.16 | 1.44 | 14.16 | 19.76 | |||
GLMM | 9.14 | 9.22 | 0.58 | 7.88 | 10.46 | 9.77 | 10.00 | 0.56 | 8.48 | 10.64 | |||
GLMERT | 13.54 | 13.52 | 1.23 | 11.17 | 16.03 | 14.24 | 13.80 | 2.01 | 11.72 | 19.24 | |||
GMERT | 16.33 | 15.94 | 1.11 | 14.58 | 18.89 | 13.51 | 13.28 | 1.55 | 11.28 | 18.00 | |||
BiMM | 24.75 | 23.95 | 2.91 | 19.99 | 31.41 | 48.21 | 48.46 | 1.05 | 45.80 | 50.00 | |||
3 | Low | Large | Std | 18.03 | 17.71 | 2.29 | 14.29 | 26.00 | 14.94 | 14.56 | 2.09 | 11.24 | 20.68 |
RI | 18.01 | 17.90 | 1.95 | 14.88 | 21.99 | 15.61 | 15.40 | 1.77 | 12.32 | 18.76 | |||
RIS | 17.71 | 17.88 | 1.79 | 14.25 | 21.09 | 15.63 | 15.84 | 1.66 | 12.88 | 18.80 | |||
GLMM | 10.20 | 9.90 | 0.86 | 8.95 | 11.94 | 8.96 | 8.92 | 0.77 | 7.52 | 10.12 | |||
GLMERT | 13.62 | 13.33 | 1.34 | 11.45 | 16.56 | 12.98 | 13.16 | 1.43 | 10.88 | 16.20 | |||
GMERT | 18.25 | 18.22 | 0.96 | 16.13 | 20.06 | 13.25 | 12.92 | 1.31 | 10.36 | 16.44 | |||
BiMM | 26.38 | 25.88 | 3.25 | 21.34 | 33.48 | 47.99 | 48.06 | 1.18 | 44.64 | 49.96 | |||
4 | High | Std | 18.60 | 18.82 | 1.71 | 15.48 | 20.16 | 15.48 | 15.72 | 1.32 | 13.24 | 16.88 | |
RI | 17.94 | 17.40 | 1.84 | 14.74 | 21.87 | 15.44 | 15.60 | 1.24 | 13.28 | 17.36 | |||
RIS | 17.67 | 17.21 | 1.71 | 14.56 | 20.34 | 15.61 | 15.68 | 1.27 | 12.96 | 18.08 | |||
GLMM | 10.53 | 10.59 | 0.86 | 8.96 | 12.61 | 9.31 | 9.44 | 0.71 | 7.92 | 11.12 | |||
GLMERT | 14.45 | 14.51 | 1.29 | 11.98 | 16.84 | 13.86 | 13.88 | 0.94 | 12.16 | 16.12 | |||
GMERT | 18.97 | 18.97 | 0.98 | 17.07 | 21.15 | 13.84 | 13.64 | 1.38 | 11.16 | 15.92 | |||
INTERCEPT | BiMM | 27.76 | 26.56 | 3.15 | 23.03 | 34.41 | 48.01 | 48.18 | 1.13 | 45.12 | 50.04 | ||
5 | Low | Small | Std | 15.36 | 15.64 | 1.91 | 12.43 | 20.27 | 14.03 | 14.00 | 1.65 | 10.72 | 18.92 |
RI | 17.08 | 17.11 | 1.70 | 14.25 | 21.35 | 16.83 | 16.32 | 1.80 | 13.96 | 20.04 | |||
RIS | 16.41 | 16.39 | 1.56 | 14.22 | 20.63 | 16.23 | 16.00 | 1.75 | 13.12 | 20.16 | |||
GLMM | 9.46 | 9.28 | 0.81 | 7.44 | 11.50 | 10.03 | 10.04 | 0.86 | 8.12 | 11.40 | |||
GLMERT | 13.35 | 13.13 | 1.18 | 11.56 | 16.37 | 14.30 | 14.20 | 1.60 | 11.04 | 17.96 | |||
GMERT | 17.05 | 16.96 | 0.96 | 14.97 | 19.62 | 14.45 | 14.48 | 1.23 | 10.80 | 17.08 | |||
BiMM | 25.46 | 25.29 | 2.75 | 18.59 | 29.47 | 48.29 | 48.50 | 1.18 | 44.96 | 50.56 | |||
6 | High | Std | 17.50 | 17.64 | 1.99 | 12.66 | 21.25 | 15.73 | 15.76 | 1.60 | 12.40 | 18.56 | |
RI | 16.77 | 16.82 | 1.14 | 14.13 | 18.56 | 16.39 | 16.52 | 0.96 | 14.28 | 18.16 | |||
RIS | 16.92 | 16.78 | 1.63 | 12.96 | 21.42 | 16.47 | 16.36 | 1.27 | 13.92 | 18.48 | |||
GLMM | 10.46 | 10.38 | 0.62 | 9.26 | 12.18 | 11.05 | 10.88 | 0.71 | 10.04 | 12.52 | |||
GLMERT | 14.52 | 14.62 | 1.06 | 12.05 | 16.77 | 15.36 | 15.44 | 1.45 | 12.48 | 18.28 | |||
GMERT | 18.77 | 18.64 | 1.13 | 16.46 | 21.04 | 15.93 | 15.96 | 1.51 | 12.84 | 18.56 | |||
BiMM | 26.89 | 26.62 | 2.90 | 21.34 | 31.80 | 48.45 | 48.52 | 1.38 | 44.60 | 51.60 | |||
7 | Low | Large | Std | 15.87 | 15.25 | 2.38 | 12.04 | 22.45 | 12.72 | 12.52 | 1.70 | 9.80 | 17.68 |
RI | 17.58 | 17.65 | 1.51 | 14.46 | 19.90 | 15.40 | 15.40 | 1.30 | 12.68 | 18.12 | |||
RIS | 17.36 | 17.55 | 1.39 | 14.48 | 19.54 | 15.48 | 15.48 | 1.31 | 12.68 | 18.56 | |||
GLMM | 9.97 | 9.86 | 0.84 | 8.49 | 11.52 | 9.21 | 8.92 | 0.84 | 7.76 | 10.92 | |||
GLMERT | 13.48 | 13.29 | 1.26 | 11.02 | 16.17 | 13.18 | 13.16 | 1.63 | 9.80 | 16.56 | |||
GMERT | 18.27 | 18.33 | 0.97 | 16.55 | 20.16 | 13.03 | 13.00 | 1.51 | 10.28 | 15.32 | |||
BiMM | 25.98 | 25.76 | 2.70 | 20.66 | 30.75 | 47.92 | 48.04 | 1.09 | 44.00 | 49.16 | |||
8 | High | Std | 16.98 | 16.77 | 2.03 | 13.43 | 20.19 | 13.76 | 14.00 | 1.49 | 10.92 | 17.72 | |
RI | 18.39 | 17.82 | 1.84 | 14.84 | 21.40 | 15.85 | 16.08 | 1.66 | 11.60 | 18.92 | |||
RIS | 17.84 | 17.70 | 1.81 | 14.51 | 20.98 | 15.69 | 15.80 | 1.53 | 12.08 | 18.84 | |||
GLMM | 10.48 | 10.47 | 0.92 | 8.55 | 12.19 | 9.73 | 9.60 | 0.84 | 8.36 | 11.52 | |||
GLMERT | 14.27 | 14.16 | 1.04 | 12.40 | 16.59 | 13.51 | 13.32 | 1.41 | 11.20 | 17.20 | |||
GMERT | 19.22 | 19.19 | 1.35 | 16.74 | 22.30 | 13.99 | 13.92 | 1.74 | 11.24 | 17.80 | |||
INTERCEPT &SLOPE | BiMM | 27.10 | 26.19 | 3.36 | 21.90 | 34.64 | 47.65 | 47.64 | 1.27 | 44.64 | 50.44 | ||
9 | Low | Small | Std | 15.24 | 14.99 | 1.67 | 12.15 | 19.15 | 13.76 | 13.40 | 1.09 | 11.96 | 16.04 |
RI | 16.54 | 16.36 | 1.63 | 13.90 | 21.18 | 16.01 | 15.92 | 1.10 | 13.52 | 18.72 | |||
RIS | 16.57 | 16.44 | 1.51 | 13.88 | 20.16 | 16.13 | 16.24 | 1.11 | 13.52 | 18.80 | |||
GLMM | 9.47 | 9.57 | 0.54 | 8.13 | 10.37 | 10.16 | 10.16 | 0.69 | 8.84 | 11.72 | |||
GLMERT | 13.33 | 13.00 | 1.08 | 11.45 | 15.47 | 14.35 | 14.28 | 1.36 | 10.76 | 16.76 | |||
GMERT | 16.84 | 16.81 | 1.07 | 15.41 | 19.88 | 14.22 | 14.40 | 1.18 | 12.48 | 17.24 | |||
BiMM | 25.95 | 25.96 | 3.40 | 20.12 | 32.32 | 48.01 | 48.10 | 0.94 | 45.16 | 49.64 | |||
10 | High | Std | 17.04 | 17.00 | 1.96 | 13.83 | 23.24 | 15.44 | 15.44 | 1.46 | 12.92 | 19.28 | |
RI | 16.18 | 16.41 | 1.56 | 13.81 | 19.33 | 15.32 | 16.96 | 1.31 | 13.84 | 17.68 | |||
RIS | 16.12 | 16.28 | 1.08 | 14.35 | 17.91 | 15.18 | 15.32 | 1.36 | 12.88 | 18.44 | |||
GLMM | 10.44 | 10.54 | 0.61 | 9.19 | 11.31 | 11.06 | 11.08 | 0.72 | 9.36 | 12.36 | |||
GLMERT | 14.59 | 14.69 | 1.27 | 12.38 | 18.56 | 15.32 | 15.16 | 1.50 | 13.12 | 19.76 | |||
GMERT | 18.61 | 18.40 | 1.18 | 15.87 | 21.72 | 15.58 | 15.24 | 1.70 | 11.96 | 20.16 | |||
BiMM | 26.69 | 26.31 | 3.01 | 21.28 | 34.81 | 48.66 | 48.58 | 1.19 | 46.00 | 51.40 |
Appendix B.3. Simulation Based on Data with a Poisson Response Variable and Unbalanced Clusters
DGP | Random component | Fixed component | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Structure | Effect | Effect | |||||||||
1 | No random | – | – | – | Large | 4 | 6 | 8 | 6 | 4 | 10 |
2 | effect | – | Small | 2 | 4 | 6 | 4 | 2 | 8 | ||
3 | Random Intercept | Low | 2.00 | – | Large | 4 | 6 | 8 | 6 | 4 | 10 |
4 | High | 5.00 | – | ||||||||
5 | Low | 0.25 | – | Small | 2 | 4 | 6 | 4 | 2 | 8 | |
6 | High | 2.00 | – | ||||||||
7 | Random Intercept and Slope | Low | 2.00 | 0.05 | Large | 4 | 6 | 8 | 6 | 4 | 10 |
8 | High | 5.00 | 0.25 | ||||||||
9 | Low | 0.25 | 0.01 | Small | 2 | 4 | 6 | 4 | 2 | 8 | |
10 | High | 2.00 | 0.05 |
DGP | Random Effect | Fixed Effect | Fitted Model | PMAD(%) | ||||
---|---|---|---|---|---|---|---|---|
Mean | Median | SD | Min | Max | ||||
1 | No RANDOM EFFECT | Large | Std | 2.89 | 2.85 | 1.75 | 0.07 | 6.10 |
RI | 10.58 | 10.49 | 2.34 | 5.33 | 16.91 4 | |||
RIS | 11.15 | 11.18 | 2.34 | 5.36 | 16.91 | |||
GLMM | 8.46 | 8.44 | 2.28 | 4.44 | 16.59 | |||
GLMERT | 3.99 | 3.22 | 2.66 | 0.30 | 11.04 | |||
2 | Small | Std | 4.64 | 2.82 | 3.95 | 1.31 | 17.62 | |
RI | 16.57 | 16.33 | 3.76 | 8.59 | 28.19 | |||
RIS | 16.76 | 16.25 | 3.92 | 8.71 | 28.65 | |||
GLMM | 12.89 | 12.16 | 3.19 | 7.79 | 22.97 | |||
GLMERT | 5.96 | 4.75 | 4.55 | 1.31 | 17.63 | |||
3 | Low | Large | Std | 557.78 | 551.49 | 228.98 | 229.48 | 1351.42 |
RI | 32.26 | 32.79 | 5.70 | 20.91 | 44.37 | |||
RIS | 32.86 | 33.33 | 5.77 | 21.13 | 45.65 | |||
GLMM | 30.95 | 30.69 | 6.37 | 20.57 | 47.55 | |||
GLMERT | 27.12 | 26.38 | 5.82 | 18.10 | 42.41 | |||
4 | Std | 2920.44 | 2265.68 | 2382.02 | 412.82 | 12318.30 | ||
RI | 52.60 | 52.36 | 13.56 | 21.34 | 86.19 | |||
RIS | 54.28 | 55.26 | 13.95 | 21.65 | 91.11 | |||
GLMM | 49.08 | 47.20 | 13.07 | 21.94 | 84.06 | |||
HIGH INTERCEPT | GLMERT | 38.95 | 36.60 | 12.34 | 20.89 | 71.20 | ||
5 | Low | Small | Std | 176.50 | 175.42 | 29.01 | 131.43 | 271.54 |
RI | 32.16 | 32.50 | 3.37 | 23.73 | 38.54 | |||
RIS | 32.30 | 32.48 | 3.30 | 24.15 | 38.47 | |||
GLMM | 31.27 | 31.86 | 3.56 | 22.82 | 36.21 | |||
GLMERT | 28.59 | 29.27 | 3.77 | 19.81 | 34.86 | |||
6 | High | Std | 1074.88 | 982.37 | 394.96 | 519.43 | 2068.50 | |
RI | 42.26 | 42.55 | 5.45 | 31.33 | 57.30 | |||
RIS | 45.62 | 45.47 | 6.19 | 33.86 | 59.50 | |||
GLMM | 41.74 | 41.60 | 5.72 | 29.47 | 54.00 | |||
GLMERT | 36.77 | 37.38 | 5.70 | 26.49 | 52.03 | |||
7 | Low | Large | Std | 768.61 | 661.59 | 395.50 | 256.47 | 1842.23 |
RI | 148.34 | 132.52 | 59.64 | 63.67 | 330.14 | |||
RIS | 42.36 | 41.44 | 8.80 | 26.37 | 68.05 | |||
GLMM | 41.80 | 43.44 | 6.90 | 28.98 | 56.31 | |||
GLMERT | 38.71 | 39.91 | 7.87 | 25.13 | 58.30 | |||
8 | Std | 8197.50 | 5322.26 | 9631.35 | 1428.45 | 47,610.80 | ||
RI | 2010.04 | 1170.11 | 2150.09 | 250.94 | 10,877.54 | |||
RIS | 85.43 | 83.32 | 27.42 | 39.57 | 158.14 | |||
GLMM | 89.12 | 77.31 | 41.90 | 38.69 | 265.94 | |||
Hight INTERCEPT &SLOPE | GLMERT | 71.17 | 65.29 | 22.84 | 43.63 | 138.36 | ||
9 | Low | Small | Std | 206.85 | 200.50 | 32.50 | 151.81 | 279.47 |
RI | 61.09 | 60.30 | 8.71 | 44.70 | 81.25 | |||
RIS | 41.40 | 41.24 | 4.17 | 34.27 | 51.55 | |||
GLMM | 41.23 | 40.29 | 3.63 | 36.25 | 50.12 | |||
GLMERT | 38.79 | 38.25 | 3.76 | 33.00 | 45.77 | |||
10 | High | Std | 1570.61 | 1331.61 | 1068.54 | 503.47 | 5989.87 | |
RI | 303.01 | 247.81 | 166.30 | 147.81 | 893.52 | |||
RIS | 61.23 | 61.58 | 14.25 | 40.12 | 103.83 | |||
GLMM | 62.74 | 62.20 | 14.53 | 40.53 | 113.51 | |||
GLMERT | 56.69 | 55.13 | 12.32 | 35.43 | 93.44 |
DGP | Random Effect | Fixed Effect | Fitted Model | PMAD(%) | ||||
---|---|---|---|---|---|---|---|---|
Mean | Median | SD | Min | Max | ||||
1 | NO RANDOM EFFECT | Large | Std | 167.20 | 165.86 | 6.16 | 158.25 | 180.22 |
RI | 161.46 | 161.06 | 5.15 | 147.96 | 171.24 | |||
RIS | 154.84 | 157.35 | 9.30 | 137.29 | 167.30 | |||
GLMM | 19.37 | 19.39 | 4.00 | 11.63 | 29.76 | |||
GLMERT | 137.01 | 137.46 | 5.85 | 124.88 | 147.33 | |||
2 | Small | Std | 35.52 | 34.66 | 3.52 | 29.49 | 46.30 | |
RI | 26.52 | 26.18 | 1.38 | 24.35 | 29.55 | |||
RIS | 26.84 | 26.78 | 1.61 | 24.37 | 30.52 | |||
GLMM | 11.31 | 11.23 | 2.07 | 6.83 | 15.96 | |||
GLMERT | 34.38 | 34.48 | 2.86 | 29.50 | 39.94 | |||
3 | Low | Large | Std | 4721.44 | 4580.55 | 1647.63 | 2531.04 | 10,154.36 |
RI | 955.46 | 884.97 | 294.72 | 559.66 | 1895.78 | |||
RIS | 812.60 | 751.71 | 236.17 | 489.89 | 1600.11 | |||
GLMM | 86.95 | 84.49 | 13.71 | 64.38 | 119.16 | |||
GLMERT | 748.79 | 725.66 | 237.72 | 395.91 | 1536.27 | |||
4 | Std | 29,879.11 | 23,361.45 | 28,903.16 | 8831.63 | 163,613.27 | ||
RI | 4765.29 | 3490.10 | 4220.57 | 1488.83 | 23,464.90 | |||
RIS | 4020.26 | 3191.48 | 3262.35 | 1404.12 | 17,930.40 | |||
GLMM | 161.18 | 152.26 | 68.80 | 93.19 | 497.72 | |||
High INTERCEPT | GLMERT | 4463.56 | 3063.96 | 4394.33 | 1184.40 | 22,811.63 | ||
5 | Low | Small | Std | 196.94 | 187.97 | 28.00 | 146.76 | 249.27 |
RI | 58.32 | 57.60 | 4.36 | 51.28 | 68.91 | |||
RIS | 59.01 | 58.07 | 4.46 | 51.45 | 68.53 | |||
GLMM | 32.59 | 32.56 | 3.14 | 27.64 | 39.31 | |||
GLMERT | 63.72 | 63.18 | 4.26 | 57.68 | 70.82 | |||
6 | High | Std | 1076.42 | 898.49 | 617.26 | 518.63 | 3709.94 | |
RI | 135.98 | 117.49 | 99.36 | 76.91 | 636.51 | |||
RIS | 116.19 | 113.54 | 32.04 | 74.79 | 195.33 | |||
GLMM | 41.82 | 39.14 | 8.56 | 28.96 | 67.62 | |||
GLMERT | 122.63 | 104.09 | 56.03 | 74.17 | 376.44 | |||
7 | Low | Large | Std | 7208.83 | 6637.47 | 3058.53 | 2687.22 | 15,020.33 |
RI | 1588.80 | 1449.69 | 583.86 | 710.16 | 2803.83 | |||
RIS | 1181.85 | 1085.58 | 432.46 | 524.84 | 2208.55 | |||
GLMM | 133.09 | 130.27 | 22.26 | 96.65 | 187.50 | |||
GLMERT | 496.32 | 442.54 | 193.57 | 263.06 | 1049.15 | |||
8 | Std | 114,321.97 | 66,083.74 | 177,762.92 | 8903.18 | 909,771.14 | ||
RI | 28,423.89 | 15,363.83 | 43,872.04 | 2250.90 | 207,622.27 | |||
RIS | 11,753.23 | 5637.47 | 20,408.21 | 1366.25 | 107,551.55 | |||
GLMM | 305.21 | 255.73 | 145.78 | 127.61 | 811.44 | |||
High INTERCEPT &SLOPE | GLMERT | 11,844.52 | 4530.65 | 22,981.80 | 561.41 | 107,891.01 | ||
9 | Low | Small | Std | 236.25 | 230.69 | 42.66 | 161.23 | 361.97 |
RI | 70.23 | 70.95 | 8.95 | 55.76 | 86.57 | |||
RIS | 63.67 | 63.89 | 6.76 | 51.49 | 77.41 | |||
GLMM | 38.91 | 39.50 | 4.25 | 29.06 | 46.83 | |||
GLMERT | 69.70 | 69.83 | 6.32 | 57.10 | 82.35 | |||
10 | High | Std | 2069.59 | 1778.77 | 1740.42 | 437.63 | 9234.87 | |
RI | 312.70 | 257.02 | 218.08 | 96.06 | 1201.62 | |||
RIS | 112.36 | 122.74 | 99.71 | 71.13 | 427.66 | |||
GLMM | 63.24 | 61.68 | 12.61 | 45.85 | 92.99 | |||
GLMERT | 125.77 | 108.76 | 77.33 | 63.03 | 464.06 |
1 | Universitat Autonoma de Barcelona (UAB)—Spain; Instituto Politecnico de Braganca (IPB)—Portugal; Opole University of Technology—Poland; Politecnico di Milano—Italy; Universidad de Leon—Spain; University of Galati Dunarea de Jos—Romania. |
2 | In particular, the proposed method can deal with response variables that belong to the following families: binomial, Gaussian, gamma, inverse-Gaussian, Poisson, quasi, quasi-binomial, quasi-Poisson (i.e., the distributions handled by GLMM). |
3 | |
4 | The random intercept was the only random effect structure that BiMM algorithm handled. |
5 | We chose 20 as the minimum number of observations to attempt a split because it is the default number within the rpart R package; 10 as maximum depth was chosen in order not to grow “overly large” trees, but interpretable ones. The final depth of each tree was chosen by cross-validation (the complexity parameter of the tree was automatically chosen by cross-validation within the algorithm), and it was always smaller than 10. |
6 | This might have also been due to the fact that BiMM was disadvantaged, since it does not handle a random slope but only a random intercept. |
References
- SPEETproject. SPEET, Proposal for Strategic Partnerships (Proposal Narrative). 2017. Available online: https://www.speet-project.com/the-project (accessed on 5 May 2020).
- Barbu, M.; Vilanova, R.; Lopez Vicario, J.; Pereira, M.J.; Alves, P.; Podpdora, M.; Ángel Prada, M.; Morán, A.; Torreburno, A.; Marin, S.; et al. Data mining tool for academic data exploitation: Literature review and first architecture proposal. In Projecto SPEET-Student Profile for Enhancing Engineering Tutoring; IEEE Access: Piscataway, NJ, USA, 2017. [Google Scholar]
- Romero, C.; Ventura, S. Educational data mining: A review of the state of the art. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 40, 601–618. [Google Scholar] [CrossRef]
- Bock, R.D. Multilevel Analysis of Educational Data; Elsevier: London, UK, 2014. [Google Scholar]
- Goldstein, H. Multilevel Statistical Models; John Wiley & Sons: lWest Sussex, UK, 2011; Volume 922. [Google Scholar]
- Agresti, A. An Introduction to Categorical Data Analysis; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, The Wadsworth Statistics and Probability Series; Wadsworth International Group: Belmont, CA, USA, 1984; p. 356. [Google Scholar]
- Sela, R.J.; Simonoff, J.S. RE-EM trees: A data mining approach for longitudinal and clustered data. Mach. Learn. 2012, 86, 169–207. [Google Scholar] [CrossRef] [Green Version]
- Hajjem, A.; Bellavance, F.; Larocque, D. Mixed effects regression trees for clustered data. Stat. Probab. Lett. 2011, 81, 451–459. [Google Scholar] [CrossRef]
- Hajjem, A.; Larocque, D.; Bellavance, F. Generalized mixed effects regression trees. Stat. Probab. Lett. 2017, 126, 114–118. [Google Scholar] [CrossRef]
- Fokkema, M.; Smits, N.; Zeileis, A.; Hothorn, T.; Kelderman, H. Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees. Behav. Res. Methods 2018, 50, 2016–2034. [Google Scholar] [CrossRef]
- Speiser, J.L.; Wolf, B.J.; Chung, D.; Karvellas, C.J.; Koch, D.G.; Durkalski, V.L. BiMM tree: A decision tree method for modeling clustered and longitudinal binary outcomes. In Communications in Statistics-Simulation and Computation; Taylor & Francis: Boca Raton, FL, USA, 2020; Volume 49, pp. 1–20. [Google Scholar]
- Zeileis, A.; Hothorn, T.; Hornik, K. Model-based recursive partitioning. J. Comput. Graph. Stat. 2008, 17, 492–514. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, A.F.; Stampen, J.O.; Hansen, W.L. Exploring the effects of ability to pay on persistence in college. Rev. High. Educ. 1990, 13, 303–336. [Google Scholar] [CrossRef]
- John, E.P.S.; Paulsen, M.B.; Starkey, J.B. The nexus between college choice and persistence. Res. High. Educ. 1996, 37, 175–220. [Google Scholar] [CrossRef]
- Pascarella, E.T.; Terenzini, P.T. Predicting freshman persistence and voluntary dropout decisions from a theoretical model. J. High. Educ. 1980, 51, 60–75. [Google Scholar] [CrossRef]
- Spady, W.G. Dropouts from higher education: An interdisciplinary review and synthesis. Interchange 1970, 1, 64–85. [Google Scholar] [CrossRef]
- Tinto, V. Dropout from higher education: A theoretical synthesis of recent research. Rev. Educ. Res. 1975, 45, 89–125. [Google Scholar] [CrossRef]
- Korhonen, V.; Rautopuro, J. Identifying problematic study progression and “at-risk” students in higher education in Finland. Scand. J. Educ. Res. 2019, 63, 1056–1069. [Google Scholar] [CrossRef]
- Seidel, E.; Kutieleh, S. Using predictive analytics to target and improve first year student attrition. Aust. J. Educ. 2017, 61, 200–218. [Google Scholar] [CrossRef]
- Sothan, S. The determinants of academic performance: Evidence from a Cambodian university. Stud. High. Educ. 2019, 44, 2096–2111. [Google Scholar] [CrossRef]
- Saa, A.A.; Al-Emran, M.; Shaalan, K. Factors affecting students’ performance in higher education: A systematic review of predictive data mining techniques. Technol. Knowl. Learn. 2019, 24, 567–598. [Google Scholar]
- Wook, M.; Yusof, Z.M.; Zakree, M.; Nazri, A. Educational data mining acceptance among undergraduate students. Educ. Inf. Technol. 2017, 22, 1195. [Google Scholar] [CrossRef]
- Tampakas, V.; Livieris, I.E.; Pintelas, E.; Karacapilidis, N.; Pintelas, P. Prediction of students’ graduation time using a two-level classification algorithm. In Proceedings of the International Conference on Technology and Innovation in Learning, Teaching and Education, Thessaloniki, Greece, 20–22 June 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 553–565. [Google Scholar]
- Sanyal, D.; Bosch, N.; Paquette, L. Feature Selection Metrics: Similarities, Differences, and Characteristics of the Selected Models. In International Educational Data Mining Society; ERIC, 2020. [Google Scholar]
- Sivakumar, S.; Venkataraman, S.; Selvaraj, R. Predictive modeling of student dropout indicators in educational data mining using improved decision tree. Indian J. Sci. Technol. 2016, 9, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Yasmin, D. Application of the classification tree model in predicting learner dropout behaviour in open and distance learning. Distance Educ. 2013, 34, 218–231. [Google Scholar] [CrossRef]
- Abu-Oda, G.S.; El-Halees, A.M. Data mining in higher education: University student dropout case study. Int. J. Data Min. Knowl. Manag. Process 2015, 5. [Google Scholar] [CrossRef]
- Meedech, P.; Iam-On, N.; Boongoen, T. Prediction of student dropout using personal profile and data mining approach. In Intelligent and Evolutionary Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 143–155. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Searle, S.R.; McCulloch, C.E. Generalized, Linear, and Mixed Models; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- McCullagh, P.; Nelder, J. Generalized Linear Models; Taylor & Francis Group: Boca Raton, FL, USA, 2019. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2001; Volume 1. [Google Scholar]
- Therneau, T.; Atkinson, B.; Ripley, B. Rpart: Recursive Partitioning and Regression Trees (R Package). 2015. Available online: cran.ma.ic.ac.uk/web/packages/rpart/rpart.pdf (accessed on 20 April 2016).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- Gueorguieva, R. A multivariate generalized linear mixed model for joint modelling of clustered outcomes in the exponential family. Stat. Model. 2001, 1, 177–193. [Google Scholar] [CrossRef]
- Handayani, D.; Notodiputro, K.A.; Sadik, K.; Kurnia, A. A comparative study of approximation methods for maximum likelihood estimation in generalized linear mixed models (GLMM). In Proceedings of the AIP Conference, Jawa Barat, Indonesia, 27–28 September 2016; AIP Publishing LLC: Melville, NY, USA, 2017; Volume 1827, p. 020033. [Google Scholar]
- Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-PLUS; Springer Science & Business Media: New York, USA, 2006. [Google Scholar]
- Goldstein, H.; Browne, W.; Rasbash, J. Partitioning variation in multilevel models. Underst. Stat. Stat. Issues Psychol. Educ. Soc. Sci. 2002, 1, 223–231. [Google Scholar] [CrossRef]
- Browne, W.J.; Subramanian, S.V.; Jones, K.; Goldstein, H. Variance partitioning in multilevel logistic models that exhibit overdispersion. J. R. Stat. Soc. Ser. A Stat. Soc. 2005, 168, 599–613. [Google Scholar] [CrossRef]
- Pintelas, E.; Livieris, I.E.; Pintelas, P. A grey-box ensemble model exploiting black-box accuracy and white-box intrinsic interpretability. Algorithms 2020, 13, 17. [Google Scholar] [CrossRef] [Green Version]
DGP | Random component | Fixed component | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Structure | Effect | Effect | |||||||||
1 | No random effect | – | – | – | Large | 0.10 | 0.20 | 0.80 | 0.20 | 0.80 | 0.90 |
2 | – | Small | 0.20 | 0.40 | 0.70 | 0.30 | 0.60 | 0.80 | |||
3 | Random Intercept | Low | 4.00 | – | Large | 0.10 | 0.20 | 0.80 | 0.20 | 0.80 | 0.90 |
4 | High | 10.00 | – | ||||||||
5 | Low | 0.50 | – | Small | 0.20 | 0.40 | 0.70 | 0.30 | 0.60 | 0.80 | |
6 | High | 4.00 | – | ||||||||
7 | Random Intercept and Slope | Low | 2.00 | 0.05 | Large | 0.10 | 0.20 | 0.80 | 0.20 | 0.80 | 0.90 |
8 | High | 5.00 | 0.25 | ||||||||
9 | Low | 0.25 | 0.01 | Small | 0.20 | 0.40 | 0.70 | 0.30 | 0.60 | 0.80 | |
10 | High | 2.00 | 0.05 |
DGP | Random Effect | Fixed Effect | Fitted Model | PMAD(%) | PMCR(%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | SD | Min | Max | Mean | Median | SD | Min | Max | ||||
1 | NO RANDOM EFFECT | Large | Std | 5.01 | 4.59 | 1.93 | 2.10 | 9.83 | 16.76 | 16.46 | 1.55 | 14.64 | 21.68 |
RI | 20.89 | 20.98 | 2.34 | 13.43 | 24.92 | 31.52 | 31.50 | 2.54 | 24.16 | 36.68 | |||
RIS | 20.91 | 21.02 | 2.22 | 13.18 | 25.21 | 31.12 | 31.30 | 2.14 | 23.20 | 35.96 | |||
MElog | 3.36 | 3.28 | 1.15 | 1.30 | 5.84 | 17.55 | 16.08 | 3.30 | 13.76 | 24.64 | |||
GLMM | 21.61 | 21.58 | 0.78 | 19.88 | 23.14 | 30.10 | 30.20 | 0.92 | 27.52 | 31.56 | |||
GLMERT | 5.73 | 5.43 | 2.17 | 2.37 | 11.02 | 19.38 | 18.50 | 3.01 | 14.76 | 25.04 | |||
GMERT | 4.85 | 4.33 | 1.84 | 1.96 | 9.45 | 17.80 | 17.70 | 1.73 | 15.12 | 21.64 | |||
BiMM | 21.54 | 23.09 | 3.23 | 16.63 | 26.21 | 30.49 | 30.52 | 1.33 | 25.16 | 33.44 | |||
2 | Small | Std | 9.97 | 10.22 | 3.29 | 4.49 | 17.62 | 32.24 | 32.72 | 2.39 | 28.00 | 38.64 | |
RI | 13.66 | 13.58 | 1.82 | 10.48 | 18.13 | 37.24 | 37.42 | 2.11 | 32.68 | 41.48 | |||
RIS | 13.89 | 13.68 | 1.83 | 10.98 | 18.31 | 37.36 | 37.40 | 1.92 | 33.52 | 41.96 | |||
MElog | 4.07 | 4.02 | 1.35 | 1.42 | 7.74 | 28.84 | 28.80 | 1.79 | 25.96 | 34.48 | |||
GLMM | 15.43 | 15.35 | 0.54 | 14.09 | 16.67 | 37.44 | 37.48 | 1.20 | 34.72 | 40.08 | |||
GLMERT | 10.10 | 10.01 | 3.01 | 6.59 | 15.40 | 34.14 | 34.08 | 2.72 | 29.00 | 38.80 | |||
GMERT | 10.03 | 10.08 | 2.87 | 6.42 | 14.54 | 33.31 | 32.86 | 4.23 | 28.80 | 42.64 | |||
BiMM | 12.60 | 13.50 | 1.77 | 9.65 | 15.10 | 34.60 | 34.52 | 1.79 | 31.12 | 38.56 | |||
3 | Low | Large | Std | 23.39 | 22.95 | 2.93 | 18.01 | 29.90 | 29.26 | 28.62 | 3.31 | 23.40 | 36.36 |
RI | 18.28 | 18.12 | 1.57 | 13.81 | 22.98 | 26.98 | 26.96 | 2.05 | 21.92 | 32.20 | |||
RIS | 18.46 | 18.39 | 1.59 | 14.01 | 22.79 | 27.09 | 26.96 | 2.03 | 22.08 | 32.24 | |||
MElog | 8.69 | 8.61 | 0.75 | 7.60 | 10.85 | 19.65 | 19.46 | 1.12 | 17.72 | 23.24 | |||
GLMM | 18.62 | 18.67 | 1.05 | 16.74 | 20.96 | 26.69 | 26.70 | 1.56 | 23.80 | 30.40 | |||
GLMERT | 11.95 | 11.94 | 2.54 | 7.83 | 17.59 | 21.93 | 21.40 | 3.18 | 18.00 | 30.76 | |||
GMERT | 23.70 | 22.87 | 3.02 | 19.43 | 28.76 | 29.05 | 28.52 | 3.99 | 23.72 | 38.00 | |||
BiMM | 27.68 | 27.93 | 2.03 | 22.61 | 31.17 | 35.52 | 35.28 | 2.14 | 30.72 | 40.24 | |||
4 | High | Std | 31.70 | 31.94 | 2.58 | 26.22 | 36.78 | 36.23 | 36.20 | 3.12 | 30.32 | 44.16 | |
RI | 15.38 | 15.46 | 1.51 | 11.96 | 18.57 | 20.68 | 20.68 | 1.97 | 16.64 | 25.76 | |||
RIS | 15.44 | 15.67 | 1.44 | 12.03 | 18.53 | 20.78 | 20.80 | 1.97 | 16.68 | 25.92 | |||
MElog | 8.21 | 8.06 | 0.95 | 6.21 | 11.01 | 15.78 | 15.70 | 1.50 | 12.56 | 20.12 | |||
GLMM | 15.40 | 15.36 | 1.29 | 12.01 | 17.76 | 20.66 | 20.60 | 1.93 | 16.40 | 24.88 | |||
GLMERT | 10.65 | 10.50 | 1.32 | 8.40 | 12.76 | 18.08 | 17.92 | 1.14 | 16.48 | 19.96 | |||
GMERT | 29.67 | 29.39 | 2.80 | 25.92 | 35.46 | 32.68 | 31.36 | 4.25 | 27.84 | 42.76 | |||
INTERCEPT | BiMM | 32.69 | 32.48 | 2.00 | 28.93 | 35.80 | 38.39 | 38.52 | 2.60 | 31.12 | 43.84 | ||
5 | Low | Small | Std | 15.79 | 15.87 | 2.39 | 10.13 | 22.90 | 34.30 | 34.92 | 2.35 | 29.00 | 38.56 |
RI | 15.68 | 15.77 | 1.68 | 13.11 | 19.26 | 35.74 | 35.74 | 2.30 | 31.24 | 43.12 | |||
RIS | 15.87 | 15.89 | 1.61 | 13.14 | 19.18 | 35.74 | 35.64 | 2.06 | 31.72 | 42.72 | |||
MElog | 8.55 | 8.61 | 0.92 | 6.45 | 10.73 | 28.80 | 28.66 | 0.99 | 25.84 | 30.96 | |||
GLMM | 16.48 | 16.35 | 0.59 | 15.13 | 18.23 | 36.47 | 36.60 | 1.21 | 33.52 | 39.32 | |||
GLMERT | 13.28 | 13.37 | 1.12 | 11.62 | 15.21 | 33.35 | 32.86 | 2.35 | 30.64 | 39.84 | |||
GMERT | 14.63 | 15.14 | 1.38 | 11.91 | 16.65 | 33.90 | 32.74 | 3.16 | 31.12 | 42.20 | |||
BiMM | 16.48 | 16.38 | 2.01 | 12.89 | 20.41 | 36.21 | 35.56 | 1.87 | 33.40 | 41.40 | |||
6 | High | Std | 27.98 | 28.16 | 2.33 | 23.28 | 32.46 | 41.23 | 40.88 | 3.09 | 35.92 | 50.44 | |
RI | 14.02 | 13.99 | 1.62 | 10.01 | 17.45 | 25.87 | 26.14 | 2.41 | 20.64 | 30.56 | |||
RIS | 14.13 | 14.17 | 1.66 | 10.08 | 17.29 | 25.89 | 26.00 | 2.37 | 20.68 | 30.52 | |||
MElog | 9.41 | 9.43 | 1.10 | 7.24 | 11.79 | 22.85 | 23.22 | 1.66 | 20.00 | 26.36 | |||
GLMM | 14.24 | 14.13 | 1.05 | 11.95 | 16.82 | 25.98 | 25.88 | 2.02 | 22.32 | 30.96 | |||
GLMERT | 13.05 | 12.49 | 2.85 | 9.54 | 19.24 | 25.98 | 25.48 | 2.71 | 22.40 | 31.28 | |||
GMERT | 26.61 | 27.13 | 2.44 | 21.32 | 30.06 | 32.79 | 32.90 | 2.65 | 27.76 | 37.96 | |||
BiMM | 27.27 | 27.60 | 2.15 | 23.61 | 30.45 | 40.83 | 40.72 | 2.80 | 33.32 | 46.76 | |||
7 | Low | Large | Std | 22.16 | 22.47 | 2.28 | 17.32 | 27.38 | 28.08 | 28.60 | 2.69 | 22.32 | 34.20 |
RI | 20.08 | 20.05 | 1.38 | 15.17 | 22.67 | 28.52 | 28.44 | 1.51 | 23.48 | 30.80 | |||
RIS | 19.64 | 19.67 | 1.29 | 16.00 | 22.64 | 28.34 | 28.14 | 1.44 | 24.20 | 30.68 | |||
MElog | 9.95 | 10.00 | 0.95 | 8.12 | 12.78 | 20.09 | 20.00 | 0.90 | 18.44 | 22.20 | |||
GLMM | 19.93 | 19.93 | 1.10 | 17.59 | 21.92 | 27.93 | 27.88 | 1.42 | 25.04 | 31.00 | |||
GLMERT | 12.10 | 11.80 | 1.57 | 10.30 | 15.72 | 21.76 | 21.92 | 1.04 | 20.24 | 24.32 | |||
GMERT | 14.71 | 14.89 | 1.34 | 12.55 | 16.85 | 23.05 | 22.62 | 1.35 | 21.68 | 25.76 | |||
BiMM | 26.39 | 26.53 | 1.50 | 22.72 | 28.52 | 35.04 | 35.40 | 1.80 | 31.00 | 38.52 | |||
8 | High | Std | 32.57 | 32.42 | 2.85 | 26.92 | 38.29 | 37.46 | 36.82 | 4.12 | 30.36 | 49.68 | |
RI | 17.29 | 17.38 | 1.53 | 13.56 | 20.87 | 21.66 | 21.42 | 2.19 | 17.68 | 25.64 | |||
RIS | 15.82 | 15.89 | 1.56 | 11.80 | 18.42 | 20.72 | 20.58 | 2.18 | 17.08 | 24.72 | |||
MElog | 9.50 | 9.48 | 0.82 | 7.72 | 10.97 | 16.09 | 16.16 | 1.40 | 12.24 | 19.00 | |||
GLMM | 15.87 | 15.75 | 1.34 | 13.55 | 18.82 | 20.57 | 20.28 | 2.14 | 16.52 | 25.60 | |||
GLMERT | 13.08 | 13.38 | 1.62 | 10.15 | 15.57 | 18.92 | 19.54 | 1.64 | 16.08 | 20.76 | |||
GMERT | 17.63 | 17.38 | 1.34 | 16.04 | 20.71 | 21.33 | 21.66 | 2.05 | 18.08 | 25.04 | |||
INTERCEPT & SLOPE | BiMM | 33.62 | 33.40 | 1.61 | 30.70 | 37.02 | 39.41 | 39.48 | 2.71 | 33.48 | 44.80 | ||
9 | Low | Small | Std | 16.55 | 16.78 | 2.25 | 11.52 | 20.62 | 35.13 | 35.12 | 2.43 | 29.76 | 39.52 |
RI | 15.94 | 15.62 | 1.43 | 12.37 | 18.89 | 36.37 | 36.18 | 2.11 | 31.92 | 41.04 | |||
RIS | 15.83 | 15.55 | 1.47 | 12.19 | 18.91 | 36.17 | 36.28 | 1.88 | 31.92 | 41.08 | |||
MElog | 9.04 | 8.84 | 0.87 | 7.35 | 11.39 | 29.03 | 29.06 | 0.97 | 26.72 | 31.20 | |||
GLMM | 16.81 | 16.66 | 0.76 | 15.11 | 18.64 | 36.71 | 36.72 | 1.36 | 34.00 | 40.20 | |||
GLMERT | 13.45 | 13.64 | 2.06 | 10.04 | 17.46 | 32.92 | 32.72 | 2.93 | 28.36 | 38.64 | |||
GMERT | 13.05 | 13.04 | 1.89 | 10.38 | 16.16 | 32.81 | 33.04 | 2.59 | 28.68 | 37.12 | |||
BiMM | 16.37 | 15.82 | 1.72 | 13.96 | 19.86 | 36.47 | 35.96 | 2.20 | 32.64 | 41.48 | |||
10 | High | Std | 26.95 | 26.57 | 2.26 | 22.70 | 31.94 | 40.45 | 39.98 | 3.19 | 33.52 | 47.76 | |
RI | 15.76 | 15.90 | 1.40 | 12.71 | 18.94 | 27.97 | 27.90 | 2.19 | 22.52 | 32.76 | |||
RIS | 15.28 | 15.14 | 1.39 | 12.73 | 18.65 | 27.61 | 27.56 | 2.23 | 22.72 | 31.56 | |||
MElog | 10.80 | 10.76 | 1.10 | 7.86 | 13.74 | 24.25 | 24.24 | 1.75 | 20.48 | 28.16 | |||
GLMM | 15.45 | 15.43 | 1.00 | 13.18 | 17.42 | 27.65 | 27.88 | 2.08 | 23.12 | 31.96 | |||
GLMERT | 15.77 | 16.32 | 1.79 | 13.08 | 18.61 | 28.03 | 28.48 | 2.05 | 23.92 | 30.80 | |||
GMERT | 17.77 | 18.44 | 1.79 | 14.72 | 20.49 | 29.83 | 29.80 | 2.17 | 25.56 | 33.52 | |||
BiMM | 25.41 | 24.92 | 2.14 | 21.90 | 29.44 | 39.33 | 38.92 | 2.73 | 34.56 | 45.36 |
Degree Program | Number of Students |
---|---|
Aerospace Engineering | 1127 |
Automation Engineering | 538 |
Biomedical Engineering | 1456 |
Building Engineering | 671 |
Chemical Engineering | 715 |
Civil and Environmental Engineering | 405 |
Civil Engineering | 855 |
Electrical Engineering | 575 |
Electronic Engineering | 567 |
Energy Engineering | 1485 |
Engineering of Computing Systems | 2173 |
Environmental and Land Planning Engineering | 590 |
Industrial Production Engineering | 288 |
Management Engineering | 2750 |
Materials and Nanotechnology Engineering | 637 |
Mathematical Engineering | 575 |
Mechanical Engineering | 2364 |
Physics Engineering | 469 |
Telecommunications Engineering | 372 |
Variable | Description | Type of Variable |
---|---|---|
Sex | gender | factor (2 levels: M, F) |
Nationality | nationality | factor (Italian, foreigner) |
PreviousStudies | high school studies | factor (Liceo Scientifico, |
Istituto Tecnico, Other) | ||
AdmissionScore | PoliMi admission test result | real number |
AccessToStudiesAge | age at the beginning of the | natural number |
BSc studies at PoliMi | ||
WeightedAvgEval1.1 | weighted average of the evaluations | real number |
during the first semester of the first year | ||
AvgAttempts1.1 | average number of attempts to be | real number |
evaluated on subjects during | ||
the first semester of the first year | ||
(passed and failed exams) | ||
TotalCredits1.1 | number of ECTS credits obtained | natural number |
by the student during the first | ||
semester of the first year |
Index | Mean | Std Deviation |
---|---|---|
Accuracy | 0.860 | 0.006 |
Sensitivity | 0.816 | 0.012 |
Specificity | 0.886 | 0.008 |
Degree Program | Accuracy Mean (sd) | Sensitivity Mean (sd) | Specificity Mean (sd) |
---|---|---|---|
Aerospace Engineering | () | () | () |
Automation Engineering | () | () | () |
Biomedical Engineering | () | () | () |
Building Engineering | () | () | () |
Chemical Engineering | () | () | () |
Civil and Environmental Engineering | () | () | () |
Civil Engineering | () | () | () |
Electrical Engineering | () | () | () |
Electronic Engineering | () | () | () |
Energy Engineering | () | () | () |
Engineering of Computing Systems | () | () | () |
Environmental and Land Planning Engineering | () | () | () |
Industrial Production Engineering | () | () | () |
Management Engineering | () | () | () |
Materials and Nanotechnology Engineering | () | () | () |
Mathematical Engineering | () | () | () |
Mechanical Engineering | () | () | () |
Physics Engineering | () | () | () |
Telecommunications Engineering | () | () | () |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontana, L.; Masci, C.; Ieva, F.; Paganoni, A.M. Performing Learning Analytics via Generalised Mixed-Effects Trees. Data 2021, 6, 74. https://doi.org/10.3390/data6070074
Fontana L, Masci C, Ieva F, Paganoni AM. Performing Learning Analytics via Generalised Mixed-Effects Trees. Data. 2021; 6(7):74. https://doi.org/10.3390/data6070074
Chicago/Turabian StyleFontana, Luca, Chiara Masci, Francesca Ieva, and Anna Maria Paganoni. 2021. "Performing Learning Analytics via Generalised Mixed-Effects Trees" Data 6, no. 7: 74. https://doi.org/10.3390/data6070074
APA StyleFontana, L., Masci, C., Ieva, F., & Paganoni, A. M. (2021). Performing Learning Analytics via Generalised Mixed-Effects Trees. Data, 6(7), 74. https://doi.org/10.3390/data6070074