Tree Cover for the Year 2010 of the Metropolitan Region of São Paulo, Brazil
<p>Geographical locations of the borders of the Metropolitan region of São Paulo in red; municipality borders are represented in black; and, the extents of EMPLASA images used to generate the tree cover mask in this study are shown in green. The background colours are the 2010 land use/cover classes from the MapBiomas project [<a href="#B13-data-04-00145" class="html-bibr">13</a>]. No copyright is associated to the MapBiomas data.</p> "> Figure 2
<p>Details of the segmentation for two image subsets not used for the training. Original RGB images (<b>a</b>,<b>b</b>), original RGB image with tree mask obtained by the U-net model in white colour (<b>c</b>,<b>d</b>), only trees obtained by the U-net model segmentation and background masked in white (<b>e</b>,<b>f</b>). Each image covers approximately 4 km<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>. The images are the property of the EMPLASA and have been made available to the authors for research purposes. No copyright is associated to these images.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. High-Resolution Images of São Paulo
2.3. Tree Cover Segmentation
2.3.1. U-Net Model
2.3.2. Network Training
2.3.3. Segmentation Accuracy Assessment
2.3.4. Prediction
2.3.5. Algorithm
3. Results
3.1. Tree Cover Segmentation Details and Accuracies
3.2. Limitations of the Tree Cover Dataset
3.3. Dataset Location and Format
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of the World’s Forests 2018—Forest Pathways to Sustainable Development; FAO: Rome, Italy, 2018. [Google Scholar]
- Keeler, B.L.; Hamel, P.; McPhearson, T.; Hamann, M.H.; Donahue, M.L.; Prado, K.A.M.; Arkema, K.K.; Bratman, G.N.; Brauman, K.A.; Finlay, J.C.; et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2019, 2, 29. [Google Scholar] [CrossRef]
- Salbitano, F.; Borelli, S.; Conigliaro, M.; Yujuan, C. Guidelines on Urban and Peri-Urban Forestry; FAO: Rome, Italy, 2016. [Google Scholar]
- Diaz, S.; Fargione, J.; Chapin, I.F.S.; Tilman, D. Biodiversity Loss Threatens Human Well-Being. PLoS Biol. 2006, 4, e277. [Google Scholar] [CrossRef] [PubMed]
- World Resources Institute. Millennium Ecosystem Assessment—Ecosystems and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Nowak, D.J.; Robert, E., III; Crane, D.E.; Stevens, J.C.; Walton, J.T. Assessing Urban Forest Effects and Values, New York City’s Urban Forest; Resour. Bull. NRS-9; US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2007; Volume 9, 22p.
- Erker, T.; Wang, L.; Lorentz, L.; Stoltman, A.; Townsend, P.A. A statewide urban tree canopy mapping method. Remote Sens. Environ. 2019, 229, 148–158. [Google Scholar] [CrossRef]
- United Nations; Department of Economic and Social Affairs; Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Censo Demográfico 2018; Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- Wagner, F.H.; Sanchez, A.; Tarabalka, Y.; Lotte, R.G.; Ferreira, M.P.; Aidar, M.P.M.; Gloor, E.; Phillips, O.L.; Aragão, L.E.O.C. Using the U-net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images. Remote Sens. Ecol. Conserv. 2019. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Wagner, F.H.; Cursino de Moura Hirye, M. Tree cover for the year 2010 of the Metropolitan Region of São Paulo, Brazil. Zenodo 2019. [Google Scholar] [CrossRef]
- MapBiomas. Project MapBiomas, Collection 2.3 of Brazilian Land Cover & Use Map Series; Technical Report. Available online: https://mapbiomas.org/ (accessed on 9 May 2018).
- Huang, B.; Lu, K.; Audebert, N.; Khalel, A.; Tarabalka, Y.; Malof, J.; Boulch, A.; Le Saux, B.; Collins, L.; Bradbury, K.; et al. Large-scale semantic classification: Outcome of the first year of Inria aerial image labeling benchmark. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium—IGARSS 2018, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Allaire, J.; Chollet, F. Keras: R Interface to ‘Keras’, R package version 2.1.4; 2016. Available online: https://keras.rstudio.com (accessed on 9 May 2018).
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 9 May 2018).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Software. Available online: tensorflow.org (accessed on 9 May 2018).
- Brazolin, S. Biodeterioração, Anatomia do Lenho e Análise de Risco de Queda de Árvores de Tipuana, Tipuana tipu (Benth.) O. Kuntze, nos Passeios Públicos da Cidade de São Paulo, SP. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2009. [Google Scholar]
- Buckeridge, M. Árvores urbanas em São Paulo: Planejamento, economia e água. Estudos Avançados 2015, 29, 85–101. [Google Scholar] [CrossRef] [Green Version]
Model | Epoch | Batch | Training Sample | Validation Sample | Overall Accuracy | F1-Score | Precision | Recall |
---|---|---|---|---|---|---|---|---|
Tree cover | 107 | 16 | 1286 | 322 | 96.40% | 0.941 | 0.945 | 0.937 |
Municipality | Area (m) | Tree cover (m) | Tree Cover Proportion (%) |
---|---|---|---|
ARUJA | 96,080,440 | 54,270,091 | 56.48 |
BARUERI | 65,692,474 | 20,102,919 | 30.60 |
BIRITIBA-MIRIM | 317,237,148 | 223,608,775 | 70.49 |
CAIEIRAS | 96,102,694 | 71,034,715 | 73.92 |
CAJAMAR | 131,347,100 | 86,694,991 | 66.00 |
CARAPICUIBA | 34,548,308 | 8,292,009 | 24.00 |
COTIA | 324,070,631 | 221,935,409 | 68.48 |
DIADEMA | 30,791,640 | 6,030,683 | 19.59 |
EMBU | 70,394,395 | 37,736,857 | 53.61 |
EMBU-GUAÇU | 155,639,645 | 80,348,397 | 51.62 |
FERRAZ DE VASCONCELOS | 29,556,363 | 12,981,528 | 43.92 |
FRANCISCO MORATO | 49,071,419 | 25,169,178 | 51.29 |
FRANCO DA ROCHA | 134,156,972 | 77,066,747 | 57.45 |
GUARAREMA | 270,677,717 | 131,200,741 | 48.47 |
GUARULHOS | 318,598,553 | 151,441,828 | 47.53 |
ITAPECERICA DA SERRA | 150,882,196 | 97,725,433 | 64.77 |
ITAPEVI | 82,674,965 | 43,733,761 | 52.90 |
ITAQUAQUECETUBA | 82,577,422 | 25,236,094 | 30.56 |
JANDIRA | 17,455,689 | 6,071,403 | 34.78 |
JUQUITIBA | 522,311,329 | 454,485,483 | 87.01 |
MAIRIPORA | 320,642,337 | 232,198,368 | 72.42 |
MAUA | 61,849,444 | 20,879,373 | 33.76 |
MOGI DAS CRUZES | 712,355,131 | 399,792,521 | 56.12 |
OSASCO | 64,955,644 | 12,157,470 | 18.72 |
PIRAPORA DO BOM JESUS | 108,541,021 | 69,323,286 | 63.87 |
POA | 17,257,438 | 4,483,013 | 25.98 |
RIBEIRAO PIRES | 99,089,353 | 64,058,945 | 64.65 |
RIO GRANDE DA SERRA | 36,329,599 | 27,031,697 | 74.41 |
SALESOPOLIS | 424,735,476 | 301,765,354 | 71.05 |
SANTA ISABEL | 363,157,697 | 186,702,540 | 51.41 |
SANTANA DE PARNAIBA | 179,960,318 | 105,001,269 | 58.35 |
SANTO ANDRE | 175,734,910 | 94,738,489 | 53.91 |
SAO BERNARDO DO CAMPO | 409,403,419 | 228,630,967 | 55.84 |
SAO CAETANO DO SUL | 15,328,286 | 1,423,650 | 9.29 |
SAO LOURENÇO DA SERRA | 186,359,362 | 155,273,390 | 83.32 |
SAO PAULO | 1,520,949,482 | 573,864,553 | 37.73 |
SUZANO | 206,127,277 | 99,847,434 | 48.44 |
TABOAO DA SERRA | 20,387,896 | 4,527,716 | 22.21 |
VARGEM GRANDE PAULISTA | 42,493,643 | 18,865,751 | 44.40 |
TOTAL MRSP | 7,945,524,833 | 4,435,732,828 | 55.83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, F.H.; Hirye, M.C.M. Tree Cover for the Year 2010 of the Metropolitan Region of São Paulo, Brazil. Data 2019, 4, 145. https://doi.org/10.3390/data4040145
Wagner FH, Hirye MCM. Tree Cover for the Year 2010 of the Metropolitan Region of São Paulo, Brazil. Data. 2019; 4(4):145. https://doi.org/10.3390/data4040145
Chicago/Turabian StyleWagner, Fabien H., and Mayumi C.M. Hirye. 2019. "Tree Cover for the Year 2010 of the Metropolitan Region of São Paulo, Brazil" Data 4, no. 4: 145. https://doi.org/10.3390/data4040145
APA StyleWagner, F. H., & Hirye, M. C. M. (2019). Tree Cover for the Year 2010 of the Metropolitan Region of São Paulo, Brazil. Data, 4(4), 145. https://doi.org/10.3390/data4040145