Genome Analysis of the Marine Bacterium Labrenzia sp. Strain 011, a Potential Protective Agent of Mollusks
<p>Phylogenetic tree of selected <span class="html-italic">Labrenzia</span> strains with available genomes. The tree was build out of a core of 2131 genes per genome. The geographic origins of the strains are given in parentheses. The tree was calculated with 100 iterations. All branches have 100/100 bootstrap support, except the branch between <span class="html-italic">L. aggregate</span> RMAR6 and <span class="html-italic">Labrenzia</span> sp. UBA4493/<span class="html-italic">Labrenzia</span> sp. CP4, which is 61/100.</p> "> Figure 2
<p>(<b>A</b>) Core vs. pan genome plot of the genomes. (<b>B</b>) Core genome development plot. (<b>C</b>) Pan genome development plot.</p> "> Figure 3
<p>Average nucleotide identity (ANI) heat map of the selected <span class="html-italic">Labrenzia</span> strains.</p> "> Figure 4
<p>Subsystem category distribution and feature counts in the genome of <span class="html-italic">Labrenzia</span> sp. strain 011.</p> "> Figure 5
<p>Distribution of the biosynthetic gene clusters (BGCs) in the genome of <span class="html-italic">Labrenzia</span> sp. strain 011. In total, 463,048 bp (equal to 9.1% of the genome) were identified. The identified regions and percentages of the total are given.</p> ">
Abstract
:1. Summary
2. Data Description
3. Methods
3.1. Sequencing and Assembly
3.2. Genome Annotation and Comparison
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amiri Moghaddam, J.; Dávila-Céspedes, A.; Kehraus, S.; Crüsemann, M.; Köse, M.; Müller, C.E.; König, G.M. Cyclopropane-Containing Fatty Acids from the Marine Bacterium Labrenzia sp. 011 with Antimicrobial and GPR84 Activity. Mar. Drugs 2018, 16, 369. [Google Scholar] [CrossRef] [PubMed]
- Boettcher, K.J.; Barber, B.J.; Singer, J.T. Additional evidence that juvenile oyster disease is caused by a member of the Roseobacter group and colonization of nonaffected animals by Stappia stellulata-like strains. Appl. Environ. Microbiol. 2000, 66, 3924–3930. [Google Scholar] [CrossRef] [PubMed]
- Maloy, A.P.; Ford, S.E.; Karney, R.C.; Boettcher, K.J. Roseovarius crassostreae, the etiological agent of Juvenile Oyster Disease (now to be known as Roseovarius Oyster Disease) in Crassostrea virginica. Aquaculture 2007, 269, 71–83. [Google Scholar] [CrossRef]
- Pujalte, M.J.; Carmen Macián, M.; Arahal, D.R.; Garay, E. Stappia alba sp. nov., isolated from Mediterranean oysters. Syst. Appl. Microbiol. 2005, 28, 672–678. [Google Scholar] [CrossRef]
- Méndez-Vilas, A. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology: Bacteria in Molluscs: Good and Bad Guys; Formatex Research Center: Badajoz, Spain, 2010; pp. 136–147. ISBN 978-84-614-6194-3. [Google Scholar]
- Chen, Y.-H.; Kuo, J.; Sung, P.-J.; Chang, Y.-C.; Lu, M.-C.; Wong, T.-Y.; Liu, J.-K.; Weng, C.-F.; Twan, W.-H.; Kuo, F.-W. Isolation of marine bacteria with antimicrobial activities from cultured and field-collected soft corals. World J. Microbiol. Biotechnol. 2012, 28, 3269–3279. [Google Scholar] [CrossRef]
- Graca, A.P.; Bondoso, J.; Gaspar, H.; Xavier, J.R.; Monteiro, M.C.; de La Cruz, M.; Oves-Costales, D.; Vicente, F.; Lage, O.M. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS ONE 2013, 8, e78992. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.N.; Lago-Lestón, A.; Costa, R.; Keller-Costa, T. Draft Genome Sequence of Labrenzia sp. Strain EL143, a Coral-Associated Alphaproteobacterium with Versatile Symbiotic Living Capability and Strong Halogen Degradation Potential. Genome Announc. 2018, 6, e00132-18. [Google Scholar] [CrossRef]
- Novak, H.R.; Sayer, C.; Isupov, M.N.; Paszkiewicz, K.; Gotz, D.; Spragg, A.M.; Littlechild, J.A. Marine Rhodobacteraceae L-haloacid dehalogenase contains a novel His/Glu dyad that could activate the catalytic water. FEBS J. 2013, 280, 1664–1680. [Google Scholar] [CrossRef]
- Tettelin, H.; Masignani, V.; Cieslewicz, M.J.; Donati, C.; Medini, D.; Ward, N.L.; Angiuoli, S.V.; Crabtree, J.; Jones, A.L.; Durkin, A.S.; et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”. Proc. Natl. Acad. Sci. USA 2005, 102, 13950–13955. [Google Scholar] [CrossRef]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Klenk, H.-P.; Göker, M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int. J. Syst. Evol. Microbiol. 2014, 64, 352–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colston, S.M.; Fullmer, M.S.; Beka, L.; Lamy, B.; Gogarten, J.P.; Graf, J. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. mBio 2014, 5, e02136. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.P.; Sobral, B.W.; Dickerman, A.W. A robust species tree for the alphaproteobacteria. J. Bacteriol. 2007, 189, 4578–4586. [Google Scholar] [CrossRef] [PubMed]
- Arfken, A.; Song, B.; Bowman, J.S.; Piehler, M. Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic inference approach. PLoS ONE 2017, 12, e0185071. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.; Li, T.; Chen, M.; Huang, G. Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl. Environ. Microbiol. 2008, 74, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Harms, H.; Poehlein, A.; Thürmer, A.; König, G.M.; Schäberle, T.F. Draft Genome Sequence of Zobellia sp. Strain OII3, Isolated from the Coastal Zone of the Baltic Sea. Genome Announc. 2017, 5, e00737-17. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. A J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Blom, J.; Kreis, J.; Spänig, S.; Juhre, T.; Bertelli, C.; Ernst, C.; Goesmann, A. EDGAR 2.0: An enhanced software platform for comparative gene content analyses. Nucleic Acids Res. 2016, 44, W22–W28. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.; Peplies, J. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Wolf, T.; Chevrette, M.G.; Lu, X.; Schwalen, C.J.; Kautsar, S.A.; Suarez Duran, H.G.; de Los Santos, E.L.C.; Kim, H.U.; Nave, M.; et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017, 45, W36–W41. [Google Scholar] [CrossRef] [PubMed]
Labrenzia sp. Strain 011 vs. | isDDH% | G+C Difference% |
---|---|---|
Labrenzia sp. strain OB1 | 33.1 | 2.20 |
Labrenzia marina | 30.2 | 1.41 |
Labrenzia sp. strain C1B70 | 26.7 | 2.71 |
Labrenzia sp. strain C1B10 | 26.7 | 2.71 |
Labrenzia sp. strain CP4 | 26.6 | 2.52 |
Labrenzia sp. strain VG12 | 26.5 | 1.62 |
Labrenzia aggregata | 26.5 | 2.57 |
Labrenzia sp. strainUBA4493 | 26.3 | 2.56 |
Labrenzia sp. strain DG1229 | 24.8 | 5.38 |
Labrenzia alba | 24.4 | 5.25 |
Labrenzia alexandrii | 23.5 | 5.26 |
Labrenzia suaedae | 22.7 | 1.32 |
Items | Description |
---|---|
Investigation type | Bacteria |
Strain | Labrenzia sp. 011 |
Gram stain | Negative |
Cell shape | Rod |
Pigmentation | Creamy yellow |
Temperature optimum | 30 °C |
Latitude and longitude | 54.731111 N 9.964167 E |
Geographic location name | Kronsgaard, Germany |
Collection date | 15-Aug-2012 |
Environmental biome | M arine biome (ENVO:00000447) |
Environmental feature | Sea coast (ENVO:00000303) |
Environmental material | Marine sediment (ENVO_03000033) |
Environmental package | Surface sediment |
Relationship to oxygen | Aerobe |
Number of replicons | 1 |
Sequencing method | Illumina |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amiri Moghaddam, J.; Dávila-Céspedes, A.; Alanjary, M.; Blom, J.; König, G.M.; Schäberle, T.F. Genome Analysis of the Marine Bacterium Labrenzia sp. Strain 011, a Potential Protective Agent of Mollusks. Data 2019, 4, 33. https://doi.org/10.3390/data4010033
Amiri Moghaddam J, Dávila-Céspedes A, Alanjary M, Blom J, König GM, Schäberle TF. Genome Analysis of the Marine Bacterium Labrenzia sp. Strain 011, a Potential Protective Agent of Mollusks. Data. 2019; 4(1):33. https://doi.org/10.3390/data4010033
Chicago/Turabian StyleAmiri Moghaddam, Jamshid, Antonio Dávila-Céspedes, Mohammad Alanjary, Jochen Blom, Gabriele M. König, and Till F. Schäberle. 2019. "Genome Analysis of the Marine Bacterium Labrenzia sp. Strain 011, a Potential Protective Agent of Mollusks" Data 4, no. 1: 33. https://doi.org/10.3390/data4010033
APA StyleAmiri Moghaddam, J., Dávila-Céspedes, A., Alanjary, M., Blom, J., König, G. M., & Schäberle, T. F. (2019). Genome Analysis of the Marine Bacterium Labrenzia sp. Strain 011, a Potential Protective Agent of Mollusks. Data, 4(1), 33. https://doi.org/10.3390/data4010033