Species Richness of Arbuscular Mycorrhizal Fungi in Heterogenous Saline Environments
<p>Map of Saudi Arabia showing the different Sabkha locations (marked as red) assessed for investigating AMF abundance and diversity. Arabic terms denote the names of the different cities as: الرياض = Riyadh; المدينة المنورة = Medina; جدة = Jeddah; مكة المكرمة = Makkah; دبي = Dubai; مسقط = Muscat; صنعاء = Sana’a; دمشق = Damascus.</p> "> Figure 2
<p>AMF spore density in the samples collected from different inland and coastal sabkha locations around Saudi Arabia. The colored bars represent mean values (<span class="html-italic">n</span> = 5), while the error bars indicate the standard error (SE). Different letters above the error bars represent significant difference (<span class="html-italic">p</span> = 0.05) based on Tukey’s test. <span class="html-italic">*** p</span> < 0.0001 (Tukey test).</p> "> Figure 3
<p>Relative abundance of AMF communities at order (<b>A</b>), and family (<b>B</b>) level in the soil samples collected from different sabkha habitats.</p> "> Figure 4
<p>Relative abundance of AMF communities at genus (<b>A</b>) and species (<b>B</b>) level in the soil samples collected from different sabkha habitats.</p> "> Figure 5
<p>The variation in AMF species among different hypersaline sabkha habitats with the Shannon–Wiener diversity index (<b>A</b>); Simpson’s dominance index (<b>B</b>); and Pielou’s evenness index (<b>C</b>) of species. Different letters above the error bars represent significant differences (<span class="html-italic">p</span> = 0.05) based on Tukey’s test. <span class="html-italic">* p</span> < 0.01.</p> "> Figure 6
<p>The similarity index of AMF species between different hypersaline sabkha habitats.</p> "> Figure 7
<p>A correlation heatmap of the relationship between soil parameters and the AMF species isolated along different sabkha habitats. Red colors indicate a strong positive correlation while blue indicates a significant negative correlation between species and soil parameters.</p> "> Figure 8
<p>Principal component analysis (PCA) plot showing the associations between soil physiochemical parameters and AMF species along different sabkha locations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Sites
2.2. Soil Sampling
2.3. AMF Spore Extraction
2.4. Soil Analysis
2.5. Statistical Analysis
- Spore density reflected the biomass of AMF species, at least to some extent. Direct counts of AMF spores under a binocular stereomicroscope were used to calculate spore density, and all isolated spores from soil samples were counted, including some spores that lacked distinguishable morphological characteristics.
- Species richness was defined as the number of species per sample detected in a certain type of habitat.
- Relative abundance (RA) was defined as the percentage of spore number of a family, genus, or species, which indicated the sporulation ability of different species of AMF.
- Isolation frequency (IF%) was defined as the percentage of soil samples in which a species occurred, which revealed the extent of distribution of a given AMF species in an ecosystem.
- The importance value index (Ivi) was calculated to assess the dominance of AMF species based on IF and RD as Ivi = IF + RA. Species dominance was classified into four levels: the dominant species (Ivi ≥ 50%), the most common species (30% < Ivi ≤ 50%), common species (10% < Ivi ≤ 30%), and rare species (Ivi ≤ 10%) [56,57,58].
- The Shannon–Weiner biodiversity index was used to evaluate the AMF diversity as:H′ = −∑Pi ln Pi
- Species evenness (E) was calculated by Simpson’s (D) and Pielou’s (P) indices as follows:D = ∑[ni/ni − 1)/N(N − 1)]
P = H′/Hmax
3. Results
3.1. AMF Spore Density
3.2. AMF Composition and Distribution in the Inland and Coastal Sabkhat
3.3. Abundance of AMF Species
3.4. Isolation Frequency and Importance Value Index of AMF Species Along the Different Sabkha Habitats
3.5. AMF Diversity of Soil Samples Collected from Different Sabkha Locations
3.6. Soil–AMF Relationship
3.7. Relationship Between Soil Characteristics and Species Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giovannini, L.; Palla, M.; Agnolucci, M.; Avio, L.; Sbrana, C.; Turrini, A.; Giovannetti, M. Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: Research strategies for the selection of the best performing inocula. Agronomy 2020, 10, 106. [Google Scholar] [CrossRef]
- Banerjee, S.; Walder, F.; Büchi, L.; Meyer, M.; Held, A.Y.; Gattinger, A.; Keller, T.; Charles, R.; van der Heijden, M.G. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019, 13, 1722–1736. [Google Scholar] [CrossRef] [PubMed]
- Stürmer, S.L.; Kemmelmeier, K. The Glomeromycota in the neotropics. Front. Microbiol. 2021, 11, 553679. [Google Scholar] [CrossRef]
- Zai, X.-M.; Fan, J.-J.; Hao, Z.-P.; Liu, X.-M.; Zhang, W.-X. Effect of co-inoculation with arbuscular mycorrhizal fungi and phosphate solubilizing fungi on nutrient uptake and photosynthesis of beach palm under salt stress environment. Sci. Rep. 2021, 11, 5761. [Google Scholar] [CrossRef] [PubMed]
- Bowles, T.M.; Barrios-Masias, F.H.; Carlisle, E.A.; Cavagnaro, T.R.; Jackson, L.E. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci. Total Environ. 2016, 566, 1223–1234. [Google Scholar] [CrossRef]
- Lehto, T.; Zwiazek, J.J. Ectomycorrhizas and water relations of trees: A review. Mycorrhiza 2011, 21, 71–90. [Google Scholar] [CrossRef]
- Douds, D.D., Jr.; Pfeffer, P.E.; Shachar-Hill, Y. Carbon partitioning, cost, and metabolism of arbuscular mycorrhizas. In Arbuscular Mycorrhizas: Physiology and Function; Springer: Berlin/Heidelberg, Germany, 2000; pp. 107–129. [Google Scholar]
- Malik, J.A.; AlQarawi, A.A.; Dar, B.A.; Hashem, A.; Alshahrani, T.S.; AlZain, M.N.; Habib, M.M.; Javed, M.M.; Abd-Allah, E.F. Arbuscular mycorrhizal fungi isolated from highly saline “sabkha habitat” soil alleviated the NaCl-induced stress and improved Lasiurus scindicus Henr. growth. Agriculture 2022, 12, 337. [Google Scholar] [CrossRef]
- Nasim, G. Arbuscular mycorrhizae for sustainable agriculture. In Crop Production for Agricultural Improvement; Springer: Berlin/Heidelberg, Germany, 2012; pp. 581–618. [Google Scholar]
- Mishra, J.; Singh, R.; Arora, N.K. Plant growth-promoting microbes: Diverse roles in agriculture and environmental sustainability. In Probiotics and Plant Health; Springer: Berlin/Heidelberg, Germany, 2017; pp. 71–111. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Terefe, D.; Belay, Z.; Assefa, F.; Kibret, K.; Dechassa, N. Abundance and Diversity of Arbuscular Mycorrhizal Fungi (AMF) in Soils under Different Rangeland Use Types in the Middle Awash Basin, Ethiopia. East Afr. J. Sci. 2021, 15, 25–40. [Google Scholar]
- Rillig, M.C.; Aguilar-Trigueros, C.A.; Camenzind, T.; Cavagnaro, T.R.; Degrune, F.; Hohmann, P.; Lammel, D.R.; Mansour, I.; Roy, J.; van Der Heijden, M.G. Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol. 2019, 222, 1171–1175. [Google Scholar] [CrossRef]
- Malik, J.A.; AlQarawi, A.A.; Alotaibi, F.; Habib, M.M.; Sorrori, S.N.; Almutairi, M.B.; Dar, B.A. Alleviation of NaCl Stress on Growth and Biochemical Traits of Cenchrus ciliaris L. via Arbuscular Mycorrhizal Fungi Symbiosis. Life 2024, 14, 1276. [Google Scholar] [CrossRef]
- Estrada, B.; Aroca, R.; Maathuis, F.J.; Barea, J.M.; Ruiz-Lozano, J.M. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ. 2013, 36, 1771–1782. [Google Scholar] [CrossRef] [PubMed]
- Tabti, S.; Bendimered-Mouri, F.Z. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Plantago coronopus in Northwestern Algerian coast. J. Degrad. Min. Lands Manag. 2022, 9, 3397–3404. [Google Scholar] [CrossRef]
- Šraj-Kržič, N.; Pongrac, P.; Klemenc, M.; Kladnik, A.; Regvar, M.; Gaberščik, A. Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquat. Bot. 2006, 85, 331–336. [Google Scholar] [CrossRef]
- D’Souza, J. Arbuscular mycorrhizal diversity from mangroves: A review. In Recent Advances on Mycorrhizal Fungi; Springer: Berlin/Heidelberg, Germany, 2016; pp. 109–116. [Google Scholar] [CrossRef]
- Gupta, N.; Bihari, K.; Sengupta. Diversity of arbuscular mycorrhizal fungi in different salinity of mangrove ecosystem of Odisha, India. Adv. Plants Agric. Res. 2016, 3, 00085. [Google Scholar] [CrossRef]
- Saeed, W.; Shouakar-Stash, O.; Wood, W.; Parker, B.; Unger, A. Groundwater and solute budget (A case study from Sabkha Matti, Saudi Arabia). Hydrology 2020, 7, 94. [Google Scholar] [CrossRef]
- Bauer, J.T.; Blumenthal, N.; Miller, A.J.; Ferguson, J.K.; Reynolds, H.L. Effects of between-site variation in soil microbial communities and plant-soil feedbacks on the productivity and composition of plant communities. J. Appl. Ecol. 2017, 54, 1028–1039. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.; Martin, F.M.; Selosse, M.A.; Sanders, I.R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 2015, 205, 1406–1423. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.; Klironomos, J.N.; Ursic, M.; Moutoglis, P.; Streitwolf-Engel, R.; Boller, T.; Wiemken, A.; Sanders, I.R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998, 396, 69–72. [Google Scholar] [CrossRef]
- Hontoria, C.; García-González, I.; Quemada, M.; Roldán, A.; Alguacil, M. The cover crop determines the AMF community composition in soil and in roots of maize after a ten-year continuous crop rotation. Sci. Total Environ. 2019, 660, 913–922. [Google Scholar] [CrossRef]
- Al-Jaloud, A.A.; Hussain, G. Sabkha ecosystem and halophyte plant communities in Saudi Arabia. In Sabkha Ecosystems; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–7. [Google Scholar]
- Kinsman, D.; Park, R. Studies of Recent Sedimentology and Early Diagenesis, Trucial Coast, Arabia Gulf: 2nd. Regional Technical Symposium Society Ptr; English of AIME, Saudi Arabia Section: New York, NY, USA, 1969. [Google Scholar]
- Vincent, P. Saudi Arabia: An Environmental Overview, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 332. [Google Scholar]
- Dar, B.A.; Assaeed, A.M.; Al-Rowaily, S.L.; Al-Doss, A.A.; Abd-ElGawad, A.M. Vegetation Composition of the Halophytic Grass Aeluropus lagopoides Communities within Coastal and Inland Sabkhas of Saudi Arabia. Plants 2022, 11, 666. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; Assaeed, A.M.; Al-Rowaily, S.L.; Dar, B.M.; Malik, J.A. Moisture and Salinity Drive the Vegetation Composition of Wadi Hargan, Riyadh, Saudi Arabia. Diversity 2021, 13, 587. [Google Scholar] [CrossRef]
- Hammad, S.; Abdelazeem, M. Ecophysiological adaptation and potential of energy production of two halophytes grown in the Red Sea coast of Egypt. Egypt. J. Bot. 2024, 64, 189–199. [Google Scholar] [CrossRef]
- Assaeed, A.M.; Dar, B.A.; Al-Doss, A.A.; Al-Rowaily, S.L.; Malik, J.A.; Abd-ElGawad, A.M. Phenotypic plasticity strategy of Aeluropus lagopoides grass in response to heterogenous saline habitats. Biology 2023, 12, 553. [Google Scholar] [CrossRef] [PubMed]
- Dar, B.A.; Al-Doss, A.A.; Assaeed, A.M.; Javed, M.M.; Ghazy, A.I.; Al-Rowaily, S.L.; Abd-ElGawad, A.M. Genetic Variation among Aeluropus lagopoides Populations Growing in Different Saline Regions. Diversity 2024, 16, 59. [Google Scholar] [CrossRef]
- Alotaibi, M.O.; Sonbol, H.S.; Alwakeel, S.S.; Suliman, R.S.; Fodah, R.A.; Jaffal, A.S.A.; AlOthman, N.I.; Mohammed, A.E. Microbial diversity of some sabkha and desert sites in Saudi Arabia. Saudi J. Biol. Sci. 2020, 27, 2778–2789. [Google Scholar] [CrossRef]
- Rillig, M.C.; Aguilar-Trigueros, C.A.; Bergmann, J.; Verbruggen, E.; Veresoglou, S.D.; Lehmann, A. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol. 2015, 205, 1385–1388. [Google Scholar] [CrossRef]
- Zhang, J.; Ruotong, Z.; Xia, L.; Zhang, J. Potential of arbuscular mycorrhizal fungi for soil health: A review. Pedosphere 2024, 34, 279–288. [Google Scholar] [CrossRef]
- Estrada, B.; Beltrán-Hermoso, M.; Palenzuela, J.; Iwase, K.; Ruiz-Lozano, J.M.; Barea, J.-M.; Oehl, F. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus (L.) Less., a representative plant species in arid and saline Mediterranean ecosystems. J. Arid Environ. 2013, 97, 170–175. [Google Scholar] [CrossRef]
- Schubler, A.; Schwarzott, D.; Walker, C. A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol. Res. 2001, 105, 1413–1421. [Google Scholar] [CrossRef]
- Spatafora, J.W.; Chang, Y.; Benny, G.L.; Lazarus, K.; Smith, M.E.; Berbee, M.L.; Bonito, G.; Corradi, N.; Grigoriev, I.; Gryganskyi, A. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 2016, 108, 1028–1046. [Google Scholar] [CrossRef]
- Al-Thani, R.F.; Yasseen, B.T. Microbial ecology of Qatar, the arabian gulf: Possible roles of microorganisms. Front. Mar. Sci. 2021, 8, 697269. [Google Scholar] [CrossRef]
- Bashour, I.; Al-Mashhady, A.; Prasad, J.D.; Miller, T.; Mazroa, M. Morphology and composition of some soils under cultivation in Saudi Arabia. Geoderma 1983, 29, 327–340. [Google Scholar] [CrossRef]
- Alotaibi, K.; Ghumman, A.R.; Haider, H.; Ghazaw, Y.M.; Shafiquzzaman, M. Future predictions of rainfall and temperature using GCM and ANN for arid regions: A case study for the Qassim Region, Saudi Arabia. Water 2018, 10, 1260. [Google Scholar] [CrossRef]
- Tarawneh, Q.Y.; Chowdhury, S. Trends of climate change in Saudi Arabia: Implications on water resources. Climate 2018, 6, 8. [Google Scholar] [CrossRef]
- Becerra, A.; Bartoloni, N.; Cofré, N.; Soteras, F.; Cabello, M. Arbuscular mycorrhizal fungi in saline soils: Vertical distribution at different soil depth. Braz. J. Microbiol. 2014, 45, 585–594. [Google Scholar] [CrossRef]
- Gerdemann, J.; Nicolson, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Dhar, P.; Mridha, M. Biodiversity of arbuscular mycorrhizal fungi in different trees of madhupur forest, Bangladesh. J. For. Res. 2006, 17, 201–205. [Google Scholar] [CrossRef]
- Walker, C. Spore Extraction by Centrifugation-Sugar Flotation; Biological Research and Imaging Laboratory: Hampshire, UK, 1997. [Google Scholar]
- Redecker, D.; Schüßler, A.; Stockinger, H.; Stürmer, S.L.; Morton, J.B.; Walker, C. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 2013, 23, 515–531. [Google Scholar] [CrossRef]
- Schüßler, A.; Walker, C. The Glomeromycota. A Species List with New Families and New Genera; The Royal: Gloucester, UK, 2010. [Google Scholar]
- Gee, G.W.; Or, D. 2.4 Particle-size analysis. In Methods of Soil Analysis; Part 4 Physical, Methods; Soil Science Society of America Book Series; Dane, J.H., Topp, G.C., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2002; pp. 255–293. [Google Scholar]
- Rowell, D.L. Soil Science: Methods & Applications; Routledge: Harlow, UK, 2014. [Google Scholar]
- Rhoades, J. Soluble Salts: Methods of Soil Analysis: Part 2 Chemical Microbiological Properties; Society of Soil Science: Madison, WI, USA, 1983; Volume 9, pp. 167–179. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Best, E. An automated method for determining nitrate-nitrogen in soil extracts. Qld. J. Agric. Anim. Sci. 1976, 33, 161–166. [Google Scholar]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Franke-Snyder, M.; Douds, D.D., Jr.; Galvez, L.; Phillips, J.G.; Wagoner, P.; Drinkwater, L.; Morton, J.B. Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl. Soil Ecol. 2001, 16, 35–48. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.-D.; Liu, R.-J. Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, southwest China. Plant Soil 2004, 261, 257–263. [Google Scholar] [CrossRef]
- Chen, K.; Weixin, L.; Guo, S. Diversity of arbuscular mycorrhizal fungi in continuous cropping soils used for pepper production. Afr. J. Microbiol. Res. 2012, 6, 2469–2974. [Google Scholar]
- Melo, C.; Pimentel, R.; Walker, C.; Rodríguez-Echeverría, S.; Freitas, H.; Borges, P.A. Diversity and distribution of arbuscular mycorrhizal fungi along a land use gradient in Terceira Island (Azores). Mycol. Prog. 2020, 19, 643–656. [Google Scholar] [CrossRef]
- Cotton, T.A. Arbuscular mycorrhizal fungal communities and global change: An uncertain future. FEMS Microbiol. Ecol. 2018, 94, fiy179. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, X.; Zhou, S. Nitrogen addition altered the plant-arbuscular mycorrhizal fungi network through reducing redundant interactions in an alpine meadow. Soil Biol. Biochem. 2022, 171, 108727. [Google Scholar] [CrossRef]
- Thangavel, P.; Anjum, N.A.; Muthukumar, T.; Sridevi, G.; Vasudhevan, P.; Maruthupandian, A. Arbuscular mycorrhizae: Natural modulators of plant–nutrient relation and growth in stressful environments. Arch. Microbiol. 2022, 204, 264. [Google Scholar] [CrossRef]
- Luo, L.; Guo, M.; Wang, E.; Yin, C.; Wang, Y.; He, H.; Zhao, C. Effects of mycorrhiza and hyphae on the response of soil microbial community to warming in eastern Tibetan Plateau. Sci. Total Environ. 2022, 837, 155498. [Google Scholar] [CrossRef]
- Ruiz-Lozano, J.M.; Azcón, R. Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 2000, 10, 137–143. [Google Scholar] [CrossRef]
- Xue, P.-P.; Carrillo, Y.; Pino, V.; Minasny, B.; McBratney, A.B. Soil properties drive microbial community structure in a large scale transect in South Eastern Australia. Sci. Rep. 2018, 8, 11725. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, J.; Jiao, Y.; Lyu, X.; Wang, S.; Zhang, H. Soil Characteristics and Response Mechanism of the Microbial Community in a Coal–Grain Compound Area with High Groundwater Levels. Agronomy 2024, 14, 1993. [Google Scholar] [CrossRef]
- Mcgonigle, T.P.; Miller, M.H. Development of fungi below ground in association with plants growing in disturbed and undisturbed soils. Soil Biol. Biochem. 1996, 28, 263–269. [Google Scholar] [CrossRef]
- Barrow, J.; Havstad, K.; McCaslin, B. Fungal root endophytes in fourwing saltbush, Atriplex canescens, on arid rangelands of southwestern USA. Arid Land Res. Manag. 1997, 11, 177–185. [Google Scholar] [CrossRef]
- Gabchenko, M. Modern state of soil salinity in solonetzic soil complexes at the Dzhanybek Research Station in the North Caspian Region. Eurasian Soil Sci. 2008, 41, 322–332. [Google Scholar] [CrossRef]
- Carvalho, L.M.; Correia, P.M.; Martins-Loução, M.A. Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 2004, 14, 165–170. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.; Kim, K.; Kim, C.; Sa, T. Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biol. Biochem. 2014, 72, 1–10. [Google Scholar] [CrossRef]
- Lenoir, I.; Fontaine, J.; Sahraoui, A.L.-H. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry 2016, 123, 4–15. [Google Scholar] [CrossRef]
- Aliasgharzadeh, N.; Rastin, S.N.; Towfighi, H.; Alizadeh, A. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 2001, 11, 119–122. [Google Scholar] [CrossRef]
- Alrajhei, K.; Saleh, I.; Abu-Dieyeh, M.H. Biodiversity of arbuscular mycorrhizal fungi in plant roots and rhizosphere soil from different arid land environment of Qatar. Plant Direct 2022, 6, e369. [Google Scholar] [CrossRef]
- Chaudhary, V.B.; O’Dell, T.E.; Rillig, M.C.; Johnson, N.C. Multiscale patterns of arbuscular mycorrhizal fungal abundance and diversity in semiarid shrublands. Fungal Ecol. 2014, 12, 32–43. [Google Scholar] [CrossRef]
- Gong, M.; Tang, M.; Zhang, Q.; Feng, X. Effects of climatic and edaphic factors on arbuscular mycorrhizal fungi in the rhizosphere of Hippophae rhamnoides in the Loess Plateau, China. Acta Ecol. Sin. 2012, 32, 62–67. [Google Scholar] [CrossRef]
- Melo, C.D.; Luna, S.; Krüger, C.; Walker, C.; Mendonça, D.; Fonseca, H.M.; Jaizme-Vega, M.; da Câmara Machado, A. Arbuscular mycorrhizal fungal community composition associated with Juniperus brevifolia in native Azorean forest. Acta Oecol. 2017, 79, 48–61. [Google Scholar] [CrossRef]
- Tian, Q.; Taniguchi, T.; Shi, W.-Y.; Li, G.; Yamanaka, N.; Du, S. Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China. Sci. Rep. 2017, 7, 45289. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liu, Q.; Li, Z.; Cheng, W.; Sun, J.; Guo, Z.; Li, Y.; Zhou, J.; Meng, D.; Li, H. Environmental factors shaping the diversity of bacterial communities that promote rice production. BMC Microbiol. 2018, 18, 51. [Google Scholar] [CrossRef]
- Bhat, B.A.; Sheikh, M.A.; Tiwari, A. Presearch ARTICLE. Int. J. Plant Sci. 2014, 9, 1–6. [Google Scholar]
- Fall, A.F.; Nakabonge, G.; Ssekandi, J.; Founoune-Mboup, H.; Badji, A.; Balde, I.; Ndiaye, M. Diversity of arbuscular mycorrhizal fungi associated with maize in the eastern part of Uganda. In Biology and Life Sciences Forum; MDPI: Basel, Switzerland, 2022; Volume 12. [Google Scholar]
- Saint-Etienne, L.; Paul, S.; Imbert, D.; Dulormne, M.; Muller, F.; Toribio, A.; Plenchette, C.; Ba, A. Arbuscular mycorrhizal soil infectivity in a stand of the wetland tree Pterocarpus officinalis along a salinity gradient. For. Ecol. Manag. 2006, 232, 86–89. [Google Scholar] [CrossRef]
- Adenan, S.; Oja, J.; Alatalo, J.M.; Shraim, A.M.; Alsafran, M.; Tedersoo, L.; Zobel, M.; Ahmed, T. Diversity of arbuscular mycorrhizal fungi and its chemical drivers across dryland habitats. Mycorrhiza 2021, 31, 685–697. [Google Scholar] [CrossRef]
- Guo, Y.; Du, Q.; Li, G.; Ni, Y.; Zhang, Z.; Ren, W.; Hou, X. Soil phosphorus fractions and arbuscular mycorrhizal fungi diversity following long-term grazing exclusion on semi-arid steppes in Inner Mongolia. Geoderma 2016, 269, 79–90. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Mosbah, M.; Philippe, D.L.; Mohamed, M. Molecular identification of arbuscular mycorrhizal fungal spores associated to the rhizosphere of Retama raetam in Tunisia. Soil Sci. Plant Nutr. 2018, 64, 335–341. [Google Scholar] [CrossRef]
- Bainard, L.D.; Bainard, J.D.; Hamel, C.; Gan, Y. Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol. Ecol. 2014, 88, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Barness, G.; Rodriguez Zaragoza, S.; Shmueli, I.; Steinberger, Y. Vertical distribution of a soil microbial community as affected by plant ecophysiological adaptation in a desert system. Microb. Ecol. 2009, 57, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Wilde, P.; Manal, A.; Stodden, M.; Sieverding, E.; Hildebrandt, U.; Bothe, H. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ. Microbiol. 2009, 11, 1548–1561. [Google Scholar] [CrossRef] [PubMed]
- Jacquemyn, H.; Merckx, V.; Brys, R.; Tyteca, D.; Cammue, B.P.; Honnay, O.; Lievens, B. Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytol. 2011, 192, 518–528. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, Z.; Yang, M.; Lu, S.; Cao, L.; Wang, X. Molecular Diversity and Distribution of Arbuscular Mycorrhizal Fungi at Different Elevations in Mt. Taibai of Qinling Mountain. Front. Microbiol. 2021, 12, 609386. [Google Scholar] [CrossRef]
- Li, X.; Gai, J.; Cai, X.; Li, X.; Christie, P.; Zhang, F.; Zhang, J. Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza 2014, 24, 95–107. [Google Scholar] [CrossRef]
- Öpik, M.; Moora, M.; Liira, J.; Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 2006, 94, 778–790. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X.; Zhang, Z.; Zhao, Y.; Yang, J.; Zhu, Y. Species diversity and drivers of arbuscular mycorrhizal fungal communities in a semi-arid mountain in China. PeerJ 2017, 5, e4155. [Google Scholar] [CrossRef]
- El-Keblawy, A. Salinity effects on seed germination of the common desert range grass, Panicum turgidum. Seed Sci. Technol. 2004, 32, 873–878. [Google Scholar] [CrossRef]
- Hiiesalu, I.; Pärtel, M.; Davison, J.; Gerhold, P.; Metsis, M.; Moora, M.; Öpik, M.; Vasar, M.; Zobel, M.; Wilson, S.D. Species richness of arbuscular mycorrhizal fungi: Associations with grassland plant richness and biomass. New Phytol. 2014, 203, 233–244. [Google Scholar] [CrossRef]
Qasab | Qaseem | Uqair | Salwa | Jouf |
---|---|---|---|---|
Aeluropus lagopoides (L.) Thwaites | Aeluropus lagopoides (L.) Thwaites | Aeluropus lagopoides (L.) Thwaites | Aeluropus lagopoides (L.) Thwaites | Aeluropus lagopoides (L.) Thwaites |
Cressa cretica L. | Cressa cretica L. | Zygophyllum album L.f. | Zygophyllum album L.f. | Cressa cretica L. |
Zygophyllum album L.f. | Suaeda aegyptiaca (Hasselq.) Zohary | Juncus rigidus Desf. | Juncus rigidus Desf. | Tamarix nilotica (Ehrenb.) Bunge |
Cynodon dactylon (L.) Pers. | Lycium shawii Roem. and Schult. | Phragmites australis (Cav.) Trin. Ex Steud. | Zygophyllum album L.f. | |
Salicornia persica L | Phoenix dactylifera L. | Suaeda aegyptiaca (Hasselq.) Zohary |
Order | Family | Genus | Locations | |||||
---|---|---|---|---|---|---|---|---|
Qasab | Qaseem | Uqair | Salwa | Jouf | Total | |||
Diversisporales | Acaulosporaceae | Acaulospora | 0 | 2 | 0 | 0 | 0 | 2 |
Diversisporaceae | Diversispora | 3 | 1 | 1 | 2 | 2 | 4 | |
Gigasporaceae | Gigaspora | 1 | 1 | 0 | 0 | 0 | 1 | |
Scutellospora | 0 | 2 | 0 | 0 | 0 | 2 | ||
Glomerales | Claroideoglomeraceae | Claroideoglomus | 3 | 2 | 2 | 2 | 3 | 3 |
Glomeraceae | Funneliformis | 4 | 4 | 3 | 3 | 4 | 4 | |
Glomus | 4 | 2 | 2 | 2 | 2 | 4 | ||
Rhizophagus | 5 | 4 | 4 | 3 | 5 | 5 | ||
AMF species richness location−1 | 20 | 18 | 12 | 12 | 16 | 25 |
AMF | Qasab | Qaseem | Uqair | Salwa | Jouf | |||||
---|---|---|---|---|---|---|---|---|---|---|
IF | Ivi | IF | Ivi | IF | Ivi | IF | Ivi | IF | Ivi | |
Acaulosporaceae | ||||||||||
Acaulospora delicata | 0 | 0 | 40 | 20.9 | 0 | 0 | 0 | 0 | 0 | 0 |
Acaulospora morphotype | 0 | 0 | 100 | 54.7 | 0 | 0 | 0 | 0 | 0 | 0 |
Claroideoglomeraceae | ||||||||||
Claroideoglomus claroideum | 40 | 20.9 | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 31.8 |
Claroideoglomus etunicatum | 100 | 57.9 | 100 | 54.9 | 100 | 60.9 | 100 | 57.3 | 100 | 58.6 |
Claroideoglomus morphotype | 100 | 52.4 | 100 | 52.5 | 40 | 21.9 | 100 | 54.3 | 100 | 51.8 |
Diversisporaceae | ||||||||||
Diversispora Epigaea | 80 | 43.6 | 0 | 0 | 60 | 32.5 | 80 | 43.6 | 60 | 32.5 |
Diversispora globifera | 40 | 20.7 | 40 | 20.8 | 0 | 0 | 80 | 43.1 | 0 | 0 |
Diversispora tortousa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 | 20.3 |
Diversispora morphotype | 40 | 20.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Glomeraceae | ||||||||||
Funneliformis coronatum | 100 | 53.9 | 40 | 21.5 | 0 | 0 | 0 | 0 | 40 | 20.9 |
Funneliformis geosporum | 80 | 43.7 | 100 | 54.1 | 40 | 22.1 | 40 | 21.7 | 80 | 46 |
Funneliformis mosseae | 100 | 55.6 | 100 | 53.8 | 80 | 44.6 | 80 | 44.4 | 100 | 57.7 |
Funneliformis morphotype | 100 | 51.4 | 80 | 41.6 | 20 | 10.4 | 60 | 31.9 | 100 | 52.8 |
Glomus ambisporum | 80 | 42.1 | 100 | 53 | 80 | 45.6 | 80 | 45.2 | 80 | 41.5 |
Glomus caledonius | 20 | 10.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Glomus hoi | 40 | 20.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Glomus morphotype | 40 | 20.4 | 80 | 41.8 | 40 | 21.2 | 80 | 42 | 60 | 30.5 |
Rhizophagus aggregatus | 100 | 53.9 | 40 | 21.3 | 0 | 0 | 0 | 0 | 80 | 42.3 |
Rhizophagus intraradices | 100 | 53.1 | 100 | 56.6 | 60 | 32.3 | 100 | 56.9 | 80 | 43.5 |
Rhizophagus fasciculatus | 40 | 21 | 40 | 20.4 | 100 | 55.8 | 80 | 42.8 | 80 | 42.5 |
Rhizophagus manihotis | 80 | 42.4 | 0 | 0 | 100 | 58.4 | 80 | 42.2 | 80 | 43.6 |
Rhizophagus morphotype | 80 | 40.9 | 60 | 30.7 | 20 | 10.4 | 0 | 0 | 60 | 31.1 |
Gigasporaceae | ||||||||||
Gigaspora margarita | 40 | 20.6 | 100 | 52.4 | 0 | 0 | 0 | 0 | 0 | 0 |
Scutellospora calospora | 0 | 0 | 100 | 53.4 | 0 | 0 | 0 | 0 | 0 | 0 |
Scutellospora morphotype | 0 | 0 | 100 | 52.5 | 0 | 0 | 0 | 0 | 0 | 0.17 |
Parameters | Region | F Value | p-Value | ||||
---|---|---|---|---|---|---|---|
Qasab | Qaseem | Uqair | Salwa | Jouf | |||
MC% | 9.06 ±0.861 bc | 23.23 ±2.090 a | 4.32 ±0.499 c | 4.97 ±0.874 bc | 9.40 ±1.209 b | 47.72 | <0.0001 *** |
pH | 8.22 ±0.426 a | 8.49 ±0.210 a | 8.56 ±0.368 a | 8.87 ±0.611 a | 8.16 ±0.402 a | 0.47 | 0.759 ns |
EC (dS m−1) | 12.37 ±1.026 c | 24.82 ±1.024 b | 31.34 ±1.583 a | 28.58 ±1.409 ab | 9.37 ±0.432 c | 74.5 | <0.0001 *** |
Ca (meq/L) | 35.66 ±4.502 ab | 42.43 ±4.683 a | 45.29 ±6.196 ab | 37.70 ±3.157 ab | 22.36 ±1.887 b | 4.17 | 0.012 * |
Mg (meq/L) | 35.78 ±3.659 ab | 46.61 ±5.766 a | 36.63 ±2.907 ab | 32.96 ±2.502 ab | 21.41 ±1.839 b | 6.3 | 0.001 ** |
Na (meq/L) | 50.33 ±5.647 c | 143.98 ±11.667 b | 206.72 ±13.001 a | 212.02 ±10.992 a | 44.35 ±2.856 c | 71 | <0.0001 *** |
K (meq/L) | 1.87 ±0.376 c | 15.19 ±1.976 b | 24.53 ±2.147 a | 12.89 ±1.063 b | 5.59 ±0.627 c | 38.3 | <0.0001 *** |
Cl (meq/L) | 102.06 ±10.122 c | 209.40 ±15.397 b | 274.53 ±15.545 a | 264.20 ±15.386 ab | 82.08 ±5.684 c | 47.5 | <0.0001 *** |
SO4 (meq/L) | 19.27 ±1.756 ab | 35.30 ±6.466 a | 36.79 ±6.001 a | 29.26 ±5.208 ab | 9.87 ±1.171 b | 5.93 | 0.002 ** |
HCO3 (meq/L) | 2.51 ±0.396 ab | 3.29 ±0.567 a | 1.83 ±0.066 ab | 1.66 ±0.240 b | 2.35 ±0.273 ab | 3.37 | 0.029 * |
OM% | 0.50 ±0.041 bc | 1.03 ±0.111 a | 0.65 ±0.055 bc | 0.72 ±0.064 b | 0.36 ±0.053 c | 13.6 | <0.0001 *** |
N | 120.01 ±19.687 a | 114.16 ±14.005 a | 80.60 ±4.360 b | 70.94 ±6.581 b | 82.94 ±6.507 b | 3.48 | 0.025 * |
P | 4.16 ±0.792 a | 0.43 ±0.049 b | 3.05 ±0.698 a | 2.25 ±0.145 ab | 3.55 ±0.391 a | 10.6 | 0.0005 *** |
K | 213.60 ±30.385 b | 525.24 ±51.828 a | 517.74 ±51.284 a | 363.64 ±33.740 ab | 249.49 ±29.155 b | 2.36 | <0.0001 *** |
CaCO3% | 9.09 ±1.186 b | 9.03 ±0.808 b | 4.73 ±0.825 c | 16.24 ±1.520 a | 2.68 ±0.274 c | 26.5 | <0.0001 *** |
Clay% | 14.93 ±2.335 a | 14.25 ±1.458 a | 11.71 ±1.389 a | 14.12 ±2.030 a | 17.84 ±2.331 a | 1.26 | 0.317 ns |
Silt% | 9.56 ±1.539 b | 31.85 ±2.142 a | 9.32 ±1.197 b | 2.77 ±0.534 c | 12.00 ±1.668 b | 53.1 | <0.0001 *** |
Sand% | 75.51 ±1.539 ab | 53.91 ±1.539 c | 78.98 ±1.539 ab | 83.11 ±1.539 a | 70.16 ±1.539 b | 14.7 | <0.0001 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, J.A.; Dar, B.A.; Alqarawi, A.A.; Assaeed, A.M.; Alotaibi, F.; Alkhasha, A.; Adam, A.M.; Abd-ElGawad, A.M. Species Richness of Arbuscular Mycorrhizal Fungi in Heterogenous Saline Environments. Diversity 2025, 17, 183. https://doi.org/10.3390/d17030183
Malik JA, Dar BA, Alqarawi AA, Assaeed AM, Alotaibi F, Alkhasha A, Adam AM, Abd-ElGawad AM. Species Richness of Arbuscular Mycorrhizal Fungi in Heterogenous Saline Environments. Diversity. 2025; 17(3):183. https://doi.org/10.3390/d17030183
Chicago/Turabian StyleMalik, Jahangir A., Basharat A. Dar, Abdulaziz A. Alqarawi, Abdulaziz M. Assaeed, Fahad Alotaibi, Arafat Alkhasha, Abdelmalik M. Adam, and Ahmed M. Abd-ElGawad. 2025. "Species Richness of Arbuscular Mycorrhizal Fungi in Heterogenous Saline Environments" Diversity 17, no. 3: 183. https://doi.org/10.3390/d17030183
APA StyleMalik, J. A., Dar, B. A., Alqarawi, A. A., Assaeed, A. M., Alotaibi, F., Alkhasha, A., Adam, A. M., & Abd-ElGawad, A. M. (2025). Species Richness of Arbuscular Mycorrhizal Fungi in Heterogenous Saline Environments. Diversity, 17(3), 183. https://doi.org/10.3390/d17030183