Assessing Changes in Vascular Inflammation and Urate Deposition in the Vasculature of Gout Patients After Administration of Pegloticase Using Positron Emission Tomography and Dual-Energy Computed Tomography—A Pilot Study
<p>(<b>A</b>) <sup>18</sup>F-FDG uptake and (<b>B</b>) MSU volume on a patient level before and after treatment with Pegloticase. Reductions in SUVmean (averaged over all vessels) and MSU volume (total volume for each patient) after treatment with Pegloticase were not statistically significant, <span class="html-italic">p</span> = 0.14 and <span class="html-italic">p</span> = 0.68, respectively. (<b>C</b>) <sup>18</sup>F-FDG uptake in vessel segments with MSU deposits before and after treatment were not statistically significant, <span class="html-italic">p</span> = 0.86. Plots show median and inter-quartile range.</p> "> Figure 2
<p>(<b>A</b>) Analysis of blood biomarkers for all patients before (baseline) and after Pegloticase infusions (follow-up). By paired <span class="html-italic">t</span>-tests, uric acid is the only marker that drops significantly after treatment (<span class="html-italic">p</span> = 0.006). (<b>B</b>) In a sub-analysis of patients who completed at least 10 infusions, uric acid remains the only statistically significant change (<span class="html-italic">p</span> = 0.027). Biomarkers [units]: Sys BP = systolic blood pressure [mmHg]. Dias BP = diastolic blood pressure [mmHg], LDL = low density lipoprotein [mg/dL], TG = triglycerides [mg/dL], HbA1c = hemoglobin A1c [%], hs-CRP = high-sensitivity C-reactive protein [mg/L], uric acid [mg/dL].</p> "> Figure 3
<p>Correlation between changes from baseline to after treatment in <sup>18</sup>F-FDG uptake (SUVmean) in vessel segments showing MSU-coded deposits and in uric acid. Moderate correlations were found for all patients with vessel segments showing MSU deposits (R<sup>2</sup> = 0.51) and for patients completing at least 10 visits (R<sup>2</sup> = 0.65).</p> "> Figure 4
<p>Representative PET/CT (left) and DECT images (right) from axial locations in five vessel levels in four patients. (<b>A</b>) <sup>18</sup>F-FDG uptake (orange overlay) shows inflammation in the right iliac artery (green arrow). On DECT, MSU-coded deposits (green) are shown in the corresponding vessel walls (green arrow), with bone (calcium) shown in purple. In this location, imaging shows a decrease in <sup>18</sup>F-FDG uptake and MSU volume from baseline to follow-up following treatment with Pegloticase. (<b>B</b>) <sup>18</sup>F-FDG uptake showing inflammation and DECT showing an MSU-coded deposit in the abdominal aorta (green arrows). In this patient, the deposit which was identified as MSU-coded at baseline, which likely had mixed calcium and MSU characteristics, appeared to resolve after treatment. <sup>18</sup>F-FDG uptake in a small segment (~2 cm) of vessel centered on the location of the MSU-coded deposit showed a reduction in SUVmean from 1.81 to 1.68 and in SUVmax from 2.60 to 2.55. (<b>C</b>) <sup>18</sup>F-FDG uptake in the abdominal aorta (green arrow) is reduced at follow-up (SUVmean/SUVmax pre: 1.65/2.17, post: 1.57/2.00) while MSU-coded deposit resolves. (<b>D</b>) In the descending thoracic aorta, little change is seen in <sup>18</sup>F-FDG signal (SUVmean/SUVmax pre: 1.69/2.24, post: 1.64/2.26) while MSU-coded deposit volume increases from 1.3 mm<sup>3</sup> to 3.4 mm<sup>3</sup>. (<b>E</b>) In the left femoral artery another MSU deposit resolves after treatment while <sup>18</sup>F-FDG signal reduces slightly (SUVmean/SUVmax pre: 1.64/2.30, post: 1.64/2.25).</p> "> Figure 4 Cont.
<p>Representative PET/CT (left) and DECT images (right) from axial locations in five vessel levels in four patients. (<b>A</b>) <sup>18</sup>F-FDG uptake (orange overlay) shows inflammation in the right iliac artery (green arrow). On DECT, MSU-coded deposits (green) are shown in the corresponding vessel walls (green arrow), with bone (calcium) shown in purple. In this location, imaging shows a decrease in <sup>18</sup>F-FDG uptake and MSU volume from baseline to follow-up following treatment with Pegloticase. (<b>B</b>) <sup>18</sup>F-FDG uptake showing inflammation and DECT showing an MSU-coded deposit in the abdominal aorta (green arrows). In this patient, the deposit which was identified as MSU-coded at baseline, which likely had mixed calcium and MSU characteristics, appeared to resolve after treatment. <sup>18</sup>F-FDG uptake in a small segment (~2 cm) of vessel centered on the location of the MSU-coded deposit showed a reduction in SUVmean from 1.81 to 1.68 and in SUVmax from 2.60 to 2.55. (<b>C</b>) <sup>18</sup>F-FDG uptake in the abdominal aorta (green arrow) is reduced at follow-up (SUVmean/SUVmax pre: 1.65/2.17, post: 1.57/2.00) while MSU-coded deposit resolves. (<b>D</b>) In the descending thoracic aorta, little change is seen in <sup>18</sup>F-FDG signal (SUVmean/SUVmax pre: 1.69/2.24, post: 1.64/2.26) while MSU-coded deposit volume increases from 1.3 mm<sup>3</sup> to 3.4 mm<sup>3</sup>. (<b>E</b>) In the left femoral artery another MSU deposit resolves after treatment while <sup>18</sup>F-FDG signal reduces slightly (SUVmean/SUVmax pre: 1.64/2.30, post: 1.64/2.25).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. 18F-FDG-PET and DECT Analysis
3.2. Biomarker Analysis
3.3. Correlation Analysis
3.4. Segments with MSU Deposits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Euler, A.; Wullschleger, S.; Sartoretti, T.; Müller, D.; Keller, E.X.; Lavrek, D.; Donati, O. Dual-energy CT kidney stone characterization-can diagnostic accuracy be achieved at low radiation dose? Eur. Radiol. 2023, 3, 6238–6244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson, J.P.; Dhall, A.; Chawla, A.; Prakashini, K. Renal calculus composition analysis using dual-energy CT: A prospective observational study. Afr. J. Urol. 2024, 30, 19. [Google Scholar] [CrossRef]
- Abbott, R.D.; Brand, F.N.; Kannel, W.B.; Castelli, W.P. Gout and coronary heart disease: The Framingham study. J. Clin. Epidemiol. 1988, 41, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, E.; Baker, J.F.; Furst, D.E.; Schumacher, H.R. Gout and the risk of acute myocardial infarction. Arthritis Rheum. 2006, 54, 2688–2696. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Curhan, G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation 2007, 116, 894–900. [Google Scholar] [CrossRef]
- Kuo, C.F.; Yu, K.H.; See, L.C.; Chou, I.J.; Ko, Y.S.; Chang, H.C.; Luo, S.F. Risk of myocardial infarction among patients with gout: A nationwide population-based study. Rheumatology 2013, 52, 111–117. [Google Scholar] [CrossRef]
- Krishnan, E.; Pandya, B.J.; Lingala, B.; Hariri, A.; Dabbous, O. Hyperuricemia and untreated gout are poor prognostic markers among those with a recent acute myocardial infarction. Arthritis Res. Ther. 2012, 14, R10. [Google Scholar] [CrossRef]
- Casiglia, E.; Tikhonoff, V.; Virdis, A.; Masi, S.; Barbagallo, C.M.; Bombelli, M.; Borghi, C. Serum uric acid and fatal myocardial infarction: Detection of prognostic cut-off values: The URRAH (Uric acid right for heart health) study. J. Hypertens. 2020, 38, 412–419. [Google Scholar] [CrossRef]
- Singh, J.A.; Ramachandaran, R.; Yu, S.; Yang, S.; Xie, F.; Yun, H.; Zhang, J.; Curtis, J.R. Is gout a risk equivalent to diabetes for stroke and myocardial infarction? A retrospective claims database study. Arthritis Res. Ther. 2017, 19, 228. [Google Scholar] [CrossRef]
- Perez-Ruiz, F.; Martínez-Indart, L.; Carmona, L.; Herrero-Beites, A.M.; Pijoan, J.I.; Krishnan, E. Tophaceous gout and high level of hyperuricaemia are both associated with increased risk of mortality in patients with gout. Ann. Rheum. Dis. 2014, 73, 177–182. [Google Scholar] [CrossRef]
- Fang, J.; Alderman, M.H. Serum uric acid and cardiovascular mor- tality the NHANES I epidemiologic follow-up study, 1971–1992. National Health and Nutrition Examination Survey. JAMA 2000, 283, 2404–2410. [Google Scholar] [CrossRef] [PubMed]
- Bos, M.J.; Koudstaal, P.J.; Hofman, A.; Witteman, J.C.; Breteler, M.M. Uric acid is a risk factor for myocardial infarction and stroke: The Rotterdam study. Stroke 2006, 37, 1503–1507. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Jalal, D.I.; Jablonski, K.L.; McFann, K.; Chonchol, M.B.; Seals, D.R. Vascular endothelial function is not related to serum uric acid in healthy adults. Am. J. Hypertens. 2012, 25, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Hench, P.S.; Darnall, C.M. A clinic on acute old-fashioned gout; with special reference to its inciting factors. Med. Clin. N. Am. 1933, 16, 1371–1393. [Google Scholar]
- Park, J.J.; Roudier, M.P.; Soman, D.; Mokadam, N.A.; Simkin, P.A. Prevalence of birefringent crystals in cardiac and prostatic tissues, an observational study. BMJ Open. 2014, 4, e005308. [Google Scholar] [CrossRef]
- Patetsios, P.; Song, M.; Shutze, W.P.; Pappas, C.; Rodino, W.; Ramirez, J.A.; Panetta, T.F. Identification of uric acid and xanthine oxidase in atherosclerotic plaque. Am. J. Cardiol. 2001, 88, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Patetsios, P.; Rodino, W.; Wisselink, W.; Bryan, D.; Kirwin, J.D.; Panetta, T.F. Identification of uric acid in aortic aneurysms and atherosclerotic artery. Ann. N. Y. Acad. Sci. 1996, 800, 243–245. [Google Scholar] [CrossRef]
- Hammer, H.B.; Rollefstad, S.; Semb, A.G.; Jensen, G.; Karoliussen, L.F.; Terslev, L.; Haavardsholm, A.E.; Kvien, T.K.; Uhlig, T. Urate crystal deposition is associated with inflammatory markers and carotid artery pathology in patients with intercritical gout: Results from the NOR-Gout study. RMD Open 2022, 8, e002348. [Google Scholar] [CrossRef]
- Marty-Ané, A.; Norberciak, L.; Andrès, M.; Houvenagel, E.; Ducoulombier, V.; Legrand, J.; Budzik, J.-F.; Pascart, T. Crystal deposition measured with dual-energy computed tomography: Association with mortality and cardiovascular risks in gout. Rheumatology 2021, 60, 4855–4860. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.A.; Ryu, S.R.; Park, S.J.; Kim, H.R.; Lee, S.H. Assessment of cardiovascular risk profile based on measurement of tophus volume in patients with gout. Clin. Rheumatol. 2018, 37, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Barazani S, Chi W, Pyzik R, Jacobi A, O’Donnell T, Fayad Z; et al. Detection of uric acid crystals in the vasculature of patients with gout using dual-energy computed tomography (abstract). Arthritis Rheum. 2018, 70 (Suppl. S9), 3584.
- Klauser, A.S.; Halpern, E.J.; Strobl, S.; Gruber, J.; Feuchtner, G.; Bellmann-Weiler, R.; Weiss, G.; Stofferin, H.; Jaschke, W. Dual-energy computed tomography detection of cardiovascular monosodium urate deposits in patients with gout. JAMA Cardiol. 2019, 4, 1019–1028. [Google Scholar] [CrossRef]
- Feuchtner, G.M.; Plank, F.; Beyer, C.; Schwabl, C.; Held, J.; Bellmann-Weiler, R.; Weiss, G.; Gruber, J.; Widmann, G.; Klauser, A.S. Monosodium Urate Crystal Deposition in Coronary Artery Plaque by 128-Slice Dual-Energy Computed Tomography: An Ex Vivo Phantom and In Vivo Study. J. Comput. Assist. Tomogr. 2021, 45, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Grayson, P.C.; Kim, S.Y.; LaValley, M.; Choi, H.K. Hyperuricemia and incident hypertension: A systematic review and meta-analysis. Arthritis Care Res. 2011, 63, 102–110. [Google Scholar] [CrossRef]
- Wang, J.; Qin, T.; Chen, J.; Li, Y.; Wang, L.; Huang, H.; Li, J. Hyperuricemia and risk of incident hypertension: A systematic review and meta-analysis of observational studies. PLoS ONE 2014, 9, e114259. [Google Scholar] [CrossRef]
- Melendez-Ramirez, G.; Perez-Mendez, O.; Lopez-Osorio, C.; Kuri- Alfaro, J.; Espinola-Zavaleta, N. Effect of the treatment with allopu- rinol on the endothelial function in patients with hyperuricemia. Endocr. Res. 2012, 37, 1–6. [Google Scholar] [CrossRef]
- Feig, D.I.; Kang, D.H.; Johnson, R.J. Uric acid and cardiovascular risk. N. Engl. J. Med. 2008, 359, 1811–1821. [Google Scholar] [CrossRef]
- Feig, D.I.; Soletsky, B.; Johnson, R.J. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hyperten- sion: A randomized trial. JAMA 2008, 300, 924–932. [Google Scholar] [CrossRef]
- Singh, J.A.; Yu, S. Allopurinol reduces the risk of myocardial infarc- tion (MI) in the elderly: A study of Medicare claims. Arthritis Res. Ther. 2016, 18, 209. [Google Scholar] [CrossRef]
- Singh, J.A.; Yu, S. Allopurinol and the risk of stroke in older adults receiving medicare. BMC Neurol. 2016, 16, 164. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Cleveland, J. Allopurinol and the risk of incident periph- eral arterial disease in the elderly: A US Medicare claims data study. Rheumatology 2018, 57, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Yu, S. Allopurinol and the risk of atrial fibrillation in the elderly: A study using Medicare data. Ann. Rheum. Dis. 2017, 76, 72–78. [Google Scholar] [CrossRef]
- Johnson, R.J.; Choi, H.K.; Yeo, A.E.; Lipsky, P.E. Pegloticase Treatment Significantly Decreases Blood Pressure in Patients with Chronic Gout. Hypertension 2019, 74, 95–101. [Google Scholar] [CrossRef]
- Fayad, Z.A.; Mani, V.; Woodward, M.; Kallend, D.; Abt, M.; Burgess, T.; Fuster, V.; Ballantyne, C.M.; Stein, E.A.; Tardif, J.-C.; et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): A randomised clinical trial. Lancet 2011, 378, 1547–1559. [Google Scholar] [CrossRef]
- Græbe, M.; Pedersen, S.; Borgwardt, L.; Højgaard, L.; Sillesen, H.; Kjær, A. Molecular pathology in vulnerable carotid plaques: Correlation with [18]-fluorodeoxyglucose positron emission tomography (FDG-PET). Eur. J. Vasc. Endovasc. Surg. 2009, 37, 714–721. [Google Scholar] [CrossRef]
- Izquierdo-Garcia, D.; Davies, J.R.; Graves, M.J.; Rudd, J.H.; Gillard, J.H.; Weissberg, P.L.; Fryer, T.D.; Warburton, E.A. Comparison of methods for magnetic resonance-guided [18-F]fluorodeoxyglucose positron emission tomography in human carotid arteries: Reproducibility, partial volume correction, and correlation between methods. Stroke 2009, 40, 86–93. [Google Scholar] [CrossRef]
- Rudd, J.H.; Myers, K.S.; Bansilal, S.; Machac, J.; Rafique, A.; Farkouh, M.; Fuster, V.; Fayad, Z.A. 18Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: Implications for atherosclerosis therapy trials. J. Am. Coll. Cardiol. 2007, 50, 892–896. [Google Scholar] [CrossRef]
- Tahara, N.; Kai, H.; Ishibashi, M.; Nakaura, H.; Kaida, H.; Baba, K.; Hayabuchi, N.; Imaizumi, T. Simvastatin attenuates plaque inflammation: Evaluation by fluorodeoxyglucose positron emission tomography. J. Am. Coll. Cardiol. 2006, 48, 1825–1831. [Google Scholar] [CrossRef]
- Tawakol, A.; Fayad, Z.A.; Mogg, R.; Alon, A.; Klimas, M.T.; Dansky, H.; Subramanian, S.S.; Abdelbaky, A.; Rudd, J.H.; Farkouh, M.E.; et al. Intensification of Statin Therapy Results in a Rapid Reduction in Atherosclerotic Inflammation: Results of A Multi-Center FDG-PET/CT Feasibility Study. J. Am. Coll. Cardiol. 2013, 62, 909–917. [Google Scholar] [CrossRef]
- Botson, J.K.; Peterson, J. Pretreatment and Coadministration With Methotrexate Improved Durability of Pegloticase Response: An Observational, Proof-of-Concept Case Series. J. Clin. Rheumatol. 2022, 28, e129–e134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Botson, J.K.; Tesser, J.R.P.; Bennett, R.; Kenney, H.M.; Peloso, P.M.; Obermeyer, K.; LaMoreaux, B.; Weinblatt, M.E.; Peterson, J. Pegloticase in Combination With Methotrexate in Patients With Uncontrolled Gout: A Multicenter, Open-label Study (MIRROR). J. Rheumatol. 2021, 48, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Keenan, R.T.; Botson, J.K.; Masri, K.R.; Padnick-Silver, L.; LaMoreaux, B.; Albert, J.A.; Pillinger, M.H. The effect of immunomodulators on the efficacy and tolerability of pegloticase: A systematic review. Semin. Arthritis Rheum. 2021, 51, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Krsytexxa Injection Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/125293s034lbl.pdf (accessed on 1 April 2012).
- Fayad, Z.A.; Mani, V.; Woodward, M.; Kallend, D.; Bansilal, S.; Pozza, J.; Burgess, T.; Fuster, V.; Rudd, J.H.; Tawakol, A.; et al. Rationale and design of dal-PLAQUE: A study assessing efficacy and safety of dalcetrapib on progression or regression of atherosclerosis using magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Am. Heart J. 2011, 162, 214–221.e2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barazani, S.H.; Chi, W.-W.; Pyzik, R.; Chang, H.; Jacobi, A.; O’donnell, T.; Fayad, Z.A.; Ali, Y.; Mani, V. Quantification of uric acid in vasculature of patients with gout using dual-energy computed tomography. World J. Radiol. 2020, 12, 184–194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pascual, E.; Addadi, L.; Andrés, M.; Sivera, F. Mechanisms of crystal formation in gout-a structural approach. Nat. Rev. Rheumatol. 2015, 11, 725–730. [Google Scholar] [CrossRef]
- Held, J.; Schwabl, C.; Haschka, D.; Maier, S.; Feuchtner, G.; Widmann, G.; Duftner, C.; Weiss, G.; Klauser, A. Major cardiovascular events in patients with cardiovascular monosodium urate deposits in atherosclerotic plaques. Rheumatology 2024, keae240. [Google Scholar] [CrossRef] [PubMed]
- Held, J.; Haschka, D.; Lacaita, P.G.; Feuchtner, G.M.; Klotz, W.; Stofferin, H.; Duftner, C.; Weiss, G.; Klauser, A.S. Review: The Role of Dual-Energy Computed Tomography in Detecting Monosodium Urate Deposits in Vascular Tissues. Curr. Rheumatol. Rep. 2024, 26, 302–310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ren, H.; Qu, H.; Zhang, Y.; Gu, Y.; Zhao, Y.; Xu, W.; Wang, W. Detection of monosodium urate depositions and atherosclerotic plaques in the cardiovascular system by dual-energy computed tomography. Heliyon 2024, 10, e24548. [Google Scholar] [CrossRef]
- Yokose, C.; Eide, S.E.; Huber, F.A.; Simeone, F.J.; Ghoshhajra, B.B.; Shojania, K.; Nicolaou, S.; Becce, F.; Choi, H.K. Frequently Encountered artifacts in the application of dual-energy CT to cardiovascular imaging for urate crystals in gout: A matched-control study. Arthritis Care Res. 2024, 76, 953–963. [Google Scholar] [CrossRef]
- Pascart, T.; Carpentier, P.; Choi, H.K.; Norberciak, L.; Ducoulombier, V.; Luraschi, H.; Houvenagel, E.; Legrand, J.; Verclytte, S.; Becce, F.; et al. Identification and characterization of peripheral vascular color-coded DECT lesions in gout and non-gout patients: The VASCURATE study. Semin. Arthritis Rheum. 2021, 51, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Klauser, A.S.; Strobl, S.; Schwabl, C.; Klotz, W.; Feuchtner, G.; Moriggl, B.; Held, J.; Taljanovic, M.; Weaver, J.S.; Reijnierse, M.; et al. Prevalence of Monosodium Urate (MSU) Deposits in Cadavers Detected by Dual-Energy Computed Tomography (DECT). Diagnostics 2022, 12, 1240. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Døssing, A.; Müller, F.C.; Becce, F.; Stamp, L.; Bliddal, H.; Boesen, M. Dual-Energy Computed Tomography for Detection and Characterization of Monosodium Urate, Calcium Pyrophosphate, and Hydroxyapatite: A Phantom Study on Diagnostic Performance. Invest. Radiol. 2021, 56, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Toprover, M.; Mechlin, M.; Fields, T.; Oh, C.; Becce, F.; Pillinger, M.H. Monosodium urate deposition in the lumbosacral spine of patients with gout compared with non-gout controls: A dual-energy CT study. Semin. Arthritis Rheum. 2022, 56, 152064. [Google Scholar] [CrossRef]
- Krystexxa:(Pegloticase). Horizon Therapeutic: Dublin, Ireland; Lake Forest, IL, USA. 2022. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125293s104lbl.pdf (accessed on 1 April 2012).
- Solomon, D.H.; Giles, J.T.; Liao, K.P.; Ridker, P.M.; Rist, P.M.; Glynn, R.J.; Broderick, R.; Lu, F.; Murray, M.T.; Vanni, K.; et al. Reducing cardiovascular risk with immunomodulators: A randomised active comparator trial among patients with rheumatoid arthritis. Ann. Rheum. Dis. 2023, 82, 324–330. [Google Scholar] [CrossRef]
- Andrés, M.; Quintanilla, M.; Sivera, F.; Sánchez-Payá, J.; Pascual, E.; Vela, P.; Ruiz-Nodar, J. Silent Monosodium Urate Crystal Deposits Are Associated With Severe Coronary Calcification in Asymptomatic Hyperuricemia: An Exploratory Study. Arthritis Rheumatol. 2016, 68, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
Patient | Age | Sex | Race | Number of Infusions | Pre-Treatment | Adverse Events Outside of Gout Flares | SU (mg/dL) | CRP (mg/L) | BP (mmHg) | SUVmean | SUVmax | TBRmean | TBRmax | MSU vol/mm3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | |||||||
1 | 53 | M | Other- Non-Hispanic | 12 | Methotrexate 15 mg weekly | - | 5.4 | <2 | 1.3 | 0.5 | 110/71 | 110/66 | 1.81 | 1.72 | 2.38 | 2.30 | 1.39 | 1.45 | 1.83 | 1.92 | 5.72 | 5.94 |
2 | 73 | M | White | 10 | Azathioprine 50 mg qday | No adverse effects, stopped due to patient preference | 5.3 | <1 at 10th, 7.9 on day of last imaging | 10.4 | 1.5 | 111/65 | 107/62 | 1.55 | 1.64 | 2.28 | 2.35 | 1.15 | 1.15 | 1.71 | 1.65 | 14.43 | 32.03 |
3 | 77 | M | White | 12 | Azathioprine 50 mg qday | - | 9.3 | <2 | 0.4 | 1.8 | 136/82 | 120/66 | 1.66 | 1.59 | 2.21 | 2.10 | 1.23 | 1.36 | 1.63 | 1.79 | - | - |
4 | 42 | M | Asian | 2 | Methotrexate 15 mg weekly | Early termination due to infusion reaction- mild- rash, pruritis, no hospitalization required | 12.2 | 11.3 | 46.3 | 7.4 | 139/95 | 140/94 | 1.64 | 1.48 | 2.12 | 1.91 | 1.28 | 1.35 | 1.66 | 1.73 | 2.51 | 4.25 |
5 | 66 | M | Hispanic | 1 | Methotrexate 15 mg weekly | Early termination due to poor IV access | 8.7 | <2 | 0.3 | 0.7 | 122/79 | 136/84 | 1.38 | 1.45 | 1.80 | 1.93 | 1.35 | 1.30 | 1.76 | 1.73 | 9.77 | 1.40 |
6 | 50 | M | White | 12 | Azathioprine 100 mg daily | - | 11.7 | 2.1 | 8 | 6.8 | 119/67 | 108/63 | 1.91 | 1.92 | 2.45 | 2.47 | 1.22 | 1.18 | 1.56 | 1.52 | 1.28 | 0.0 |
7 | 61 | M | Asian | 2 | Methotrexate 15 mg weekly | Early termination, non- responder | 2.17 | 2.19 | 2.87 | 2.91 | 1.36 | 1.31 | 1.80 | 1.73 | - | - | ||||||
8 | 31 | M | Asian | 5 | Methotrexate 15 mg-> 10 mg-> 12.5 mg weekly | Early termination, became non-responder in terms of uric acid, but tophi were smaller | 11.9 | 10.4 | 66.5 | 11.5 | 131/78 | 131/83 | 1.68 | 1.52 | 2.17 | 2.00 | 1.37 | 1.32 | 1.78 | 1.73 | 15.45 | 0.0 |
9 | 64 | M | Asian | 12 | Azathioprine 50 mg qday-> Methotrexate 10 mg weekly | Developed drug induced liver injury with Azathioprine, switched to Methotrexate | 8.6 | <2 | 80.9 | 1.2 | 118/74 | 109/78 | 1.58 | 1.44 | 2.12 | 1.95 | 1.26 | 1.26 | 1.67 | 1.70 | 6.36 | 0.0 |
10 | 59 | M | Asian | 12 | Methotrexate 15 mg weekly | - | 11.9 | <2 | 3.7 | 13.7 | 105/67 | 107/67 | 1.51 | 1.45 | 2.04 | 2.03 | 1.36 | 1.17 | 1.82 | 1.63 | 0.0 | 0.0 |
SUVmean | SUVmax | TBRmean | TBRmax | MSU vol/mm3 | ||
---|---|---|---|---|---|---|
Patient level | Reduction from baseline to follow-up | 0.047 | 0.048 | 0.013 | 0.0088 | 1.49 |
p-value | 0.14 | 0.22 | 0.63 | 0.78 | 0.68 | |
Vessel level | Reduction from baseline to follow-up | 0.050 | 0.048 | 0.013 | 0.0066 | 0.16 |
p-value | 0.0003 | 0.0090 | 0.48 | 0.77 | 0.75 |
Vessel Segment | SUVmean | SUVmax | MSU Volume (mm3) | |||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | |
RCC | 1.80 (0.26) | 1.64 (0.29) | 2.14 (0.33) | 1.99 (0.28) | 0 | 0 |
LCC | 1.78 (0.29) | 1.64 (0.25) | 2.10 (0.28) | 2.01 (0.26) | 3.76 (1) | 0 |
ATA | 2.03 (0.37) | 1.89 (0.30) | 2.77 (0.37) | 2.74 (0.44) | 0 | 0 |
DTA | 1.95 (0.34) | 1.83 (0.25) | 2.54 (0.32) | 2.51 (0.33) | 1.25 (1) | 9.33 (2) |
DAA | 1.92 (0.32) | 1.8 (0.32) | 2.47 (0.34) | 2.44 (0.47) | 25.0 (9) | 0.86 (1) |
RIL | 1.77 (0.34) | 1.66 (0.32) | 2.20 (0.33) | 2.20 (0.41) | 2.13 (1) | 23.1 (2) |
LIL | 1.65 (0.31) | 1.57 (0.28) | 2.07 (0.36) | 2.08 (0.37) | 0 | 4.11 (1) |
RFA | 1.45 (0.39) | 1.32 (0.25) | 1.92 (0.41) | 1.87 (0.35) | 5.51 (1) | 4.64 (1) |
LFA | 1.50 (0.36) | 1.41 (0.28) | 1.97 (0.36) | 1.91 (0.37) | 17.8 (4) | 1.55 (1) |
SUVmean | SUVmax | TBRmean | TBRmax | MSU Volume | ||
---|---|---|---|---|---|---|
CRP | All patients | +, 0.003 | −, <0.001 | +, 0.036 | +, 0.036 | −, 0.046 |
≥10 infusions | +, 0.20 | +, 0.30 | −, 0.37 | −, 0.14 | −, 0.018 | |
Uric acid | All patients | +, 0.16 | +, 0.17 | −, 0.07 | −, 0.11 | +, 0.15 |
≥10 infusions | +, 0.27 | +, 0.17 | +, 0.07 | −, 0.005 | +, 0.88 | |
SUVmean | All patients | - | - | - | - | +, 0.24 |
≥10 infusions | - | - | - | - | +, 0.54 |
SUVmean | SUVmax | TBRmean | TBRmax | MSU vol/mm3 | |
---|---|---|---|---|---|
Reduction from baseline to follow-up | 0.0073 | 0.027 | 0.071 | 0.10 | 0.85 |
p-value | 0.86 | 0.6 | 0.1 | 0.08 | 0.7 |
SUVmean | SUVmax | TBRmean | TBRmax | MSU Volume | ||
---|---|---|---|---|---|---|
CRP | All patients | +, 0.052 | +, <0.0001 | +, <0.0001 | −, 0.030 | −, 0.02 |
≥10 infusions | +, 0.27 | +, 0.21 | −, 0.0042 | −, 0.028 | −, 0.004 | |
Uric acid | All patients | +, 0.51 | +, 0.28 | −, 0.031 | −, 0.18 | +, 0.083 |
≥10 infusions | +, 0.65 | +, 0.43 | −, 0.021 | −, 0.19 | +, 0.16 | |
SUVmean | All patients | - | - | - | - | +, 0.059 |
≥10 infusions | - | - | - | - | +, 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Gout, Hyperuricemia and Crystal Associated Disease Network. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanna, I.; Mani, V.; Pyzik, R.; Kaufman, A.; Chi, W.; Bagiella, E.; Robson, P.; Ali, Y. Assessing Changes in Vascular Inflammation and Urate Deposition in the Vasculature of Gout Patients After Administration of Pegloticase Using Positron Emission Tomography and Dual-Energy Computed Tomography—A Pilot Study. Gout Urate Cryst. Depos. Dis. 2024, 2, 339-353. https://doi.org/10.3390/gucdd2040024
Khanna I, Mani V, Pyzik R, Kaufman A, Chi W, Bagiella E, Robson P, Ali Y. Assessing Changes in Vascular Inflammation and Urate Deposition in the Vasculature of Gout Patients After Administration of Pegloticase Using Positron Emission Tomography and Dual-Energy Computed Tomography—A Pilot Study. Gout, Urate, and Crystal Deposition Disease. 2024; 2(4):339-353. https://doi.org/10.3390/gucdd2040024
Chicago/Turabian StyleKhanna, Ira, Venkatesh Mani, Renata Pyzik, Audrey Kaufman, Weiwei Chi, Emilia Bagiella, Philip Robson, and Yousaf Ali. 2024. "Assessing Changes in Vascular Inflammation and Urate Deposition in the Vasculature of Gout Patients After Administration of Pegloticase Using Positron Emission Tomography and Dual-Energy Computed Tomography—A Pilot Study" Gout, Urate, and Crystal Deposition Disease 2, no. 4: 339-353. https://doi.org/10.3390/gucdd2040024
APA StyleKhanna, I., Mani, V., Pyzik, R., Kaufman, A., Chi, W., Bagiella, E., Robson, P., & Ali, Y. (2024). Assessing Changes in Vascular Inflammation and Urate Deposition in the Vasculature of Gout Patients After Administration of Pegloticase Using Positron Emission Tomography and Dual-Energy Computed Tomography—A Pilot Study. Gout, Urate, and Crystal Deposition Disease, 2(4), 339-353. https://doi.org/10.3390/gucdd2040024