Enhanced Nutritional and Functional Recovery in Femur Fracture Patients Post-Surgery: Preliminary Evidence of Muscle-Targeted Nutritional Support in Real-World Practice
<p>Study design. GDS: Global Deterioration Scale, MNA<sup>®</sup>-SF: Mini Nutritional Assessment Short Form, ONS: oral nutritional supplementation.</p> "> Figure 2
<p>Nutritional status distribution across visits: MNA<sup>®</sup>-SF scores at visit 1 (baseline) and visit 2: (<b>a</b>) Nutritional status distribution in percentages. (<b>b</b>) Number of patients in each MNA<sup>®</sup>-SF group at visit 1 and visit 2. Shift in the number of patients in each MNA<sup>®</sup>-SF group at visit 1 and visit 2: Top line: 10 patients who were malnourished (red) at visit 1 were assessed at visit 2: 4 patients remained malnourished (red), 5 were at risk of malnutrition (yellow) and 1 well-nourished (green). Middle line: out of a total of 20 patients who were at risk of malnutrition at visit 1 (yellow), 11 remained at risk of malnutrition (yellow) and 9 were well-nourished (green). Bottom line: 1 patient was well-nourished (green) at visit 1 and at risk of malnutrition (yellow) at visit 1.</p> "> Figure 3
<p>Comparison of laboratory parameters, Barthel Index, and Lawton and Brody scale scores between visit 1 or pre-fracture and visit 2: (<b>a</b>) Laboratory parameters; (<b>b</b>) Barthel Index and Lawton and Brody scale scores.</p> "> Figure 4
<p>Decision tree algorithms: (<b>a</b>) Decision tree algorithm for changes in nutritional status based on MNA<sup>®</sup>-SF scores. (<b>b</b>) Decision tree algorithm for the change in Barthel Index. No change: patients remained in the same nutritional status group according to MNA<sup>®</sup>-SF at visit 1 and visit 2. Change: patients changed nutritional status group according to MNA<sup>®</sup>-SF from visit 1 to visit 2 (R2 = 0.37; accuracy = 77.4%); MNA<sup>®</sup>-SF: Mini Nutritional Assessment Short Form. Barthel Index scores decreased after femur fracture but progressively recovered over time and with ONS approaching pre-fracture values. Patients with higher muscle strength at visit 1 and lower Lawton and Brody scores pre-fracture had higher Barthel Index scores, exhibiting a smaller decrease at visit 2 compared to pre-fracture values (R2 = 0.34; accuracy = 71%); ONS: oral nutritional supplementation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Study Population
2.3. Oral Nutritional Supplementation
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
3.1. Baseline Demographic and Clinical Characteristics at Visit 1
3.2. Clinical Characteristics at Visit 2
3.3. Drivers of Changes in Nutritional Status
3.4. Factors Predicting Nutritional Improvement with MT-ONS
3.5. Drivers of Changes in Independence to Perform Activities of Daily Living
3.6. Factors Predicting Independent Functionality Improvement with MT-ONS
3.7. Tolerability and Satisfaction with the MT-ONS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Middleton, R.; Poveda, J.L.; Orfila Pernas, F.; Martinez Laguna, D.; Diez Perez, A.; Nogués, X.; Carbonell Abella, C.; Reyes, C.; Prieto-Alhambra, D. Mortality, Falls, and Fracture Risk Are Positively Associated with Frailty: A SIDIAP Cohort Study of 890,000 Patients. J. Gerontol. Ser. A 2022, 77, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Azagra, R.; López-Expósito, F.; Martin-Sánchez, J.C.; Aguyé, A.; Moreno, N.; Cooper, C.; Díez-Pérez, A.; Dennison, E.M. Changing trends in the epidemiology of hip fracture in Spain. Osteoporos. Int. 2014, 25, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Reig, J.; Salvador Marín, J.; Pérez Alba, J.M.; Ferrández Martínez, J.; Orozco Beltrán, D.; Martínez López, J.F. Risk factors for in-hospital mortality following hip fracture. Rev. Esp. Cir. Ortop. Traumatol. 2017, 61, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Reig, J.; Salvador Marín, J.; Ferrández Martínez, J.; Orozco Beltrán, D.; Martínez López, J.F.; Quesada Rico, J.A. Prognostic factors and predictive model for in-hospital mortality following hip fractures in the elderly. Chin. J. Traumatol. 2018, 21, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Dyer, S.M.; Crotty, M.; Fairhall, N.; Magaziner, J.; Beaupre, L.A.; Cameron, I.D.; Sherrington, C. A critical review of the long-term disability outcomes following hip fracture. BMC Geriatr. 2016, 16, 158. [Google Scholar] [CrossRef]
- Orive, M.; Anton-Ladislao, A.; García-Gutiérrez, S.; Las Hayas, C.; González, N.; Zabala, J.; Quintana, J.M. Prospective study of predictive factors of changes in pain and hip function after hip fracture among the elderly. Osteoporos. Int. 2016, 27, 527–536. [Google Scholar] [CrossRef]
- Kurkcu, M.; Meijer, R.I.; Lonterman, S.; Muller, M.; de van der Schueren, M.A.E. The association between nutritional status and frailty characteristics among geriatric outpatients. Clin. Nutr. ESPEN 2018, 23, 112–116. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- Foo, M.X.E.; Wong, G.J.Y.; Lew, C.C.H. A systematic review of the malnutrition prevalence in hospitalized hip fracture patients and its associated outcomes. JPEN J. Parenter. Enter. Nutr. 2021, 45, 1141–1152. [Google Scholar] [CrossRef]
- Chiavarini, M.; Ricciotti, G.M.; Genga, A.; Faggi, M.I.; Rinaldi, A.; Toscano, O.D.; D’Errico, M.M.; Barbadoro, P. Malnutrition-Related Health Outcomes in Older Adults with Hip Fractures: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1069. [Google Scholar] [CrossRef]
- Rempel, A.N.; Rigassio Radler, D.L.; Zelig, R.S. Effects of the use of oral nutrition supplements on clinical outcomes among patients who have undergone surgery for hip fracture: A literature review. Nutr. Clin. Pract. 2023, 38, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.; Sobotka, L.; et al. ESPEN practical guideline: Clinical nutrition and hydration in geriatrics. Clin. Nutr. 2022, 41, 958–989. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W.W.; Deutz, N.E.P.; Volpi, E.; Apovian, C.M. Nutritional Interventions: Dietary Protein Needs and Influences on Skeletal Muscle of Older Adults. J. Gerontol. Ser. A 2023, 78, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Yao, P.; Bennett, D.; Mafham, M.; Lin, X.; Chen, Z.; Armitage, J.; Clarke, R. Vitamin D and Calcium for the Prevention of Fracture: A Systematic Review and Meta-analysis. JAMA Netw. Open 2019, 2, e1917789. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Fu, X.; Hu, Q.; Chen, L.; Zuo, H. The Effect of Leucine Supplementation on Sarcopenia-Related Measures in Older Adults: A Systematic Review and Meta-Analysis of 17 Randomized Controlled Trials. Front. Nutr. 2022, 9, 929891. [Google Scholar] [CrossRef]
- Cereda, E.; Pisati, R.; Rondanelli, M.; Caccialanza, R. Whey Protein, Leucine- and Vitamin-D-Enriched Oral Nutritional Supplementation for the Treatment of Sarcopenia. Nutrients 2022, 14, 1524. [Google Scholar] [CrossRef]
- Arkley, J.; Dixon, J.; Wilson, F.; Charlton, K.; Ollivere, B.J.; Eardley, W. Assessment of Nutrition and Supplementation in Patients With Hip Fractures. Geriatr. Orthop. Surg. Rehabil. 2019, 10, 2151459319879804. [Google Scholar] [CrossRef]
- Dempewolf, S.; Mouser, B.; Rupe, M.; Owen, E.C.; Reider, L.; Willey, M.C. What Are the Barriers to Incorporating Nutrition Interventions Into Care of Older Adults With Femoral Fragility Fractures? Iowa Orthop. J. 2023, 43, 172–182. [Google Scholar]
- Guigoz, Y.; Vellas, B.; Garry, P.J. Assessing the nutritional status of the elderly: The Mini Nutritional Assessment as part of the geriatric evaluation. Nutr. Rev. 1996, 54, S59–S65. [Google Scholar] [CrossRef]
- Molina-Luque, R.; Muñoz Díaz, B.; de la Iglesia, J.; Romero-Saldaña, M.; Molina-Recio, G. Is the Spanish short version of Mini Nutritional Assessment (MNA-SF) valid for nutritional screening of the elderly? Nutr. Hosp. Hosp. 2019, 36, 290–295. [Google Scholar]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.P.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar] [PubMed]
- Cabañero-Martínez, M.J.; Cabrero-García, J.; Richart-Martínez, M.; Muñoz-Mendoza, C.L. Structured review of activities of daily living measures in older people. Rev. Esp. Geriatr. Gerontol. 2008, 43, 271–283. [Google Scholar] [PubMed]
- Mahoney, F.I.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Reisberg, B.; Ferris, S.H.; de Leon, M.J.; Crook, T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am. J. Psychiatry 1982, 139, 1136–1139. [Google Scholar]
- Lemon, S.C.; Roy, J.; Clark, M.A.; Friedmann, P.D.; Rakowski, W. Classification and regression tree analysis in public health: Methodological review and comparison with logistic regression. Ann. Behav. Med. A Publ. Soc. Behav. Med. 2003, 26, 172–181. [Google Scholar] [CrossRef]
- Jaehn, P.; Fügemann, H.; Gödde, K.; Holmberg, C. Using decision tree analysis to identify population groups at risk of subjective unmet need for assistance with activities of daily living. BMC Geriatr. 2023, 23, 543. [Google Scholar] [CrossRef]
- Sánchez-Torralvo, F.J.; Pérez-Del-Río, V.; García-Olivares, M.; Porras, N.; Abuín-Fernández, J.; Bravo-Bardají, M.F.; García-de-Quevedo, D.; Olveira, G. Global Subjective Assessment and Mini Nutritional Assessment Short Form Better Predict Mortality Than GLIM Malnutrition Criteria in Elderly Patients with Hip Fracture. Nutrients 2023, 15, 1828. [Google Scholar] [CrossRef]
- Malafarina, V.; Uriz-Otano, F.; Malafarina, C.; Martinez, J.A.; Zulet, M.A. Effectiveness of nutritional supplementation on sarcopenia and recovery in hip fracture patients. A multi-centre randomized trial. Maturitas 2017, 101, 42–50. [Google Scholar] [CrossRef]
- Solsona Fernández, S.; Caverni Muñoz, A.; Labari Sanz, G.; Monterde Hernandez, B.; Martínez Marco, M.A.; Mesa Lampré, P. Preliminary Evidence on the Effectiveness of a Multidisciplinary Nutritional Support for Older People with Femur Fracture at an Orthogeriatric Unit in Spain. J. Nutr. Gerontol. Geriatr. 2022, 41, 270–293. [Google Scholar] [CrossRef] [PubMed]
- Wyers, C.E.; Reijven, P.L.M.; Breedveld-Peters, J.J.L.; Denissen, K.F.M.; Schotanus, M.G.M.; van Dongen, M.C.J.M.; Eussen, S.J.P.M.; Heyligers, I.C.; van den Brandt, P.A.; Willems, P.C.; et al. Efficacy of Nutritional Intervention in Elderly After Hip Fracture: A Multicenter Randomized Controlled Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
- Ashkenazi, I.; Rotman, D.; Amzalleg, N.; Graif, N.; Khoury, A.; Ben-Tov, T.; Steinberg, E. Efficacy of Oral Nutritional Supplements in Patients Undergoing Surgical Intervention for Hip Fracture. Geriatr. Orthop. Surg. Rehabil. 2022, 13, 21514593221102252. [Google Scholar] [CrossRef] [PubMed]
- Di Monaco, M.; Castiglioni, C.; Bardesono, F.; Milano, E.; Massazza, G. The handgrip strength threshold of 16 kg discriminates successful rehabilitation: A prospective short-term study of 258 women with hip fracture. Arch. Gerontol. Geriatr. 2020, 91, 104190. [Google Scholar] [CrossRef]
- Meskers, C.G.M.; Reijnierse, E.M.; Numans, S.T.; Kruizinga, R.C.; Pierik, V.D.; van Ancum, J.M.; Slee-Valentijn, M.; Scheerman, K.; Verlaan, S.; Maier, A.B. Association of Handgrip Strength and Muscle Mass with Dependency in (Instrumental) Activities of Daily Living in Hospitalized Older Adults -The EMPOWER Study. J. Nutr. Health Aging 2019, 23, 232–238. [Google Scholar] [CrossRef]
- Wang, D.X.M.; Yao, J.; Zirek, Y.; Reijnierse, E.M.; Maier, A.B. Muscle mass, strength, and physical performance predicting activities of daily living: A meta-analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 3–25. [Google Scholar] [CrossRef]
- Mithal, A.; Bonjour, J.P.; Boonen, S.; Burckhardt, P.; Degens, H.; El Hajj Fuleihan, G.; Josse, R.; Lips, P.; Morales Torres, J.; Rizzoli, R.; et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos. Int. 2013, 24, 1555–1566. [Google Scholar] [CrossRef]
- Laudisio, A.; Giovannini, S.; Finamore, P.; Loreti, C.; Vannetti, F.; Coraci, D.; Incalzi, R.A.; Zuccal, G.; Macchi, C.; Padua, L.; et al. Muscle strength is related to mental and physical quality of life in the oldest old. Arch. Gerontol. Geriatr. 2020, 89, 104109. [Google Scholar] [CrossRef]
- Verlaan, S.; Maier, A.B.; Bauer, J.M.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.T.; Mets, T.; Seal, C.; et al. Sufficient levels of 25-hydroxyvitamin D and protein intake required to increase muscle mass in sarcopenic older adults—The PROVIDE study. Clin. Nutr. 2018, 37, 551–557. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Ortolani, E.; Savera, G.; D’Angelo, E.; Sisto, A.; Marzetti, E. Protein Intake and Muscle Health in Old Age: From Biological Plausibility to Clinical Evidence. Nutrients 2016, 8, 295. [Google Scholar] [CrossRef]
- Baum, J.I.; Wolfe, R.R. The Link between Dietary Protein Intake, Skeletal Muscle Function and Health in Older Adults. Healthc 2015, 3, 529–543. [Google Scholar] [CrossRef] [PubMed]
- Cereda, E.; Veronese, N.; Caccialanza, R. Role of muscle-targeted nutritional therapy: New data. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 142–153. [Google Scholar] [CrossRef] [PubMed]
- González-Zabaleta, J.; Pita-Fernandez, S.; Seoane-Pillado, T.; López-Calviño, B.; Gonzalez-Zabaleta, J.L. Dependence for basic and instrumental activities of daily living after hip fractures. Arch. Gerontol. Geriatr. 2015, 60, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Alhambra, D.; Moral-Cuesta, D.; Palmer, A.; Aguado-Maestro, I.; Bardaji, M.F.B.; Brañas, F.; Bueno, G.A.; Caeiro-Rey, J.R.; Cano, I.A.; Barres-Carsi, M.; et al. The impact of hip fracture on health-related quality of life and activities of daily living: The SPARE-HIP prospective cohort study. Arch. Osteoporos. 2019, 14, 56. [Google Scholar] [CrossRef] [PubMed]
- Knauf, T.; Buecking, B.; Hack, J.; Barthel, J.; Bliemel, C.; Aigner, R.; Ruchholtz, S.; Eschbach, D. Development of the Barthel Index 5 years after hip fracture: Results of a prospective study. Geriatr. Gerontol. Int. 2019, 19, 809–814. [Google Scholar] [CrossRef]
- Motamed-Jahromi, M.; Kaveh, M.H. Effective Interventions on Improving Elderly’s Independence in Activity of Daily Living: A Systematic Review and Logic Model. Front. Public Health 2020, 8, 516151. [Google Scholar] [CrossRef]
- Inoue, T.; Misu, S.; Tanaka, T.; Sakamoto, H.; Iwata, K.; Chuman, Y.; Ono, R. Pre-fracture nutritional status is predictive of functional status at discharge during the acute phase with hip fracture patients: A multicenter prospective cohort study. Clin. Nutr. 2017, 36, 1320–1325. [Google Scholar] [CrossRef]
- Dakhil, S.; Saltvedt, I.; Benth, J.Š.; Thingstad, P.; Watne, L.O.; Bruun Wyller, T.; Helbostad, J.L.; Frihagen, F.; Johnsen, L.G.; Taraldsen, K. Longitudinal trajectories of functional recovery after hip fracture. PLoS ONE 2023, 18, e0283551. [Google Scholar] [CrossRef]
- Ramírez-García, E.; García de la Torre, G.S.; Rodríguez Reyes, E.J.; Moreno-Tamayo, K.; Espinel-Bermudez, M.C.; Sánchez-García, S. Factors Associated with Recovered Functionality After Hip Fracture in Non-Institutionalized Older Adults: A Case-Control Study Nested in a Cohort. Clin. Interv. Aging 2021, 16, 1515–1525. [Google Scholar] [CrossRef]
- Serra-Prat, M.; Sist, X.; Saiz, A.; Jurado, L.; Domenich, R.; Roces, A.; Papiol, M. Clinical and Functional Characterization of Pre-frailty among Elderly Patients Consulting Primary Care Centres. J. Nutr. Health Aging 2016, 20, 653–658. [Google Scholar] [CrossRef]
- Consejería de Sanidad de la Comunidad de Madrid. Plan de Atención Integral a la Fragilidad y Promoción de la Longevidad Saludable en Personas Mayores de la Comunidad de Madrid 2022–2025; Consejería de Sanidad de la Comunidad de Madrid: Madrid, Spain, 2022; pp. 1–165. [Google Scholar]
Characteristics | |
---|---|
Age, years (±SD) | 87 (±3.9) |
Gender | |
Female, n (%) | 23 (74%) |
Male, n (%) | 8 (26%) |
Marital status | |
Single, n (%) | 0 (0%) |
In a relationship, n (%) | 0 (0%) |
Married, n (%) | 7 (23%) |
Divorced, n (%) | 0 (0%) |
Widow, n (%) | 24 (77%) |
Habitual residence location | |
Home, alone without a contracted caregiver, n (%) | 13 (42%) |
Home, alone with a contracted caregiver, n (%) | 12 (36%) |
Home, with a family member, n (%) | 5 (16%) |
Home, with a family member and a contracted caregiver, n (%) | 1 (3%) |
Home of a family member, relative or friend, n (%) | 1 (3%) |
Institution | 0 (0%) |
Residence location at hospital discharge | |
Habitual residence | 24 (78%) |
Habitual institution | 1 (3%) |
Intermediate care centre | 6 (19%) |
Nursing home | 0 (0%) |
Others | 0 (0%) |
Characteristics | Visit 1 | Visit 2 |
---|---|---|
Type of fracture | ||
Trochanteric | 21 (68%) | - |
Sub-trochanteric | 1 (3%) | - |
Sub-capital | 9 (29%) | - |
MNA®-SF score | ||
12–14 points, well-nourished, n (%) | 1 (3%) | 10 (32%) |
8–11 points, at risk of malnutrition, n (%) | 20 (65%) | 17 (55%) |
0–7 points, malnourished, n (%) | 10 (32%) | 4 (13%) |
Laboratory parameters | ||
Serum albumin levels (g/dL) mean (±SD) | 3.4 (±0.36) | 3.9 (±0.41) |
Cholesterol levels (md/dL) mean (±SD) | 131.7 (±25.71) | 171.2 (±33.56) |
Lymphocyte count (×1000/µL) mean (±SD) | 1.2 (±0.60) | 1.7 (±0.65) |
CONUT® | ||
9–12 points, high risk of malnutrition, n (%) | 1 (3%) | 0 (0%) |
5–8 points, moderate risk of malnutrition, n (%) | 13 (42%) | 1 (3%) |
0–4 points, low risk of malnutrition, n (%) | 17 (55%) | 30 (97%) |
Weight, kg (SD) | 60.4 (±9.9) | 62.4 (±9.2) |
Muscle strength right hand, kg (SD) | 15.7 (±5.0) | 17.1 (±5.1) |
Muscle strength left hand, kg (SD) | 14.2 (±5.1) | 15.1 (±4.2) |
Cognitive status | ||
GDS 1: no cognitive decline, n (%) | 21 (67.7%) | 21 (67.7%) |
GDS 2: very mild cognitive decline, n (%) | 2 (6.5%) | 3 (9.7) |
GDS 3: mild cognitive decline, n (%) | 5 (16.1%) | 5 (16.1%) |
GDS 4: moderate cognitive decline, n (%) | 3 (9.7%) | 2 (6.5%) |
GDS 5: moderately severe cognitive decline, n (%) | 0% (0) | 0% (0) |
GDS 6: severe cognitive decline, n (%) | 0% (0) | 0% (0) |
GDS 7: very severe cognitive decline, n (%) | 0% (0) | 0% (0) |
Barthel Index score (previous day to femur fracture) | ||
100 points (independent in the daily activities), n (%) | 15 (48.4%) | 13 (41.9%) |
60–95 points (needs minimal help with daily activities), n (%) | 15 (48.4%) | 14 (45.2%) |
45–55 points (partially dependant), n (%) | 1 (3.2%) | 4 (12.9%) |
20–40 points (very dependant), n (%) | 0 (0%) | 0 (0%) |
<20 points (totally dependent), n (%) | 0 (0%) | 0 (0%) |
Lawton and Brody scale scores (previous day to femur fracture) | ||
0–1 point (totally dependent), n (%) | 1 (3.2%) | 0 (0%) |
2–3 points (very dependant), n (%) | 7 (22.6%) | 12 (38.7%) |
4–5 points (partially dependant), n (%) | 11 (35.5%) | 8 (25.8%) |
6–7 points (low dependence), n (%) | 3 (9.7%) | 3 (9.7%) |
8 points (independent), n (%) | 9 (29.0%) | 8 (25.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soria Perdomo, F.J.; Fernández Villaseca, S.; Zaragoza Brehcist, C.; García Gómez, E. Enhanced Nutritional and Functional Recovery in Femur Fracture Patients Post-Surgery: Preliminary Evidence of Muscle-Targeted Nutritional Support in Real-World Practice. Geriatrics 2024, 9, 153. https://doi.org/10.3390/geriatrics9060153
Soria Perdomo FJ, Fernández Villaseca S, Zaragoza Brehcist C, García Gómez E. Enhanced Nutritional and Functional Recovery in Femur Fracture Patients Post-Surgery: Preliminary Evidence of Muscle-Targeted Nutritional Support in Real-World Practice. Geriatrics. 2024; 9(6):153. https://doi.org/10.3390/geriatrics9060153
Chicago/Turabian StyleSoria Perdomo, Francisco José, Sara Fernández Villaseca, Cristina Zaragoza Brehcist, and Elena García Gómez. 2024. "Enhanced Nutritional and Functional Recovery in Femur Fracture Patients Post-Surgery: Preliminary Evidence of Muscle-Targeted Nutritional Support in Real-World Practice" Geriatrics 9, no. 6: 153. https://doi.org/10.3390/geriatrics9060153
APA StyleSoria Perdomo, F. J., Fernández Villaseca, S., Zaragoza Brehcist, C., & García Gómez, E. (2024). Enhanced Nutritional and Functional Recovery in Femur Fracture Patients Post-Surgery: Preliminary Evidence of Muscle-Targeted Nutritional Support in Real-World Practice. Geriatrics, 9(6), 153. https://doi.org/10.3390/geriatrics9060153