Stability of Embankments Resting on Foundation Soils with a Weak Layer
<p>Scheme for formulation of the problem: the weak layer is horizontal and is located at depth z<sub>i</sub>. Depth z<sub>i</sub> is measured from the foundation plane of the reinforced earth wall. The boundary conditions and the dimensions of the finite-element (FE) model are also represented in the figure.</p> "> Figure 2
<p>FEM mesh employed for the case of z<sub>i</sub>/H = 1.18.</p> "> Figure 3
<p>Distribution of the total displacements at failure calculated for the case of homogeneous foundation soils (c′<sub>1</sub> = 10 kPa and φ′<sub>1</sub> = 30°), by means of the phi-c reduction stage. The colorimetric scale is not plotted in the figure because, as is well known, the intensity of displacement at failure calculated by the model is an unrealistic result, due to the elastoplastic constitutive soil model adopted in the simulations. However, this representation is effective in pointing out the volume of materials involved in the failure (volume in which the displacements and the deformation are concentrated).</p> "> Figure 4
<p>Total strain at failure calculated for the case of homogeneous foundation soils (c′<sub>1</sub> = 10 kPa and φ′<sub>1</sub> = 30°) by means of the phi-c reduction stage. The length and the direction of the arrows represent the intensity and the direction, respectively, of the principal strains. The concentration of the strains identifies a global failure mechanism.</p> "> Figure 5
<p>Spatial distribution of the total displacements at failure calculated for the case of a horizontal weak layer with c′<sub>2</sub> = 0.2 kPa and φ′<sub>2</sub> = 10° located at depth equal to (<b>a</b>) z<sub>i</sub> = 4 m (z<sub>i</sub>/H = 0.47), (<b>b</b>) z<sub>i</sub> = 6 m (z<sub>i</sub>/H = 0.71), (<b>c</b>) z<sub>i</sub> = 9 m (z<sub>i</sub>/H = 1.06) and (<b>d</b>) z<sub>i</sub> = 10 m (z<sub>i</sub>/H = 1.18).</p> "> Figure 6
<p>Total strain at failure for the case of the horizontal weak layer with c′<sub>2</sub> = 0.2 kPa and φ′<sub>2</sub> = 10° located at depth equal to (<b>a</b>) z<sub>i</sub> = 4 m (z<sub>i</sub>/H = 0.47), (<b>b</b>) z<sub>i</sub> = 6 m (z<sub>i</sub>/H = 0.71), (<b>c</b>) z<sub>i</sub> = 9 m (z<sub>i</sub>/H = 1.06) and (<b>d</b>) z<sub>i</sub> = 10 m (z<sub>i</sub>/H = 1.18).</p> "> Figure 7
<p>Safety factor SF as a function of the intercept cohesion c′<sub>1</sub>, for different values of the shear strength angle φ′<sub>1</sub> (26°, 30° and 34°) in the case of homogeneous foundation soils.</p> "> Figure 8
<p>Safety factor SF as a function of the geometrical variable z<sub>i</sub>/H for φ′<sub>1</sub> = 26° and c′<sub>1</sub> = 0.2 kPa (<b>a</b>), c′<sub>1</sub> = 5 kPa (<b>b</b>), c′<sub>1</sub> = 10 kPa (<b>c</b>) and c′<sub>1</sub> = 30 kPa (<b>d</b>), for different values of the shear strength angle φ′<sub>2</sub> (5°, 10° and 15°).</p> "> Figure 9
<p>Safety factor SF as a function of the geometrical variable z<sub>i</sub>/H for φ′<sub>1</sub> = 30° and c′<sub>1</sub> = 0.2 kPa (<b>a</b>), c′<sub>1</sub> = 5 kPa (<b>b</b>), c′<sub>1</sub> = 10 kPa (<b>c</b>) and c′<sub>1</sub> = 30 kPa (<b>d</b>), for different values of the shear strength angle φ′<sub>2</sub> (5°, 10° and 15°).</p> "> Figure 10
<p>Safety factor SF as a function of the geometrical variable z<sub>i</sub>/H for φ′<sub>1</sub> = 34° and c′<sub>1</sub> = 0.2 kPa (<b>a</b>), c′<sub>1</sub> = 5 kPa (<b>b</b>), c′<sub>1</sub> = 10 kPa (<b>c</b>) and c′<sub>1</sub> = 30 kPa (<b>d</b>), for different values of the shear strength angle φ′<sub>2</sub> (5°, 10° and 15°).</p> "> Figure 11
<p>Significant scenario representing the failure mechanism and the stability condition (safety factor SF<sub>0</sub> > 1) of the embankment in the case of homogeneous foundation soil. The failure mechanism has been drawn on the basis of the numerical results, in particular of the concentration of the shear strain in the phi-c reduction phase.</p> "> Figure 12
<p>Significant scenario representing the failure mechanism and the stability condition of the embankment in the case of the weak layer located at different depths. The weak layer affects both the failure mechanism and the safety factor: (<b>a</b>) weak layer located at depth z<sub>i</sub> equal to the critical depth z* (SF = 1); (<b>b</b>) weak layer located at depth z<sub>i</sub> between the critical depth z* and the maximum depth z<sub>max</sub> (1 < SF < SF<sub>0</sub>, where SF<sub>0</sub> is the safety factor in case of homogenous foundation soil); (<b>c</b>) weak layer located at depth equal to the maximum depth z<sub>max</sub> (SF ≈ SF<sub>0</sub>); (<b>d</b>) weak layer located at a depth higher than the maximum depth z<sub>max</sub> (SF = SF<sub>0</sub>).</p> "> Figure 13
<p>Evolution of the ratio between the critical depth z*and the height of the embankment H and of the ratio between the maximum depth z<sub>max</sub> and the height of the embankment H as a function of the intercept cohesion of the foundation soil c<sub>1</sub>’ and of the shear strength angle of the foundation soil. (<b>a</b>,<b>b</b>) φ<sub>1</sub>′ = 26°, (<b>c</b>,<b>d</b>) φ<sub>1</sub>′ = 30°, (<b>e</b>,<b>f</b>) φ<sub>1</sub>′ = 34°.</p> ">
Abstract
:1. Introduction
2. Position of the Problem
3. Numerical Results
3.1. Failure Mechanisms
3.2. Influence of the Weak Layer on the Safety Factor
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Terzaghi, K. Effects of minor geologic details on the safety of dams. In Geology and Engineering for Dams and Reservoirs, American Institute of Mining and Metallurgical Engineers; Technical Publication 215; American Society of Civil Engineers: Reston, VA, USA, 1929; pp. 31–44. [Google Scholar]
- Leonards, G.A. Investigation of failures. J. Geotech. Eng. Div. ASCE 1982, 108, 222–283. [Google Scholar]
- Silvestri, V. The bearing capacity of dikes and fills founded on soft soils of limited thickness. Can. Geotech. J. 1983, 20, 428–436. [Google Scholar] [CrossRef]
- Scott, R.F. Failure. Géotechnique 1987, 37, 423–466. [Google Scholar] [CrossRef] [Green Version]
- Rowe, P.W. A reassessment of the causes of the Carsington embankment failure. Géotechnique 1991, 41, 395–421. [Google Scholar] [CrossRef]
- Michalowski, R.L. Limit analysis of weak layers under embankments. Soils Found. 1993, 1993. 33, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Skempton, A.W.; Vaughan, P.R. The failure of Carsington dam. Géotechnique 1993, 43, 151–173. [Google Scholar] [CrossRef]
- Picarelli, L. Resistenza e meccanismi di rottura nei terreni naturali. In Proceedings of the Convegno Gruppo Naz. Coord. Studi Ingegneria Geotecnica, CNR, Sul Tema: Deformazioni in Prossimita Della Rottura e Resistenza dei Terreni Naturali e Delle Rocce, Ravello, Salerno, Italy, 27–28 February 1991; Volume 2, pp. 7–61. (In Italian). [Google Scholar]
- D’Elia, B.; Picarelli, L.; Leroueil, S.; Vaunat, J. Geotechnical characterisation of slope movements in structurally complex clay soils and stiff jointed clays. Riv. Ital. Geotec. 1998, 32, 5–32. [Google Scholar]
- Valore, C.; Ziccarelli, M.; Muscolino, S.R. The bearing capacity of footings on sand with a weak layer. Geotech. Res. 2017, 4, 12–29. [Google Scholar] [CrossRef] [Green Version]
- Ziccarelli, M.; Valore, C.; Muscolino, S.R.; Fioravante, V. Centrifuge tests on strip footings on sand with a weak layer. Geotech. Res. 2017, 4, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Kardos, L.T.; Vlasoff, P.I.; Twiss, S.N. Factors contributing to landslides in the Palouse Region. Soil Sci. Soc. Am. J. 1944, 8, 437–440. [Google Scholar] [CrossRef]
- Lewis, K.B. Slumping on a continental slope inclined at 1°–4°. Sedimentology 1971, 16, 97–110. [Google Scholar] [CrossRef]
- Summerhayes, C.P.; Bornhold, B.D.; Embley, R.W. Surficial slides and slumps on the continental slope and rise of South West Africa: A reconnaissance study. Mar. Geol. 1979, 31, 265–277. [Google Scholar] [CrossRef]
- Locat, A.; Lee, H.J. Submarine landslides: Advances and challanges. Can. Geotech. J. 2002, 39, 193–212. [Google Scholar] [CrossRef]
- L’Heureux, J.S.; Longva, O.; Steiner, A.; Hansen, L.; Vardy, M.E.; Vanneste, M.; Haflidason, H.; Brendryen, J.; Kvalstad, T.J.; Forsberg, C.F.; et al. Identification of weak layers and their role for the stability of slopes at Finneidfjord, Northern Norway. In Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research; Yamada, Y., Kawamura, K., Ikehara, K., Ogawa, Y., Urgeles, R., Mosher, D., Chaytor, J., Strasser, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 31, pp. 321–330. [Google Scholar] [CrossRef]
- Airò Farulla, C.; Cafiso, F.; Calvi, F.; Rosone, M. Safeguarding historic towns on hilltops threatened by land sliding: The case of San Fratello in Sicily. Riv. Ital. Geotec. 2015, 49, 7–28. [Google Scholar]
- Locat, A.; Leroueil, S.; Fortin, A.; Demers, D.; Jostad, H.P. The 1994 landslide at Sainte-Monique, Quebec: Geotechnical investigation and application of progressive failure analysis. Can. Geotech. J. 2015, 52, 490–504. [Google Scholar] [CrossRef]
- Valore, C.; Ziccarelli, M. The stabilization of a slope-viaduct system without closing traffic. In Proceedings of the XVI ECSMGE, Edinburg, UK, 13–17 September 2015; Winter, M.G., Smith, D.M., Eldred, P.J.L., Toll, D.G., Eds.; ICE Publishing: New York, NY, USA, 2015; pp. 367–372. [Google Scholar]
- Zhang, W.; Wang, D.; Randolph, M.F.; Puzrin, A.M. Catastrophic failure in planar landslides with a fully softened weak zone. Géotechnique 2015, 65, 755–769. [Google Scholar] [CrossRef] [Green Version]
- Dey, R.; Hawlader, B.C.; Phillips, R.; Soga, K. Numerical modelling of submarine landslides with sensitive clay layers. Géotechnique 2016, 66, 454–468. [Google Scholar] [CrossRef]
- Rosone, M.; Ziccarelli, M.; Ferrari, A.; Airò Farulla, C. On the reactivation of a large landslide induced by rainfall in highly fissured clays. Eng. Geol. 2018, 235, 20–38. [Google Scholar] [CrossRef]
- Shan, A.; Zhang, W.; Wang, D.; Wang, L. Numerical investigations of retrogressive failure in sensitive clays: Revisiting 1994 Sainte-Monique slide, Quebec. Landslides 2020. [Google Scholar] [CrossRef]
- Zhang, W.; Randolph, M.F.; Alexander, M.; Puzrin, A.M.; Wang, D. Criteria for planar shear band propagation in submarine landslides along weak layers. Landslides 2020, 17, 855–876. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, D. Stability analysis of cut slope with shear band propagation along a weak layer. Comput. Geotech. 2020, 125, 103676. [Google Scholar] [CrossRef]
- Heierli, J.; Zaiser, M. Failure initiation in snow stratifications containing weak layers: Nucleation of whumpfs and slab avalanches. Cold Reg. Sci. Technol. 2008, 52, 385–400. [Google Scholar] [CrossRef]
- Birkeland, K.W.; van Herwijnen, A.; Reuter, B.; Bergfeld, B. Temporal changes in the mechanical properties of snow related to crack propagation after loading. Cold Reg. Sci. Technol. 2019, 159, 142–152. [Google Scholar] [CrossRef]
- Rosendahl, P.; Philipp Weißgraeber, P. Modeling snow slab avalanches caused by weak-layer failure–Part 1: Slabs on compliant and collapsible weak layers. Cryosphere 2020, 14, 115–130. [Google Scholar] [CrossRef] [Green Version]
- Locat, J.; Leroueil, S.; Locat, A.; Lee, H. Weak layers: Their definition and classification from a geotechnical perspective. In Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research; Krastel, S., Behrmann, J.-H., Volker, D., Stipp, M., Berndt, C., Urgeles, R., Chayton, J., Harbitz, C.B., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 37, pp. 3–12. [Google Scholar] [CrossRef]
- Shi, Z.; Zhao, S.; Qiao, Y.; He, M. Stability analysis of an expansive soil-embankment slope with a soft interlayer. IOP Conf. Ser. Earth Environ. Sci. 2020, 570, 032022. [Google Scholar] [CrossRef]
- Ziccarelli, M.; Rosone, M. Lavori di Ammodernamento SS121–Dissesti sui Rilevati in Località Scorciavacche (SS121 Modernization Works—Damages on the Embankments in “Scorciavacche”); Department of Engineering, University of Palermo: Palermo, Italy, 2015; Unpublished Report. [Google Scholar]
- Plaxis, Plaxis 2D, Version 8.6. 2008. Available online: http://www.plaxis.nl/ (accessed on 18 October 2020).
- Terzaghi, K. Mechanism of landslides. In Application of Geology to Engineering Practice (Berkey Volume); Paige, S., Ed.; Geological Society of America: New York, NY, USA, 1950; pp. 83–123. [Google Scholar] [CrossRef]
- Hutchinson, J.N. Assessment of the effectiveness of corrective measures in relation to geological conditions and types of slope movement. Bull. Int. Assoc. Eng. Geol. Bull. Assoc. Int. Géol. Ingénieur 1977, 16, 131–155. [Google Scholar] [CrossRef]
- Holtz, R.D.; Schuster, R.L. Stabilization of soil slopes. In Special Report 247, Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Transport Res Board, National Academy Press: Washington, DC, USA, 1996; pp. 439–473. [Google Scholar]
- Rahardjo, H.; Hritzuk, K.J.; Leong, E.C.; Rezaur, R.B. Effectiveness of horizontal drains for slope stability. Eng. Geol. 2003, 69, 295–308. [Google Scholar] [CrossRef]
- Marzulli, V.; Cafaro, F.; Ziccarelli, M. Hydraulic characterization of a pervious concrete for deep draining trenches. J. Mater. Civil Eng. ASCE 2018, 30. [Google Scholar] [CrossRef] [Green Version]
- Ziccarelli, M.; Valore, C. Hydraulic conductivity and strength of pervious concrete for deep trench drains. Geomech. Energy Environ. 2019, 18, 41–55. [Google Scholar] [CrossRef]
- Rosone, M.; Ferrari, A. Water retention behaviour of compacted and reconstituted scaly clays. E3S Web Conf. 2020, 195, 03026. [Google Scholar] [CrossRef]
- Farulla, C.A.; Rosone, M. Modeling Round Robin test: An uncoupled approach. Procedia Earth Planet. Sci. 2014, 9, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Moraci, N.; Gioffrè, D. La progettazione di rilevati su terreni compressibili rinforzati con geosintetici. Riv. Ital. Geotec. 2010, 3, 67–100. [Google Scholar]
- Airò Farulla, C.; Celauro, B.; Celauro, C.; Rosone, M. Field test of lime treatment of clayey soils for railways and road works. Ing. Ferrov. 2014, 69, 729–752. [Google Scholar]
L1 (m) | L2 (m) | L3 (m) | L4 (m) | L5 (m) | L6 (m) | H (m) | β (°) | a (m) | zi (m) | t0 (m) | B (m) |
---|---|---|---|---|---|---|---|---|---|---|---|
28 | 37 | 45 | 42.5 | 11.5 | 32 | 8.5 | 11 | 3 | 0 ÷ 17 | 0.5 | 130 |
Material | γd (kN/m3) | γsat (kN/m3) | φ′ (°) | Ψ′ (°) | c′ (kPa) | E′ (MPa) | ν′ (-) |
---|---|---|---|---|---|---|---|
Embankment | 17 | 20 | 36 | 10 | 1 | 20 | 0.30 |
Reinforced earth | 17 | 20 | 36 | 10 | 100 | 20 | 0.30 |
Foundation soil | 16 | 18 | 26, 30, 34 | 0 | 0.2, 5, 10, 20, 30 | 10 | 0.35 |
Weak layer | 16 | 18 | 5, 10, 15 | 0 | 0.2 | 10 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziccarelli, M.; Rosone, M. Stability of Embankments Resting on Foundation Soils with a Weak Layer. Geosciences 2021, 11, 86. https://doi.org/10.3390/geosciences11020086
Ziccarelli M, Rosone M. Stability of Embankments Resting on Foundation Soils with a Weak Layer. Geosciences. 2021; 11(2):86. https://doi.org/10.3390/geosciences11020086
Chicago/Turabian StyleZiccarelli, Maurizio, and Marco Rosone. 2021. "Stability of Embankments Resting on Foundation Soils with a Weak Layer" Geosciences 11, no. 2: 86. https://doi.org/10.3390/geosciences11020086
APA StyleZiccarelli, M., & Rosone, M. (2021). Stability of Embankments Resting on Foundation Soils with a Weak Layer. Geosciences, 11(2), 86. https://doi.org/10.3390/geosciences11020086