Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter
<p>Left hand side: Overview and bathymetry map offshore Sylt. Middle: A ship-based backscatter intensity map of the investigation area. Right hand side: Close up of the study area and the lander deployment stations (red cross), with Norbit multibeam echosounder backscatter data recorded at a frequency of 200 kHz. The dynamic range of the shown uncalibrated backscatter values is approx. 10 dB.</p> "> Figure 2
<p>Setup of the lander frame. The size of the lander frame is 120 cm × 80 cm × 100 cm. Displayed are the slant range and the grazing angle θ of the selected profiler, which is defined as the angle between the wavefield motion and the zero mean seafloor surface. The red circles mark the areas of the acoustic footprint. In blue the laser swath is highlighted. The ULS200 mid-range laser scan system is manufactured by 2G Robotics, and the acoustic transducer units by Benthowave Instruments Inc.</p> "> Figure 3
<p>An example of a measured surface by the laser line scanner is displayed in (<b>a</b>), while (<b>b</b>) shows the corresponding power spectral density (PSD) containing the wavelength interval D (0.002–0.17 m). The blue line in (<b>c</b>) shows the radial averaging PSD of (<b>b</b>). The black line in (<b>c</b>)represents the linear fit of the radial averaged PSD required to derive the spectral slope <math display="inline"><semantics> <mi>γ</mi> </semantics></math> and the spectral intercepts at the wavelengths 0.01 m and 1 m. The vertical dashed line in (<b>c</b>) indicates the separation of the spectrum D into the intervals D<sub>1</sub> and D<sub>2</sub>, which is equivalent to separation of the PSD demonstrated in (<b>d</b>)–(<b>g</b>). The inverse transform of the low-pass filtered PSD D<sub>1</sub> interval is shown in (<b>d</b>) with the corresponding spectrum in (<b>e</b>). The inverse transform of the PSD D<sub>2</sub> covering wavelength <0.03 m is shown in (<b>f</b>), with the corresponding high-pass filtered spectrum in (<b>g</b>). The red circles in (<b>e</b>) and (<b>g</b>) indicate the cutoff wavelength. The red markers in (<b>h</b>) highlight the detected objects from (<b>f</b>), which were used to compute the benthic coverage (BC).</p> "> Figure 4
<p>Predicted backscatter strength using the small-roughness perturbation approximation (blue), the measured backscatter strength (BS) from the lander (cyan), the measured backscatter strength from the ship-based system (black), root-mean-square roughness (RMS roughness) for the D<sub>1</sub> interval (red), RMS roughness for the D<sub>2</sub> interval (yellow), and benthic coverage (BC) at the seafloor for the lander stations (green). The last two station digits correspond to the position of the lander stations displayed in <a href="#geosciences-09-00454-f001" class="html-fig">Figure 1</a>.</p> "> Figure 5
<p>Video footage from a survey near station 63_1 (<b>a</b>), (<b>b</b>), (<b>d</b>), (<b>e</b>) (red dots have a 10 cm distance), from the lander station 67 (<b>c</b>) and the corresponding position in the ship-based backscatter mosaic (<b>f</b>). (<b>a</b>) reveals asymmetrical straight to sinusoidal ripples with sparse benthic coverage and organic fluff located inside the ripple troughs. (<b>b</b>) indicates the transition is between the ripple-dominated and the benthic-dominated seafloor type. In (<b>c</b>), degenerate ripple structures were observed with few tubeworm structures, shell fragments, and brittlestars (Ophiuroidea). (<b>d</b>) reveals degraded ripple residuals and a higher coverage of tubeworm structures, few starfish, and larger shell fragments. The morphology in (<b>e</b>) shows no ripple structures and very few visible epibenthic features besides some organic fluff. The ship-based backscatter mosaic in (<b>f</b>) shows a corresponding change from low to high backscatter along the video track. However, the positioning is not sufficiently accurate to relate video snapshots directly to the backscatter mosaic.</p> "> Figure 6
<p>Left hand side psd<sub>K</sub> over all lander stations. The vertical dashed line indicates the cutoff frequency (K = 33 m<sup>−1</sup>) between the D<sub>1</sub> and D<sub>2</sub> domain. The color shows the corresponding benthic coverage. High RMS roughness values in the D<sub>2</sub> domain correlate with high benthic coverage. Right hand side, backscatter strength predicted by the small-roughness perturbation approximation given by reference [<a href="#B6-geosciences-09-00454" class="html-bibr">6</a>] for the lander sites with acoustic data.</p> "> Figure 7
<p>(<b>a</b>) Spectral slopes and intercepts displayed against the benthic coverage. Grain size is constant at 2.6 phi. (<b>b</b>) A slope vs. intercept diagram for the study site. Symbol color denotes RMS roughness, symbol size denotes the benthic coverage in percent. Arrow 1: Effect of increasing high-frequency roughness due to benthic life (this study). Arrow 2: Effect of relative decrease of low-frequency roughness [<a href="#B9-geosciences-09-00454" class="html-bibr">9</a>]. Arrow 3: Effect of the relative increase of low-frequency roughness [<a href="#B9-geosciences-09-00454" class="html-bibr">9</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Setting
2.2. Field Measurements
2.3. Data Processing
2.3.1. Optical Data
- PSD: 2D power spectral density [m4]
- W: Fourier transformed windowed surface, given by fft2(winSx,y) [m]
- A: area of the surface grid, given by MΔxNΔy [m2]
- kx: the wave number in the x direction [m−1],
- ky: the wave number in the y direction [m−1],
- fs: sampling frequency = =
- PSD: 2D radial averaged power spectral density [m4]
- Nr: total number of points, which lie upon a circle with radius K
- K: 2D wave vector length [m−1], given by
2.3.2. Acoustic Data
2.3.3. Acoustic Scatter Model
3. Results
3.1. Ship-Based Acoustic Survey and Ground Truthing
3.2. Lander Experiment
3.2.1. Seafloor Roughness
3.2.2. Acoustic Scatter
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lyons, B.P.; Thain, J.E.; Stentiford, G.D.; Hylland, K.; Davies, I.M.; Vethaak, A.D. Using biological effects tools to define Good Environmental Status under the European Union Marine Strategy Framework Directive. Mar. Pollut. Bull. 2010, 60, 1647–1651. [Google Scholar] [CrossRef] [PubMed]
- Report of the Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES Areas VIII and IX (WGACEGG); ICES: Palma de Mallorca, Spain, 2007; p. 163.
- Bouwma, I.; Schleyer, C.; Primmer, E.; Winkler, K.J.; Berry, P.; Young, J.; Carmen, E.; Jana, Š.; Bezák, P.; Preda, E. Adoption of the ecosystem services concept in EU policies. Ecosyst. Serv. 2018, 29, 213–222. [Google Scholar] [CrossRef]
- Roadmap for Maritime Spatial Planning: Achieving Common Principles in the EU; European Commission: Brussels, Belgium, 2008; pp. 1–11.
- Jackson, D.R.; Richardson, M. High-Frequency Seafloor Acoustics; Springer Science & Business Media: Berlin, Germany, 2007; ISBN 9780387369457. [Google Scholar]
- Self, R.F.L.; A’Hearn, P.; Jumars, P.A.; Jackson, D.R.; Richardson, M.D.; Briggs, K.B. Effects of macrofauna on acoustic backscatter from the seabed: Field manipulations in West Sound, Orcas Island, Washington, U.S.A. J. Mar. Res. 2001, 59, 991–1020. [Google Scholar] [CrossRef]
- Schönke, M.; Feldens, P.; Wilken, D.; Papenmeier, S.; Heinrich, C.; von Deimling, J.S.; Held, P.; Krastel, S. Impact of Lanice conchilega on seafloor microtopography off the island of Sylt (German Bight, SE North Sea). Geo-Marine Lett. 2016, 37, 305–318. [Google Scholar] [CrossRef]
- Wever, T.; Jenkins, C. Physik biologisch besiedelter Meeresböden. J. Appl. Hydrogr. 2017, 106, 8–13. [Google Scholar]
- Briggs, K.B.; Williams, K.L.; Richardson, M.D.; Jackson, D.R. Effects of Changing Roughness on Acoustic Scattering: (1) Natural Changes. Proc. Inst. Acoust. 2001, 23, 343–390. [Google Scholar]
- Richardson, M.D.; Briggs, K.B.; Bentley, S.J.; Walter, D.J.; Orsi, T.H. The effects of biological and hydrodynamic processes on physical and acoustic properties of sediments off the Eel River, California. Mar. Geol. 2002, 182, 121–139. [Google Scholar] [CrossRef]
- Ballard, M.S.; Lee, K.M. The Acoustics of Marine Sediments. Acoust. Today 2017, 13, 11–18. [Google Scholar]
- Moore, K.D.; Jaffe, J.S. Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan mapping system. IEEE J. Ocean. Eng. 2002, 27, 525–545. [Google Scholar] [CrossRef]
- Richardson, M.D.; Briggs, K.B.; Bibee, L.D.; Jumars, P.A.; Sawyer, W.B.; Albert, D.B.; Bennett, R.H.; Berger, T.K.; Buckingham, M.J.; Chotiros, N.P.; et al. Overview of SAX99: Environmental considerations. IEEE J. Ocean. Eng. 2001, 26, 26–53. [Google Scholar] [CrossRef]
- Heinrich, C.; Feldens, P.; Schwarzer, K. Highly dynamic biological seabed alterations revealed by side scan sonar tracking of Lanice conchilega beds offshore the island of Sylt (German Bight). Geo-Marine Lett. 2017, 37, 289–303. [Google Scholar] [CrossRef]
- McGonigle, C.; Grabowski, J.H.; Brown, C.J.; Weber, T.C.; Quinn, R. Detection of deep water benthic macroalgae using image-based classification techniques on multibeam backscatter at Cashes Ledge, Gulf of Maine, USA. Estuar. Coast. Shelf Sci. 2011, 91, 87–101. [Google Scholar] [CrossRef]
- McGonigle, C.; Brown, C.; Quinn, R.; Grabowski, J. Evaluation of image-based multibeam sonar backscatter classification for benthic habitat discrimination and mapping at Stanton Banks, UK. Estuar. Coast. Shelf Sci. 2009, 81, 423–437. [Google Scholar] [CrossRef]
- Che Hasan, R.; Ierodiaconou, D.; Laurenson, L. Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping. Estuar. Coast. Shelf Sci. 2012, 97, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Le Bas, T.P.P.; Huvenne, V.A.I. Acquisition and processing of backscatter data for habitat mapping—Comparison of multibeam and sidescan systems. Appl. Acoust. 2009, 70, 1248–1257. [Google Scholar] [CrossRef]
- Feldens, P.; Schulze, I.; Papenmeier, S.; Schönke, M.; Schneider von Deimling, J. Improved Interpretation of Marine Sedimentary Environments Using Multi-Frequency Multibeam Backscatter Data. Geosciences 2018, 8, 214. [Google Scholar] [CrossRef]
- Roche, M.; Degrendele, K.; Vrignaud, C.; Loyer, S.; Le Bas, T.; Augustin, J.M.; Lurton, X. Control of the repeatability of high frequency multibeam echosounder backscatter by using natural reference areas. Mar. Geophys. Res. 2018, 39, 89–104. [Google Scholar] [CrossRef] [Green Version]
- Lurton, X.; Lamarche, G.; Brown, C.; Lucieer, V.; Rice, G.; Schimel, A.; Weber, T. Backscatter Measurements by Seafloor—Mapping Sonars. In Guidelines and Recommendations; Lurton, X., Lamarche, G., Eds.; 2015; p. 200. Available online: http://geohab.org/wp-content/uploads/2013/02/BWSG-REPORT-MAY2015.pdf (accessed on 19 October 2019).
- Wendelboe, G. Backscattering from a sandy seabed measured by a calibrated multibeam echosounder in the 190–400 kHz frequency range. Mar. Geophys. Res. 2018, 39, 105–120. [Google Scholar] [CrossRef]
- Richardson, M.; Briggs, K.; Williams, K.; Tang, D.; Jackson, D.; Thorsos, E. The effects of seafloor roughness on acoustic scattering: Manipulative experiments. In Boundary Influences in High Frequency Shallow Water Acoustics; Pace, N., Blondel, P., Eds.; University of Bath: Bath, UK, 2005; Volume 298, pp. 109–116. [Google Scholar]
- Buscombe, D.; Grams, P.E.; Kaplinski, M.A. Characterizing riverbed sediment using high-frequency acoustics: 1. Spectral properties of scattering. J. Geophys. Res. F Earth Surf. 2014, 119, 2674–2691. [Google Scholar] [CrossRef]
- Huff, L. Acoustic Remote Sensing as a Tool for Habitat Mapping in Alaska Waters. Mar. Habitat Mapp. Technol. Alaska 2008, 10, 29–46. [Google Scholar]
- Tang, D. Fine-scale measurements of sediment roughness and subbottom variability. IEEE J. Ocean. Eng. 2004, 29, 929–939. [Google Scholar] [CrossRef]
- Chotiros, N.P.; Isakson, M.J. The evolution of sediment acoustic models. AIP Conf. Proc. 2012, 1495, 193–201. [Google Scholar]
- Jackson, D.R.; Briggs, K.B. High-frequency bottom backscattering: Roughness versus sediment volume scattering. J. Acoust. Soc. Am. 2005, 92, 962–977. [Google Scholar] [CrossRef]
- Ivakin, A.N. High frequency scattering from sandy sediments: Roughness vs. discrete inclusions. In Proceedings of the Boundary Influences in High Frequency Shallow Water Acoustics, Bath, UK, 5–9 September 2005. [Google Scholar]
- Ivakin, A.N. Scattering from discrete inclusions in marine sediments. In Proceedings of the Seventh European Conference on Underwater Acoustics, ECUA 2004, Delft, The Netherlands, 5–8 July 2004. [Google Scholar]
- Valerius, J.; Kösters, F.; Zeiler, M. Erfassung von Sandverteilungsmustern zur großräumigen Analyse der Sedimentdynamik auf dem Schelf der Deutschen Bucht. Die Küste 2015, 83, 39–63. [Google Scholar]
- Zeiler, M.; Schwarzer, K.; Ricklefs, K. Seabed morphology and sediment dynamics. Kuste 2008, 74, 31–44. [Google Scholar]
- Salzwedel, H.; Eike, R.; Dieter, G. Benthic macrofauna communities in the German Bight. In Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven; Salzwedel, H., Eike, R., Dieter, G., Eds.; Institute for Marine Research in Bremerhaven: Bremerhaven, Germany, 1985. [Google Scholar]
- Benthosuntersuchungen im Rahmen des Beweissicherungsverfahrens für den Ausbau des Hafenbecken IV in Büsum. Available online: https://epic.awi.de/id/eprint/44126/ (accessed on 22 October 2019).
- Panda, S.; Panzade, A.; Sarangi, M.; Chowdhury, S.K.R. Spectral Approach on Multiscale Roughness Characterization of Nominally Rough Surfaces. J. Tribol. 2017, 139, 1–10. [Google Scholar] [CrossRef]
- Sidick, E. Power spectral density specification and analysis of large optical surfaces. Model. Asp. Opt. Metrol. II 2009, 7390, 73900L. [Google Scholar]
- Briggs, K.B.; Lyons, A.P.; Pouliquen, E.; Mayer, L.A.; Richardson, M.D. Seafloor roughness, sediment grain size, and temporal stability. Nav. Res. LAB STENNIS Sp. Cent. MS SEAFLOOR Sci. Dir. 2005, 298, 9. [Google Scholar]
- Bjørnø, L. Applied Underwater Acoustics; Neighbors, T., Bradley, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-811240-3. [Google Scholar]
- Degraer, S.; Moerkerke, G.; Rabaut, M.; Van Hoey, G.; Du Four, I.; Vincx, M.; Henriet, J.P.; Van Lancker, V. Very-high resolution side-scan sonar mapping of biogenic reefs of the tube-worm Lanice conchilega. Remote Sens. Environ. 2008, 112, 3323–3328. [Google Scholar] [CrossRef]
- Peine, F.; Friedrichs, M.; Graf, G. Potential influence of tubicolous worms on the bottom roughness length z 0 in the south-western Baltic Sea. J. Exp. Mar. Bio. Ecol. 2009, 374, 1–11. [Google Scholar] [CrossRef]
- Jackson, D.R.; Richardson, M.D.; William, K.L.; Lyons, A.P.; Jones, C.D.; Briggs, K.B.; Tang, D. Acoustic observation of the time dependence of the roughness of sandy seafloors. IEEE J. Ocean. Eng. 2009, 34, 407–422. [Google Scholar] [CrossRef]
- Wang, L.; Davies, G.; Bellettini, A.; Pinto, M. Multipath Effect on DPCA Micronavigation of a Synthetic Aperture Sonar. In Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance; Pace, N.G., Jensen, F.B., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 465–472. [Google Scholar]
- Williams, K.L.; Jackson, D.R.; Thorsos, E.I.; Tang, D.; Briggs, K.B. Acoustic backscattering experiments in a well characterized sand sediment: Data/model comparisons using sediment fluid and Biot models. IEEE J. Ocean. Eng. 2002, 27, 376–387. [Google Scholar] [CrossRef]
- Lyons, A.P.; Fox, W.L.J.; Hasiotis, T.; Pouliquen, E. Characterization of the two-dimensional surface roughness of a wave-rippled sea floor using digital photography. IEEE J. Ocean. Eng. 2002, 27, 515–524. [Google Scholar] [CrossRef]
- Montereale-Gavazzi, G.; Roche, M.; Lurton, X.; Degrendele, K.; Terseleer, N.; Van Lancker, V. Seafloor change detection using multibeam echosounder backscatter: Case study on the Belgian part of the North Sea. Mar. Geophys. Res. 2018, 39, 229–247. [Google Scholar] [CrossRef]
- Montereale-Gavazzi, G.; Roche, M.; Degrendele, K.; Lurton, X.; Terseleer, N.; Baeye, M.; Francken, F.; Van Lancker, V. Insights into the Short-Term Tidal Variability of Multibeam Backscatter from Field Experiments on Different Seafloor Types. Geosciences 2019, 9, 34. [Google Scholar] [CrossRef]
- Briggs, K.B.; Tang, D.; Williams, K.L. Characterization of interface roughness of rippled sand off fort Walton Beach, Florida. IEEE J. Ocean. Eng. 2002, 27, 505–514. [Google Scholar] [CrossRef]
BSlander | BSmodel | RMS D Roughness | RMSD1 Roughness | RMSD2 Roughness | Spectral Slope | Spectral Intercept K = 1 m−1 | Spectral Intercept K = 100 m−1 | BC | |
---|---|---|---|---|---|---|---|---|---|
BSship | 0.03 | −0.30 | −0.25 | −0.25 | −0.08 | −0.28 | −0.16 | −0.19 | −0.32 |
BSlander | 1 | 0.27 | 0.18 | 0.18 | 0.32 | 0.17 | 0.06 | 0.46 | 0.57 |
BSmodel | 1 | −0.26 | −0.25 | 0.21 | 0.96 | −0.71 | 0.88 | 0.8 | |
RMSD roughness | 1 | 1 | 0.56 | −0.4 | 0.59 | −0.02 | 0.04 | ||
RMSD1 roughness | 1 | 0.55 | −0.38 | 0.57 | −0.02 | 0.04 | |||
RMSD2 roughness | 1 | −0.06 | 0.48 | 0.56 | 0.56 | ||||
spectral slope | 1 | −0.86 | 0.74 | 0.64 | |||||
spectral intercept K = 1 m−1 | 1 | −0.39 | −0.33 | ||||||
spectral intercept K = 100 m−1 | 1 | 0.91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schönke, M.; Wiesenberg, L.; Schulze, I.; Wilken, D.; Darr, A.; Papenmeier, S.; Feldens, P. Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter. Geosciences 2019, 9, 454. https://doi.org/10.3390/geosciences9100454
Schönke M, Wiesenberg L, Schulze I, Wilken D, Darr A, Papenmeier S, Feldens P. Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter. Geosciences. 2019; 9(10):454. https://doi.org/10.3390/geosciences9100454
Chicago/Turabian StyleSchönke, Mischa, Lars Wiesenberg, Inken Schulze, Dennis Wilken, Alexander Darr, Svenja Papenmeier, and Peter Feldens. 2019. "Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter" Geosciences 9, no. 10: 454. https://doi.org/10.3390/geosciences9100454
APA StyleSchönke, M., Wiesenberg, L., Schulze, I., Wilken, D., Darr, A., Papenmeier, S., & Feldens, P. (2019). Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter. Geosciences, 9(10), 454. https://doi.org/10.3390/geosciences9100454