Expanding the Molecular Spectrum of MMP21 Missense Variants: Clinical Insights and Literature Review
<p>(<b>A</b>) Family pedigree of Patient 1, showing grade of parents’ consanguinity, (<b>B</b>) ECG of Patient 1 displaying multifocal atrial beats with junctional rhythm, right axis deviation and positive T wave in right precordial leads; (<b>C</b>) Family pedigree of Patient 2, (<b>D</b>) ECG of Patient 2 showing suggestive findings of ventricular inversion, including absence of q waves in V5–V6 and presence of q waves in V1. Filled symbols with black arrows represent index patients; half-filled symbols represent healthy carrier individuals; numbers in pedigree represent the number of individuals with the same degree of biological relationship (e.g., Patient 2 has two paternal uncles).</p> "> Figure 2
<p>(<b>A</b>) Schematic representation of the <span class="html-italic">MMP21</span> gene and the MMP21 protein. Exons are depicted in blue and introns in light blue. Protein domains are represented in different colors and aminoacidic positions at the beginning and end of each domain are reported. Missense variants identified in the literature are reported. (<b>B</b>) Structural model of MMP21 as predicted by AlphaFold (XZ plane). Protein backbone is represented in gray, while domains are reported in the same color as <a href="#genes-16-00062-f002" class="html-fig">Figure 2</a>A (i.e., ZnMc domain in green and HX domains in pink). Aminoacidic positions in which missense variants occur are colored in red in the 3D structure. (<b>C</b>) Backbone of the ZnMc domain of MMP21 is reported in green. Positions in which missense variants occur are colored in red and amino acid structures are highlighted (carbon atoms are depicted in grey, oxygen in red, nitrogen in blue, and sulfur in yellow). (<b>D</b>) Protein alignment showing conservation of methionine 301 across species, highlighted by the red frame; amino acids with similar physicochemical properties are represented in the same colors, as defined by the Clustal Omega software. (ZnMc: Zinc-dependent metalloprotease; HX: Hemopexin-like repeats). In figures, the variant identified in our patients, c.903G>A, p.(Met301Ile), is reported in red.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patients Carrying Missense MMP21 Variant
3.2. Clinical and Molecular Spectrum of MMP21 Missense Variants
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Little, R.B.; Norris, D.P. Right, Left and Cilia: How Asymmetry Is Established. Semin. Cell Dev. Biol. 2021, 110, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Feistel, K.; Thumberger, T.; Schweickert, A. The Evolution and Conservation of Left-Right Patterning Mechanisms. Development 2014, 141, 1603–1613. [Google Scholar] [CrossRef]
- Klena, N.; Gabriel, G.; Liu, X.; Yagi, H.; Li, Y.; Chen, Y.; Zahid, M.; Tobita, K.; Leatherbury, L.; Pazour, G.; et al. Role of Cilia and Left-Right Patterning in Congenital Heart Disease. In Etiology and Morphogenesis of Congenital Heart Disease; Nakanishi, T., Markwald, R.R., Baldwin, H.S., Keller, B.B., Srivastava, D., Yamagishi, H., Eds.; Springer: Tokyo, Japan, 2016; pp. 67–79. ISBN 978-4-431-54627-6. [Google Scholar]
- Yoshiba, S.; Shiratori, H.; Kuo, I.Y.; Kawasumi, A.; Shinohara, K.; Nonaka, S.; Asai, Y.; Sasaki, G.; Belo, J.A.; Sasaki, H.; et al. Cilia at the Node of Mouse Embryos Sense Fluid Flow for Left-Right Determination via Pkd2. Science 2012, 338, 226–231. [Google Scholar] [CrossRef]
- Saba, T.G.; Geddes, G.C.; Ware, S.M.; Schidlow, D.N.; Del Nido, P.J.; Rubalcava, N.S.; Gadepalli, S.K.; Stillwell, T.; Griffiths, A.; Bennett Murphy, L.M.; et al. A Multi-Disciplinary, Comprehensive Approach to Management of Children with Heterotaxy. Orphanet J. Rare Dis. 2022, 17, 351. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.E.; Krikov, S.; Riehle-Colarusso, T.; Frías, J.L.; Belmont, J.; Anderka, M.; Geva, T.; Getz, K.D.; Botto, L.D.; National Birth Defects Prevention Study. Laterality Defects in the National Birth Defects Prevention Study (1998-2007): Birth Prevalence and Descriptive Epidemiology. Am. J. Med. Genet. A 2014, 164A, 2581–2591. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.P.; Anderson, R.H.; Weinberg, P.M.; Walters, H.L.; Tchervenkov, C.I.; Del Duca, D.; Franklin, R.C.G.; Aiello, V.D.; Béland, M.J.; Colan, S.D.; et al. The Nomenclature, Definition and Classification of Cardiac Structures in the Setting of Heterotaxy. Cardiol. Young 2007, 17 (Suppl. S2), 1–28. [Google Scholar] [CrossRef] [PubMed]
- Cowan, J.R.; Tariq, M.; Shaw, C.; Rao, M.; Belmont, J.W.; Lalani, S.R.; Smolarek, T.A.; Ware, S.M. Copy Number Variation as a Genetic Basis for Heterotaxy and Heterotaxy-Spectrum Congenital Heart Defects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150406. [Google Scholar] [CrossRef] [PubMed]
- Homsy, J.; Zaidi, S.; Shen, Y.; Ware, J.S.; Samocha, K.E.; Karczewski, K.J.; DePalma, S.R.; McKean, D.; Wakimoto, H.; Gorham, J.; et al. De Novo Mutations in Congenital Heart Disease with Neurodevelopmental and Other Congenital Anomalies. Science 2015, 350, 1262–1266. [Google Scholar] [CrossRef] [PubMed]
- Harrison, M.J.; Shapiro, A.J.; Kennedy, M.P. Congenital Heart Disease and Primary Ciliary Dyskinesia. Paediatr. Respir. Rev. 2016, 18, 25–32. [Google Scholar] [CrossRef]
- Shapiro, A.J.; Davis, S.D.; Ferkol, T.; Dell, S.D.; Rosenfeld, M.; Olivier, K.N.; Sagel, S.D.; Milla, C.; Zariwala, M.A.; Wolf, W.; et al. Laterality Defects Other than Situs Inversus Totalis in Primary Ciliary Dyskinesia: Insights into Situs Ambiguus and Heterotaxy. Chest 2014, 146, 1176–1186. [Google Scholar] [CrossRef]
- Olson, A.J.; Krentz, A.D.; Finta, K.M.; Okorie, U.C.; Haws, R.M. Thoraco-Abdominal Abnormalities in Bardet-Biedl Syndrome: Situs Inversus and Heterotaxy. J. Pediatr. 2019, 204, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent Updates, New Developments and Status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Novati, G.; Pan, J.; Bycroft, C.; Žemgulytė, A.; Applebaum, T.; Pritzel, A.; Wong, L.H.; Zielinski, M.; Sargeant, T.; et al. Accurate Proteome-Wide Missense Variant Effect Prediction with AlphaMissense. Science 2023, 381, eadg7492. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C.; Henikoff, S. SIFT: Predicting Amino Acid Changes That Affect Protein Function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting Functional Effect of Human Missense Mutations Using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Schubach, M.; Maass, T.; Nazaretyan, L.; Röner, S.; Kircher, M. CADD v1.7: Using Protein Language Models, Regulatory CNNs and Other Nucleotide-Level Scores to Improve Genome-Wide Variant Predictions. Nucleic Acids Res. 2024, 52, D1143–D1154. [Google Scholar] [CrossRef]
- Quang, D.; Chen, Y.; Xie, X. DANN: A Deep Learning Approach for Annotating the Pathogenicity of Genetic Variants. Bioinformatics 2015, 31, 761–763. [Google Scholar] [CrossRef]
- The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans|Nature. Available online: https://www.nature.com/articles/s41586-020-2308-7 (accessed on 28 November 2024).
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public Archive of Relationships among Sequence Variation and Human Phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef]
- Madeira, F.; Madhusoodanan, N.; Lee, J.; Eusebi, A.; Niewielska, A.; Tivey, A.R.N.; Lopez, R.; Butcher, S. The EMBL-EBI Job Dispatcher Sequence Analysis Tools Framework in 2024. Nucleic Acids Res. 2024, 52, W521–W525. [Google Scholar] [CrossRef] [PubMed]
- Spedicati, B.; Morgan, A.; Pianigiani, G.; Musante, L.; Rubinato, E.; Santin, A.; Nardone, G.G.; Faletra, F.; Girotto, G. Challenging Occam’s Razor: Dual Molecular Diagnoses Explain Entangled Clinical Pictures. Genes 2022, 13, 2023. [Google Scholar] [CrossRef]
- Guimier, A.; Gabriel, G.C.; Bajolle, F.; Tsang, M.; Liu, H.; Noll, A.; Schwartz, M.; El Malti, R.; Smith, L.D.; Klena, N.T.; et al. MMP21 Is Mutated in Human Heterotaxy and Is Required for Normal Left-Right Asymmetry in Vertebrates. Nat. Genet. 2015, 47, 1260–1263. [Google Scholar] [CrossRef]
- Dong, W.; Kaymakcalan, H.; Jin, S.C.; Diab, N.S.; Tanıdır, C.; Yalcin, A.S.Y.; Ercan-Sencicek, A.G.; Mane, S.; Gunel, M.; Lifton, R.P.; et al. Mutation Spectrum of Congenital Heart Disease in a Consanguineous Turkish Population. Mol. Genet. Genom. Med. 2022, 10, e1944. [Google Scholar] [CrossRef]
- Li, A.H.; Hanchard, N.A.; Azamian, M.; D’Alessandro, L.C.A.; Coban-Akdemir, Z.; Lopez, K.N.; Hall, N.J.; Dickerson, H.; Nicosia, A.; Fernbach, S.; et al. Genetic Architecture of Laterality Defects Revealed by Whole Exome Sequencing. Eur. J. Hum. Genet. 2019, 27, 563–573. [Google Scholar] [CrossRef]
- Al-Korashy, M.; Binomar, H.; Al-Mostafa, A.; Al-Mogarri, I.; Al-Oufi, S.; Al-Admawi, M.; Al-Jufan, M.; Echahidi, N.; Mokeem, A.; Alfares, A.; et al. Genetic Analysis of Heterotaxy in a Consanguineous Cohort. Clin. Genet. 2024; in press. [Google Scholar] [CrossRef]
- Westphal, D.S.; Leszinski, G.S.; Rieger-Fackeldey, E.; Graf, E.; Weirich, G.; Meitinger, T.; Ostermayer, E.; Oberhoffer, R.; Wagner, M. Lessons from Exome Sequencing in Prenatally Diagnosed Heart Defects: A Basis for Prenatal Testing. Clin. Genet. 2019, 95, 582–589. [Google Scholar] [CrossRef]
- the DDD study; Akawi, N.; McRae, J.; Ansari, M.; Balasubramanian, M.; Blyth, M.; Brady, A.F.; Clayton, S.; Cole, T.; Deshpande, C.; et al. Discovery of Four Recessive Developmental Disorders Using Probabilistic Genotype and Phenotype Matching among 4,125 Families. Nat. Genet. 2015, 47, 1363–1369. [Google Scholar] [CrossRef]
- D’Gama, A.M.; Del Rosario, M.C.; Bresnahan, M.A.; Yu, T.W.; Wojcik, M.H.; Agrawal, P.B. Integrating Rapid Exome Sequencing into NICU Clinical Care after a Pilot Research Study. NPJ Genom. Med. 2022, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Giguet-Valard, A.; Simonet, T.; Szenker-Ravi, E.; Lambert, L.; Vincent-Delorme, C.; Scheidecker, S.; Fradin, M.; Morice-Picard, F.; Naudion, S.; et al. Next-generation Sequencing in a Series of 80 Fetuses with Complex Cardiac Malformations and/or Heterotaxy. Hum. Mutat. 2020, 41, 2167–2178. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Li, R.; Yu, Q.; Wang, D.; Deng, Q.; Li, L.; Lei, T.; Chen, G.; Nie, Z.; Yang, X.; et al. Application of Exome Sequencing for Prenatal Diagnosis of Fetal Structural Anomalies: Clinical Experience and Lessons Learned from a Cohort of 1618 Fetuses. Genome Med. 2022, 14, 123. [Google Scholar] [CrossRef]
- Davis, G.E.; Stratman, A.N.; Sacharidou, A.; Koh, W. Molecular Basis for Endothelial Lumen Formation and Tubulogenesis during Vasculogenesis and Angiogenic Sprouting. Int. Rev. Cell Mol. Biol. 2011, 288, 101–165. [Google Scholar] [CrossRef] [PubMed]
- Raza, Q.S.; Vanderploeg, J.L.; Jacobs, J.R. Matrix Metalloproteinases Are Required for Membrane Motility and Lumenogenesis during Drosophila Heart Development. PLoS ONE 2017, 12, e0171905. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, G.N.; Marchenko, N.D.; Strongin, A.Y. The Structure and Regulation of the Human and Mouse Matrix Metalloproteinase-21 Gene and Protein. Biochem. J. 2003, 372, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, J.T.; Brosnan, M.E. The Sulfur-Containing Amino Acids: An Overview. J. Nutr. 2006, 136, 1636S–1640S. [Google Scholar] [CrossRef]
- Qin, X.; Xu, M.; Ye, J.; Niu, Y.; Wu, Y.; Xu, R.; Li, F.; Fu, Q.; Chen, S.; Sun, K.; et al. De Novo Disruptive Heterozygous MMP21 Variants Are Potential Predisposing Genetic Risk Factors in Chinese Han Heterotaxy Children. Hum. Genom. 2022, 16, 41. [Google Scholar] [CrossRef] [PubMed]
- Ahokas, K.; Lohi, J.; Lohi, H.; Elomaa, O.; Karjalainen-Lindsberg, M.L.; Kere, J.; Saarialho-Kere, U. Matrix Metalloproteinase-21, the Human Orthologue for XMMP, Is Expressed during Fetal Development and in Cancer. Gene 2002, 301, 31–41. [Google Scholar] [CrossRef] [PubMed]
Variant | Amino Acid Substitution | Chromosome Position | Zygosity | Allele Frequency | Clinvar | AlphaMissense | SIFT | PolyPhen | CADD | DANN |
---|---|---|---|---|---|---|---|---|---|---|
c.91C>T | p.(Arg31Trp) | chr10:125,775,731 | 1 CH | 0.0003% | N/A | 0.188 (B) | D (0) | PD (0.997) | D (27.5) | D (0.999) |
c.101C>T | p.(Ser34Leu) | chr10:125,775,721 | 1 CH | 0.2752% | B | 0.157 (B) | D (0.02) | B (0.196) | D (22.3) | D (0.999) |
c.163C>T | p.(Arg55Trp) | chr10:125,774,365 | 1 CH | 3.1550% | N/A | 0.142 (B) | D (0.01) | PD (0.822) | D (21.5) | D (0.999) |
c.281G>C | p.(Arg94Pro) | chr10:125,774,242 | 1 CH | 0.0011% | LP | 0.657 (LP) | D (0.01) | PD (0.577) | D (20.9) | D (0.987) |
c.311T>C | p.(Leu104Pro) | chr10:125,774,217 | 2 HOM | 0.0002% | N/A | 0.256 (B) | D (0.01) | D (1) | D (24.6) | D (0.996) |
c.551C>T | p.(Ala184Val) | chr10:125,773,977 | 1 CH | 0.0002% | N/A | 0.260 (B) | D (0) | B (0.369) | D (20.6) | D (0.999) |
c.557G>T | p.(Ser186Ile) | chr10:125,773,971 | 1 HOM + 1 CH | 0.0000% | LP | 0.924 (LP) | D (0) | PD (0.99) | D (24.5) | D (0.997) |
c.643G>A | p.(Glu215Lys) | chr10:125,773,885 | 2 HOM + 1 CH | 0.0174% | US | 0.610 (LP) | D (0) | PD (0.985) | D (25.3) | D (0.999) |
c.677T>C | p.(Ile226Thr) | chr10:125,773,851 | 2 CH | 0.0036% | P | 0.975 (LP) | D (0) | PD (0.947) | D (25) | D (0.997) |
c.847C>T | p.(His283Tyr) | chr10:125,772,350 | 2 CH | 0.0001% | P | 0.982 (LP) | D (0) | D (1) | D (27.8) | D (0.998) |
c.854T>C | p.(Ile285Thr) | chr10:125,772,343 | 1 CH | 0.0044% | P | 0.738 (LP) | D (0) | D (1) | D (25.3) | D (0.997) |
c.903G>A | p.(Met301Ile) | chr10:125,772,294 | 2 HOM | 0.0018% | N/A | 0.990 (LP) | D (0) | D (1) | D (25.1) | D (0.997) |
c.961G>C | p.(Ala321Pro) | chr10:125,772,236 | 1 HOM | 0.0001% | P | 0.898 (LP) | D (0) | PD (0.993) | D (25.1) | D (0.998) |
c.1078C>T | p.(Arg360Cys) | chr10:125,770,493 | 2 HOM | 0.0007% | US | 0.274 (B) | D (0.01) | PD (0.981) | D (31) | D (0.999) |
c.1124G>A | p.(Arg375His) | chr10:125,770,447 | 3 HOM | 0.0005% | N/A | 0.270 (B) | T (0.19) | D (1) | D (26.9) | D (0.999) |
c.1222C>G | p.(Arg408Gly) | chr10:125,770,349 | 1 CH | 0.0004% | N/A | 0.283 (B) | T (0.25) | PD (0.872) | D (22) | D (0.988) |
c.1358C>T | p.(Thr453Met) | chr10:125,767,584 | 1 HOM | 0.0095% | US | 0.162 (B) | D (0) | PD (0.98) | D (24.1) | D (0.999) |
c.1477T>C | p.(Phe493Leu) | chr10:125,766,895 | 1 HOM | 0.0012% | N/A | 0.929 (LP) | D (0) | PD (0.816) | D (23.5) | D (0.998) |
Patients [Reference] | Age at Diagnosis | Outcome | Cardiac Anomalies | Extra-Cardiac Laterality Defects | MMP21 Variants |
---|---|---|---|---|---|
P1 [present study] | Prenatal | Positive | Dx, common atrium with complete ASD, IVC, PLSVC, complete AVSD, DORV with subvalvular and valvular pulmonary stenosis, right-sided aortic arch | None | c.903G>A; p.(Met301Ile) |
P2 [present study] | Pediatric (6 y.o.) | Positive | cc-TGA and severe pulmonary stenosis | None | c.903G>A; p.(Met301Ile) |
P3 [25] | Prenatal | TOP | IVC with azygous continuation, partial anomalous pulmonary venous return, AVSD, cleft anterior mitral valve leaflet, hypoplastic left ventricle, Dx | Intestinal malrotation, polysplenia | c.677T>C; p.(Ile226Thr) |
c.1203G>A; p.(Trp401*) | |||||
P4 [25] | Postnatal | N/A | Left superior vena cava draining to coronary sinus, AVSD, abnormal atrioventricular connection, right aortic arch with mirror image branching, patent ductus arteriosus | Abdominal situs ambiguus | c.677T>C; p.(Ile226Thr) |
c.1203G>A; p.(Trp401*) | |||||
P5 [25] | Postnatal | Positive | Bilateral superior vena with bridging vein, IVC with azygos continuation, hepatic veins to bilateral atriums, mitral atresia, single ventricle. | Left pulmonary isomerism, left-sided liver, right-sided stomach, polysplenia. | c.91C>T; p.(Arg31Trp) |
c.643G>A; p.(Glu215Lys) | |||||
P6 [25] | Postnatal | N/A | Common atrium, complete atrioventricular canal defect, TGA | Thoracic situs ambiguus, midline liver, intestinal malrotation | c.961G>C; p.(Ala321Pro) |
P7 [25] | Postnatal | Positive | TGA with VSD, valvar pulmonary stenosis | Thoracic and abdominal situs ambiguus | c.1078C>T; p.(Arg360Cys) |
P8 [25] | Postnatal | Positive | Partial anomalous pulmonary venous return, secundum ASD, perimembranous VSD | Thoracic and abdominal situs ambiguus | c.1078C>T; p.(Arg360Cys) |
P9 [25] | Postnatal | N/A | Bilateral superior vena cava with no bridging vein, IVC with azygous continuation, partial anomalous pulmonary venous return, patent foramen ovale, inlet and perimembranous VSD, tricuspid regurgitation | Abdominal situs ambiguus | c.1124G>A; p.(Arg375His) |
P10 [25] | Postnatal | N/A | None | Situs inversus totalis | c.1124G>A; p.(Arg375His) |
P11 [25] | Postnatal | N/A | N/A | N/A | c.1124G>A; p.(Arg375His) |
P12 [25] | N/A | N/A | Common atrium, Dx | None | c.1222C>G; p.(Arg408Gly) |
c.1585_1588dup; p.(Val530Glyfs*3) | |||||
P13 [25] | N/A | N/A | Common atrium, TGA, pulmonary artery atresia | Thoracic situs inversus | c.101C>T; p.(Ser34Leu) |
c.1372C>T; p.(Arg458*) | |||||
P14 [25] | Postnatal | Positive | TGA with VSD, hypoplastic right ventricle, pulmonary artery atresia, peripheral pulmonary artery stenosis, Dx | None | c.163C>T; p.(Arg55Trp) |
c.1372C>T; p.(Arg458*) | |||||
P15 [26] | N/A | N/A | Dx, right atrial isomerism, TGA, DORV | None | c.311T>C; p.(Leu104Pro) |
P16 [26] | N/A | N/A | Dx, right atrial isomerism, TGA, DORV | None | c.311T>C; p.(Leu104Pro) |
P17 [27] | N/A | N/A | Dx, TGA, Abnormal Aortic Arch | Abdominal situs inversus | c.643G>A; p.(Glu215Lys) |
P18 [27] | N/A | N/A | Arterial Malposition, Single Ventricle | Abdominal situs inversus | c.557G>T; p.(Ser186Ile) |
P19 [28] | Neonatal (6 mo.) | Positive | VSD, Left malposed great arteries, severe tricuspid valve regurgitation, DORV | None | c.1477T>C, p.(Phe493Leu) |
P20 [29] | Prenatal | TOP | Pulmonary atresia, univentricular heart, VSD | Right-sided stomach | c.1372C>T, p.(Arg458*) |
c.281G>C, p.(Arg94Pro) | |||||
P21 [30] | Prenatal | TOP | Total anomalous venous return, mitral atresia, DORV | N/A | c.947G>A; p.(Trp316*) |
c.847C>T; p.(His283Tyr) | |||||
P22 [30] | Neonatal (8 mo) | Positive | Dx, left atrial isomerism, IVC, Large sinus venosus type ASD, Large subaortic VSD, Type B interrupted aortic arch | Tracheomalacia and right main bronchomalacia | c.947G>A; p.(Trp316*) |
c.847C>T; p.(His283Tyr) | |||||
P23 [30] | Pediatric (6 y.o.) | Positive | Left atrial isomerism, biventricular atrioventricular connection, morphological left ventricle to right side, discordant ventriculoarterial connection, IVC with azygous continuation, small perimembranous VSD. | None | c.1380_1381delGA; p.(Lys461Valfs*14) |
c.854T>C; p.(Ile285Thr) | |||||
P24 [31] | Neonatal (10 d.) | Positive | Congenital heart defects | Midline liver | c.1358C>T, p.(Thr453Met) |
P25 [32] | Prenatal | TOP | Common atrium, mitral atresia, hypoplastic left ventricle, VSD, right pulmonary isomerism | Right pulmonary isomerism, intestinal malrotation | c.186del, p.(Trp62CysfsTer48) |
c.643G>A, p.(Glu215Lys) | |||||
P26 [33] | Prenatal | TOP | Dx, Pulmonary artery atresia, VSD | N/A | c.557G>T, p.(Ser186Ile) |
c.551C>T, p.(Ala184Val) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasquetti, D.; Tesolin, P.; Perino, F.; Zampieri, S.; Bobbo, M.; Caiffa, T.; Spedicati, B.; Girotto, G. Expanding the Molecular Spectrum of MMP21 Missense Variants: Clinical Insights and Literature Review. Genes 2025, 16, 62. https://doi.org/10.3390/genes16010062
Pasquetti D, Tesolin P, Perino F, Zampieri S, Bobbo M, Caiffa T, Spedicati B, Girotto G. Expanding the Molecular Spectrum of MMP21 Missense Variants: Clinical Insights and Literature Review. Genes. 2025; 16(1):62. https://doi.org/10.3390/genes16010062
Chicago/Turabian StylePasquetti, Domizia, Paola Tesolin, Federica Perino, Stefania Zampieri, Marco Bobbo, Thomas Caiffa, Beatrice Spedicati, and Giorgia Girotto. 2025. "Expanding the Molecular Spectrum of MMP21 Missense Variants: Clinical Insights and Literature Review" Genes 16, no. 1: 62. https://doi.org/10.3390/genes16010062
APA StylePasquetti, D., Tesolin, P., Perino, F., Zampieri, S., Bobbo, M., Caiffa, T., Spedicati, B., & Girotto, G. (2025). Expanding the Molecular Spectrum of MMP21 Missense Variants: Clinical Insights and Literature Review. Genes, 16(1), 62. https://doi.org/10.3390/genes16010062