Genome-Wide Identification and Evolutionary Analysis of Functional BBM-like Genes in Plant Species
<p>Phylogenetic analysis of BBML proteins from ten tested species. The phylogenetic tree was constructed based on the maximum-likelihood method, divided into three groups that were identified as euAP2, basalANT, and euANT. The branch in red represents putative BBMLs. The circle size indicates the bootstrap value.</p> "> Figure 2
<p>Phylogenetic evolutionary tree, conserved motifs, and gene structures of 24 BBML proteins. (<b>A</b>) Phylogenetic tree of BBML proteins. (<b>B</b>) Conserved motifs of the BBML proteins. Diverse colors indicate fourteen motifs. (<b>C</b>) Structural composition of <span class="html-italic">BBML</span> genes. Black lines, yellow boxes, and green boxes represent introns, CDSs, and UTRs, respectively. The scale at the bottom contrasts gene and protein lengths.</p> "> Figure 3
<p>Predicted cis-acting elements of <span class="html-italic">BBML</span> genes. The number in each box represents the number of corresponding elements involved in the extracted promoter regions.</p> "> Figure 4
<p>Extensive microcollinearity of BBM gene pairs across tested species. The chromosomes of different plant are represented by distinct colors. Amtr, Ata, Os, Ta, Zm, At, Nn, Vv, Sl, and Gm represent <span class="html-italic">A. trichopoda</span>, <span class="html-italic">A. tatarinowii</span>, <span class="html-italic">O. sativa</span>, <span class="html-italic">T. aestivum</span>, <span class="html-italic">Z. mays</span>, <span class="html-italic">A. thaliana</span>, <span class="html-italic">N. nucifera</span>, <span class="html-italic">V. vinifera</span>, <span class="html-italic">S. lycopersicum</span>, and <span class="html-italic">G. max</span>, respectively. The red curved lines denote inter-collinear relationships, and the green line represent intra-collinear relationships, as well as segmental duplication events. The gray lines symbolize the duplication events in other regions. Only the <span class="html-italic">BBML</span>-containing chromosomes were included.</p> "> Figure 5
<p>The heatmap of the sequence similarity of interacting proteins from <span class="html-italic">A. thaliana</span>, <span class="html-italic">G. max</span>, <span class="html-italic">O. sativa</span>, <span class="html-italic">S. lycopersicum</span>, <span class="html-italic">T. aestivum</span>, and <span class="html-italic">Z. mays</span>.</p> "> Figure 6
<p>Gene ontology (GO) enrichment of interacting proteins in <span class="html-italic">A. thaliana</span>, <span class="html-italic">G. max</span>, <span class="html-italic">O.sativa</span>, and <span class="html-italic">T. aestivum</span>.</p> "> Figure 7
<p>Three-dimensional structure modeling and molecular docking of BBML proteins. (<b>A</b>–<b>D</b>) Three-dimensional protein structure of AtBBM (<b>A</b>), BnBBM1 (<b>B</b>), OsBBM1 (<b>C</b>), and PsASGR-BBML (<b>D</b>). Red symbolizes <math display="inline"><semantics> <mi>α</mi> </semantics></math>-helix, yellow symbolizes <math display="inline"><semantics> <mi>β</mi> </semantics></math>-fold, and green symbolizes irregular curl. (<b>E</b>,<b>F</b>) The receptor–ligand interaction of interacting proteins with BBML active sites. The blue and red colors symbolize the receptor and ligand, respectively. (<b>E</b>) Molecular docking of AtBBM with AtRKD5, (<b>F</b>) molecular docking of AtBBM with AtTKL, (<b>G</b>) molecular docking of OsBBM1 with OsRAC5, and (<b>H</b>) molecular docking of TaBBM with TraesCS1B02G107000.</p> "> Figure 8
<p>The expression heatmap of <span class="html-italic">BBMLs</span> based on the RNA-seq database in various tissues from representative species, including <span class="html-italic">A. thaliana</span> (<b>A</b>), <span class="html-italic">G. max</span> (<b>B</b>), <span class="html-italic">T. aestivum</span> (<b>C</b>), <span class="html-italic">Z. mays</span> (<b>D</b>), <span class="html-italic">O. sative</span> (<b>E</b>), respectively. The values in each box represent the relative expression levels.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of BBM-like Genes in Plant Species
2.2. Phylogenetic, Conserved Motif, and Gene Structure Analysis of BBMLs
2.3. Prediction of Cis-Acting Elements and miRNA Binding Sites
2.4. Analysis of Gene Duplication Events and Collinearity
2.5. Construction of Protein–Protein Interaction Networks and Functional Enrichment
2.6. Three-Dimensional Structure Modeling and Molecular Docking
2.7. Expression Pattern Analysis of BBML Genes
3. Results
3.1. Identification of BBMLs in Multiple Species
3.2. Phylogenetic, Conserved Motif, and Gene Structure Analysis of BBMLs
3.3. Analysis of Cis-Acting Elements of the BBML Promoter
3.4. Prediction of miRNA Binding Sites
3.5. Gene Duplication and Collinearity Analysis of BBML Genes
3.6. Construction of Protein–Protein Interaction Networks and Functional Enrichment
3.7. Three-Dimensional Structure Modeling and Molecular Docking
3.8. Expression Patterns of BBMLs in Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weidemüller, P.; Kholmatov, M.; Petsalaki, E.; Zaugg, J.B. Transcription factors: Bridge between cell signaling and gene regulation. Proteomics 2021, 21, e2000034. [Google Scholar] [CrossRef] [PubMed]
- Shiu, S.H.; Shih, M.C.; Li, W.H. Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol. 2005, 139, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Boutilier, K.; Offringa, R.; Sharma, V.K.; Kieft, H.; Ouellet, T.; Zhang, L.; Hattori, J.; Liu, C.M.; van Lammeren, A.A.; Miki, B.L.; et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 2002, 14, 1737–1749. [Google Scholar] [CrossRef] [PubMed]
- Elhiti, M.; Stasolla, C.; Wang, A. Molecular regulation of plant somatic embryogenesis. In Vitro Cell. Dev. Biol.-Plant 2013, 49, 631–642. [Google Scholar] [CrossRef]
- Su, Y.H.; Tang, L.P.; Zhao, X.Y.; Zhang, X.S. Plant cell totipotency: Insights into cellular reprogramming. J. Integr. Plant Biol. 2021, 63, 228–243. [Google Scholar] [CrossRef]
- Chen, B.; Maas, L.; Figueiredo, D.; Zhong, Y.; Reis, R.; Li, M.; Horstman, A.; Riksen, T.; Weemen, M.; Liu, H.; et al. BABY BOOM regulates early embryo and endosperm development. Proc. Natl. Acad. Sci. USA 2022, 119, e2201761119. [Google Scholar] [CrossRef]
- Khanday, I.; Skinner, D.; Yang, B.; Mercier, R.; Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 2019, 565, 91–95. [Google Scholar] [CrossRef]
- Khanday, I.; Santos-Medellín, C.; Sundaresan, V. Somatic embryo initiation by rice BABY BOOM1 involves activation of zygote-expressed auxin biosynthesis genes. New Phytol. 2023, 238, 673–687. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Shen, Y.; Hua, Y.; Wang, J.; Lin, J.; Wu, M.; Sun, T.; Cheng, Z.; Mercier, R.; et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat. Biotechnol. 2019, 37, 283–286. [Google Scholar] [CrossRef]
- Liu, C.; He, Z.; Zhang, Y.; Hu, F.; Li, M.; Liu, Q.; Huang, Y.; Wang, J.; Zhang, W.; Wang, C.; et al. Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice. Plant Commun. 2023, 4, 100470. [Google Scholar] [CrossRef]
- Wei, X.; Liu, C.; Chen, X.; Lu, H.; Wang, J.; Yang, S.; Wang, K. Synthetic apomixis with normal hybrid rice seed production. Mol. Plant 2023, 16, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Lowe, K.; Wu, E.; Wang, N.; Hoerster, G.; Hastings, C.; Cho, M.J.; Scelonge, C.; Lenderts, B.; Chamberlin, M.; Cushatt, J.; et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 2016, 28, 1998–2015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. Evolution by gene duplication: An update. Trends Ecol. Evol. 2003, 18, 292–298. [Google Scholar] [CrossRef]
- Flagel, L.E.; Wendel, J.F. Gene duplication and evolutionary novelty in plants. New Phytol. 2009, 183, 557–564. [Google Scholar] [CrossRef]
- Lynch, M.; Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics 2000, 154, 459–473. [Google Scholar] [CrossRef]
- He, X.; Zhang, J. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 2005, 169, 1157–1164. [Google Scholar] [CrossRef]
- Conant, G.C.; Wolfe, K.H. Turning a hobby into a job: How duplicated genes find new functions. Nat. Rev. Genet. 2008, 9, 938–950. [Google Scholar] [CrossRef]
- Yates, A.D.; Allen, J.; Amode, R.M.; Azov, A.G.; Barba, M.; Becerra, A.; Bhai, J.; Campbell, L.I.; Carbajo Martinez, M.; Chakiachvili, M.; et al. Ensembl Genomes 2022: An expanding genome resource for non-vertebrates. Nucleic Acids Res. 2022, 50, D996–D1003. [Google Scholar] [CrossRef]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Chen, F.Z.; You, L.J.; Yang, F.; Wang, L.N.; Guo, X.Q.; Gao, F.; Hua, C.; Tan, C.; Fang, L.; Shan, R.Q.; et al. CNGBdb: China National GeneBank DataBase. Yi Chuan 2020, 42, 799–809. [Google Scholar]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.; Tosatto, S.C.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Potter, S.C.; Luciani, A.; Eddy, S.R.; Park, Y.; Lopez, R.; Finn, R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018, 46, W200–W204. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020, 48, D265–D268. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef]
- Edgar, R.C. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat. Commun. 2022, 13, 6968. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef]
- Chou, K.C.; Shen, H.B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 2010, 5, e11335. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, J.; Feng, J.; Liu, B.; Feng, L.; Yu, X.; Li, G.; Zhai, J.; Meyers, B.C.; Xia, R. sRNAanno—A database repository of uniformly annotated small RNAs in plants. Hortic. Res. 2021, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhuang, Z.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018, 46, W49–W54. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Lynch, M.; Conery, J.S. The Evolutionary Fate and Consequences of Duplicate Genes. Science 2000, 290, 1151–1155. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; Hill, D.P.; et al. The Gene Ontology knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Dauzhenka, T.; Kundrotas, P.J.; Sternberg, M.J.; Vakser, I.A. Application of docking methodologies to modeled proteins. Proteins 2020, 88, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, H.; Long, Y.; Shu, Y.; Zhai, J. Plant public RNA-seq database: A comprehensive online database for expression analysis of 45,000 plant public RNA-seq libraries. Plant Biotechnol. J. 2022, 20, 806. [Google Scholar] [CrossRef]
- Shigyo, M.; Hasebe, M.; Ito, M. Molecular evolution of the AP2 subfamily. Gene 2006, 366, 256–265. [Google Scholar] [CrossRef]
- Dipp-Álvarez, M.; Cruz-Ramírez, A. A phylogenetic study of the ANT family points to a preANT gene as the ancestor of basal and euANT transcription factors in land plants. Front. Plant Sci. 2019, 10, 17. [Google Scholar] [CrossRef]
- El Ouakfaoui, S.; Schnell, J.; Abdeen, A.; Colville, A.; Labbé, H.; Han, S.; Baum, B.; Laberge, S.; Miki, B. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol. Biol. 2010, 74, 313–326. [Google Scholar] [CrossRef]
- Li, J.L.; Li, H.; Zhao, J.J.; Yang, P.; Xiang, X.; Wei, S.Y.; Wang, T.; Shi, Y.J.; Huang, J.; He, F. Genome-wide identification and characterization of the RZFP gene family and analysis of its expression pattern under stress in Populus trichocarpa. Int. J. Biol. Macromol. 2024, 255, 128108. [Google Scholar] [CrossRef]
- Hernandez-Garcia, C.M.; Finer, J.J. Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 2014, 217, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Jia, T.; Chen, X. The ‘how’and ‘where’of plant microRNAs. New Phytol. 2017, 216, 1002–1017. [Google Scholar] [CrossRef] [PubMed]
- Sang, Q.; Vayssières, A.; Ó’Maoiléidigh, D.S.; Yang, X.; Vincent, C.; Bertran Garcia de Olalla, E.; Cerise, M.; Franzen, R.; Coupland, G. MicroRNA172 controls inflorescence meristem size through regulation of APETALA2 in Arabidopsis. New Phytol. 2022, 235, 356–371. [Google Scholar] [CrossRef]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef]
- Hall, A. The cellular functions of small GTP-binding proteins. Science 1990, 249, 635–640. [Google Scholar] [CrossRef]
- Hodge, R.G.; Ridley, A.J. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 2016, 17, 496–510. [Google Scholar] [CrossRef]
- Lin, D.; Ren, H.; Fu, Y. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana. J. Integr. Plant Biol. 2015, 57, 31–39. [Google Scholar] [CrossRef]
- Zhang, Z.; Conner, J.; Guo, Y.; Ozias-Akins, P. Haploidy in tobacco induced by PsASGR-BBML transgenes via parthenogenesis. Genes 2020, 11, 1072. [Google Scholar] [CrossRef]
- Liu, Q.; Han, D.; Cheng, D.; Chen, J.; Tian, S.; Wang, J.; Liu, M.; Yuan, L. AtRKD5 inhibits the parthenogenic potential mediated by AtBBM. J. Integr. Plant Biol. 2024, 66, 1517–1531. [Google Scholar] [CrossRef]
- Oakley, T.H.; Østman, B.; Wilson, A.C. Repression and loss of gene expression outpaces activation and gain in recently duplicated fly genes. Proc. Natl. Acad. Sci. USA 2006, 103, 11637–11641. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Lu, H.; Huang, Y.; Yan, H.; Liang, H.; Wang, C.; Wang, K. Engineering synthetic apomixis in different hybrid rice varieties using the Fix strategy. New Crops 2024, 1, 100003. [Google Scholar] [CrossRef]
- Liu, C.; Yan, S.; Mao, F.; Sun, T.; Liang, H.; Liu, Q.; Qian, Q.; Wang, K. Large-scale production of rice haploids by combining superior haploid inducer with PTGMS lines. Plant Commun. 2024, 5, 101067. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Q.; Xu, L.; Rao, Y.; Liu, C.; Hong, Z.; Lu, H.; Liu, C.M.; Li, H.J.; Wang, K. Self-propagated clonal seed production in dicotyledonous Arabidopsis. Sci. Bull. 2024; ahead of print. [Google Scholar] [CrossRef]
- Huang, Y.; Meng, X.; Rao, Y.; Xie, Y.; Sun, T.; Chen, W.; Wei, X.; Xiong, J.; Yu, H.; Li, J.; et al. OsWUS-driven synthetic apomixis in hybrid rice. Plant Commun. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Horstman, A.; Bemer, M.; Boutilier, K. A transcriptional view on somatic embryogenesis. Regeneration 2017, 4, 201–216. [Google Scholar] [CrossRef]
- Skinner, D.J.; Mallari, M.D.; Zafar, K.; Cho, M.J.; Sundaresan, V. Efficient parthenogenesis via egg cell expression of maize BABY BOOM 1: A step toward synthetic apomixis. Plant Physiol. 2023, 193, 2278–2281. [Google Scholar] [CrossRef] [PubMed]
- Karanja, B.K.; Xu, L.; Wang, Y.; Tang, M.; Muleke, E.M.; Dong, J.; Liu, L. Genome-wide characterization of the AP2/ERF gene family in radish (Raphanus sativus L.): Unveiling evolution and patterns in response to abiotic stresses. Gene 2019, 718, 144048. [Google Scholar] [CrossRef]
- Song, Q.; Bari, A.; Li, H.; Chen, L.L. Identification and analysis of micro-exons in AP2/ERF and MADS gene families. FEBS Open Bio 2020, 10, 2564–2577. [Google Scholar] [CrossRef]
- Ho, C.L.; Geisler, M. Genome-wide computational identification of biologically significant cis-regulatory elements and associated transcription factors from rice. Plants 2019, 8, 441. [Google Scholar] [CrossRef]
- Pan, Z.; Chen, L.; Wang, F.; Song, W.; Cao, A.; Xie, S.; Chen, X.; Jin, X.; Li, H. Genome-wide identification and expression analysis of the ascorbate oxidase gene family in Gossypium hirsutum reveals the critical role of GhAO1A in delaying dark-induced leaf senescence. Int. J. Mol. Sci. 2019, 20, 6167. [Google Scholar] [CrossRef]
- Brenchley, R.; Spannagl, M.; Pfeifer, M.; Barker, G.L.; D’Amore, R.; Allen, A.M.; McKenzie, N.; Kramer, M.; Kerhornou, A.; Bolser, D.; et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 2012, 491, 705–710. [Google Scholar] [CrossRef]
- Li, M.; Wrobel-Marek, J.; Heidmann, I.; Horstman, A.; Chen, B.; Reis, R.; Angenent, G.C.; Boutilier, K. Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis. Plant Physiol. 2022, 188, 1095–1110. [Google Scholar] [CrossRef] [PubMed]
- Mulvey, H.; Dolan, L. RHO GTPase of plants regulates polarized cell growth and cell division orientation during morphogenesis. Curr. Biol. 2023, 33, 2897–2911. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yue, J.; Yan, J. Research progress on maintaining chloroplast homeostasis under stress conditions: A review: Chloroplast homeostasis under stress conditions. Acta Biochim. Biophys. Sin. 2023, 55, 173. [Google Scholar]
Duplicated Gene 1 | Duplicated Gene 2 | Ka | Ks | Ka/Ks | Duplication Type | Purifying Selection |
---|---|---|---|---|---|---|
LOC_Os04g42570 | LOC_Os02g40070 | 0.1735 | 0.4552 | 0.3811 | Segmental | YES |
TraesCS2B02G378100 | TraesCS2D02G357600 | 0.0068 | 0.0702 | 0.0961 | Segmental | YES |
TraesCS2B02G378100 | TraesCS6A02G229500 | 0.1843 | 0.7305 | 0.2522 | Segmental | YES |
TraesCS2B02G378100 | TraesCS6B02G252000 | 0.1792 | 0.7233 | 0.2478 | Segmental | YES |
TraesCS2B02G378100 | TraesCS6D02G205300 | 0.1929 | 0.7445 | 0.2591 | Segmental | YES |
TraesCS2D02G357600 | TraesCS6A02G229500 | 0.1837 | 0.6973 | 0.2635 | Segmental | YES |
TraesCS2D02G357600 | TraesCS6B02G252000 | 0.1776 | 0.6933 | 0.2561 | Segmental | YES |
TraesCS2D02G357600 | TraesCS6D02G205300 | 0.1919 | 0.7280 | 0.2636 | Segmental | YES |
TraesCS3A02G395500 | TraesCS3B02G427300 | 0.0156 | 0.1884 | 0.0828 | Segmental | YES |
TraesCS3A02G395500 | TraesCS3D02G389100 | 0.0133 | 0.1799 | 0.0741 | Segmental | YES |
TraesCS3B02G427300 | TraesCS3D02G389100 | 0.0065 | 0.1111 | 0.0589 | Segmental | YES |
TraesCS6A02G229500 | TraesCS6B02G252000 | 0.0223 | 0.0863 | 0.2588 | Segmental | YES |
TraesCS6A02G229500 | TraesCS6D02G205300 | 0.0195 | 0.0883 | 0.2208 | Segmental | YES |
TraesCS6B02G252000 | TraesCS6D02G205300 | 0.0243 | 0.0857 | 0.2835 | Segmental | YES |
GLYMA_10G171400 | GLYMA_09G248200 | 0.2310 | 0.7945 | 0.2907 | Segmental | YES |
GLYMA_10G171400 | GLYMA_18G244600 | 0.2462 | 0.8906 | 0.2765 | Segmental | YES |
GLYMA_18G244600 | GLYMA_09G248200 | 0.0485 | 0.1794 | 0.2703 | Segmental | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Z.; Zhu, L.; Liu, C.; Wang, K.; Rao, Y.; Lu, H. Genome-Wide Identification and Evolutionary Analysis of Functional BBM-like Genes in Plant Species. Genes 2024, 15, 1614. https://doi.org/10.3390/genes15121614
Hong Z, Zhu L, Liu C, Wang K, Rao Y, Lu H. Genome-Wide Identification and Evolutionary Analysis of Functional BBM-like Genes in Plant Species. Genes. 2024; 15(12):1614. https://doi.org/10.3390/genes15121614
Chicago/Turabian StyleHong, Zhengyuan, Linghong Zhu, Chaolei Liu, Kejian Wang, Yuchun Rao, and Hongwei Lu. 2024. "Genome-Wide Identification and Evolutionary Analysis of Functional BBM-like Genes in Plant Species" Genes 15, no. 12: 1614. https://doi.org/10.3390/genes15121614
APA StyleHong, Z., Zhu, L., Liu, C., Wang, K., Rao, Y., & Lu, H. (2024). Genome-Wide Identification and Evolutionary Analysis of Functional BBM-like Genes in Plant Species. Genes, 15(12), 1614. https://doi.org/10.3390/genes15121614