RRM2 Regulates Hepatocellular Carcinoma Progression Through Activation of TGF-β/Smad Signaling and Hepatitis B Virus Transcription
<p>RRM2 upregulation in HCC is associated with poor prognosis. (<b>A</b>) RRM2 expression in different types of cancer was analyzed using the TIMER database (“<a href="https://cistrome.shinyapps.io/timer/" target="_blank">https://cistrome.shinyapps.io/timer/</a> (accessed on 5 May 2023)”). The black box shows HCC-related data. (<b>B</b>) The GEPIA2 database (“<a href="http://gepia2.cancer-pku.cn/#index" target="_blank">http://gepia2.cancer-pku.cn/#index</a> (access date: 5 May 2023)”) was used to analyze the expression levels of RRM2 in HCC tissue (<span class="html-italic">n</span> = 369) and precancerous tissue (<span class="html-italic">n</span> = 160). (<b>C</b>) Representative RRM2 IHC staining images from a clinical TMA of HCC (<span class="html-italic">n</span> = 15). Magnification: 20× and 200×. (<b>D</b>) Kaplan–Meier analysis was used to examine the relationship between RRM2 expression levels and OS, RFS, and PFS in HCC patients (“<a href="http://kmplot.com/analysis/" target="_blank">http://kmplot.com/analysis/</a> (accessed on 5 May 2023)”), with a low RRM2 expression group (<span class="html-italic">n</span> = 29/129/56) and a high RRM2 expression group (<span class="html-italic">n</span> = 26/45/62). (<b>E</b>) Kaplan–Meier analysis was utilized to analyze RRM2 expression in HCC patients with variable degrees of differentiation (“<a href="http://kmplot.com/analysis/" target="_blank">http://kmplot.com/analysis/</a> (accessed on 5 May 2023)”), with a low RRM2 expression group (<span class="html-italic">n</span> = 237/193/135) and a high RRM2 expression group (<span class="html-italic">n</span> = 127/123/235). * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 2
<p>RRM2 expression promotes the proliferation of HCC cells. (<b>A</b>,<b>B</b>) Western blotting and Q-PCR tests were used to assess the expression of RRM2 in HCC cell lines, such as HepG2.2.15, HepG2, SMMC7721, Huh7, and the immortalized hepatocyte cell line LO2. (<b>C</b>) Western blotting and Q-PCR tests were utilized to evaluate the expression of RRM2 in SMMC7721 and Huh7 cells transfected with RRM2 siRNA (siRRM2#1 and siRRM2#2). (<b>D</b>) MTT test was applied to evaluate RRM2 siRNA’s impact on SMMC7721 and Huh7 cell viability. (<b>E</b>) Colony-forming test was utilized to evaluate RRM2 siRNA’s impact on SMMC7721 and Huh7 cell colony formation. (<b>F</b>) Representative EdU staining (red) images of SMMC7721 and Huh7 cells expressing low RRM2 levels. Nuclei are counterstained with DAPI (blue). Scale bar: 200 µm. (<b>G</b>) Western blotting and Q-PCR tests were utilized to evaluate the expression of RRM2 in SMMC7721 and Huh7 cells transfected with Flag-RRM2. (<b>H</b>) MTT test was utilized to evaluate SMMC7721 and Huh7 cell viability after RRM2 overexpression. (<b>I</b>) A colony-forming test was utilized to evaluate SMMC7721 and Huh7 cell colony formation after RRM2 overexpression. (<b>J</b>) Representative EdU staining (red) images of SMMC7721 and Huh7 cells expressing high RRM2 levels. Nuclei are counterstained with DAPI (blue). Scale bar: 200 µm. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 3
<p>RRM2 promotes HCC cell migration. (<b>A</b>–<b>D</b>) Wound healing and Transwell assays were performed to assess the migration of SMMC7721 and Huh7 cells after RRM2 knockdown or overexpression. (<b>E</b>,<b>F</b>) Representative F-actin (green) images of SMMC7721 and Huh7 cells after RRM2 knockdown or overexpression. Nuclei are counterstained with DAPI (blue). Scale bar: 200 µm. (<b>G</b>–<b>J</b>) Western blot and Q-PCR tests revealed the impact of RRM2 knockdown or overexpression on EMT markers in SMMC7721 and Huh7 cells. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 4
<p>RRM2 promotes HCC migration by activating TGF-β/Smad signaling. (<b>A</b>) The GEPIA2 database was analyzed for correlations between RRM2 and TGFB1, Smad2, and Smad3 gene expression (“<a href="http://gepia2.cancer-pku.cn/#index" target="_blank">http://gepia2.cancer-pku.cn/#index</a> (accessed on 19 July 2023)”). (<b>B</b>) Q-PCR assay to detect TGF-β1 mRNA levels in SMMC7721 and Huh7 cells after RRM2 knockdown. (<b>C</b>) Western blotting assay was utilized to evaluate the protein expression of TGF-β1, p-Smad2, and p-Smad3 in SMMC7721 and Huh7 cells transfected with RRM2 siRNA. (<b>D</b>) Q-PCR assay to detect TGF-β1 mRNA levels in SMMC7721 and Huh7 cells after RRM2 overexpression. (<b>E</b>) Western blotting assay was utilized to evaluate RRM2 protein expression in SMMC7721 and Huh7 cells transfected with Flag-RRM2. (<b>F</b>,<b>G</b>) SMMC7721 and Huh7 cells underwent a 24 h preliminary treatment with siRRM2#1, followed by a 12 h treatment with TGF-β1 (5 ng/mL). Transwell and wound healing tests assessed cell migration. (<b>H</b>,<b>I</b>) SMMC7721 and Huh7 cells underwent a 12 h preliminary treatment with Flag-RRM2, followed by a 24 h treatment with SB431542 (5 μM). SMMC7721 and Huh7 cells were transfected with Flag-RRM2 for 12 h and subsequently treated with SB431542 (5 μM) for 24 h. Transwell and wound healing tests assessed cell migration. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 5
<p>RRM2 knockdown inhibits tumorigenesis in a mouse model of HCC. (<b>A</b>) Q-PCR test was utilized to evaluate the RRM2 mRNA levels in mouse liver tissue in the control, AAV-shNC, and AAV-shRRM2 groups (<span class="html-italic">n</span> = 6). (<b>B</b>) Western blotting analysis was used to evaluate RRM2 and PCNA protein levels in the liver tissue of the control, AAV-shNC, and AAV-shRRM2 groups (<span class="html-italic">n</span> = 3). (<b>C</b>) Images of the morphology of the liver tissue from the orthotopic transplantation mouse model of HCC are shown (<span class="html-italic">n</span> = 6). (<b>D</b>) Mouse liver weight in the control, AAV-shNC, and AAV-shRRM2 groups. (<b>E</b>) The AST and ALT levels in the serum of the control, AAV-shNC, and AAV-shRRM2 groups (<span class="html-italic">n</span> = 6). (<b>F</b>) Representative HE images of liver tissue from control, AAV-shNC, and AAV-shRRM2 mice. (<b>G</b>) Representative HE images of lung histomorphology and number of lung metastases in orthotopic transplantation tumor mouse models (<span class="html-italic">n</span> = 6). (<b>H</b>) Representative HE images of lung tissue from control, AAV-shNC, and AAV-shRRM2 mice. (<b>I</b>) Representative IHC images of RRM2, p-Smad2, p-Smad3, and PCNA expression in liver tissue of control, AAV-shNC, and AAV-shRRM2 mice. Scale bars: 100 and 35 μm. ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 6
<p>RRM2 promotes HBV replication. (<b>A</b>) Kaplan–Meier survival plots of HBV-associated HCC patients with different RRM2 mRNA levels in the low RRM2-expressing group (<span class="html-italic">n</span> = 97) and the high RRM2-expressing group (<span class="html-italic">n</span> = 70). (<b>B</b>) The mRNA levels of pgRNA, HBV DNA, HBV RNA, and cccDNA were detected by Q-PCR in HepG2.2.15 cells transfected with RRM2 siRNA (siRRM2#1). (<b>C</b>,<b>D</b>) The mRNA levels of RRM2, HBV RNA, pgRNA, HBV DNA, and cccDNA were measured by Q-PCR in SMMC7721 and HepG2 cells transfected with the HBV plasmid. (<b>E</b>) Schematic representation of luciferase reporter plasmid containing HBV promoter. (<b>F</b>) The HBV plasmid was transfected into SMMC7721 and HepG2 cells and continued to culture for 24 h, and then pGL3 basic, Cp, Xp, spI, and spII were co-transfected with siNC or siRRM2#1 and continued to culture for 36 h. The promoter activity of Cp, Xp, spI, and spII was measured using a dual-luciferase reporter assay. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001; ns represents nonsignificant effects.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Lines and Cell Culture
2.3. Immunohistochemistry (IHC) Staining
2.4. Cell Transfection
2.5. Real-Time Quantitative PCR (Q-PCR)
2.6. Western Blotting
2.7. Cell Viability Assays
2.8. Colony-Forming Assay
2.9. EdU Assay
2.10. Wound Healing Assays
2.11. Transwell Assay
2.12. Cytoskeleton F-Actin Filament Assay
2.13. Establishment of the Mouse Tumor Model
2.14. Hematoxylin–Eosin (HE) Staining
2.15. Genomic DNA Extraction
2.16. Dual-Luciferase Reporter Assay
2.17. Statistical Analysis
3. Results
3.1. RRM2 Is Highly Expressed in HCC and Predicts Poor Prognosis
3.2. RRM2 Gene Contributes to the Growth of HCC
3.3. RRM2 Regulates the EMT Phenotype in HCC
3.4. RRM2 Regulates HCC Migration Through the TGF-β/Smad Signaling Pathway
3.5. RRM2 Presents Proto-Oncogene Activity in a Mouse Tumor Model of HCC
3.6. RRM2 Regulates HBV Transcription
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Perez-Herrero, E.; Fernandez-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52–79. [Google Scholar] [CrossRef] [PubMed]
- Maucort-Boulch, D.; de Martel, C.; Franceschi, S.; Plummer, M. Fraction and incidence of liver cancer attributable to hepatitis B and C viruses worldwide. Int. J. Cancer 2018, 142, 2471–2477. [Google Scholar] [CrossRef]
- Martin-Vilchez, S.; Lara-Pezzi, E.; Trapero-Marugan, M.; Moreno-Otero, R.; Sanz-Cameno, P. The molecular and pathophysiological implications of hepatitis B X antigen in chronic hepatitis B virus infection. Rev. Med. Virol. 2011, 21, 315–329. [Google Scholar] [CrossRef]
- Khanam, A.; Kottilil, S. New Therapeutics for HCC: Does Tumor Immune Microenvironment Matter? Int. J. Mol. Sci. 2022, 24, 437. [Google Scholar] [CrossRef]
- Llovet, J.M.; Real, M.I.; Montana, X.; Planas, R.; Coll, S.; Aponte, J.; Ayuso, C.; Sala, M.; Muchart, J.; Sola, R.; et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: A randomised controlled trial. Lancet 2002, 359, 1734–1739. [Google Scholar] [CrossRef]
- Kitab, B.; Tsukiyama-Kohara, K. Regulatory Role of Ribonucleotide Reductase Subunit M2 in Hepatocyte Growth and Pathogenesis of Hepatitis C Virus. Int. J. Mol. Sci. 2023, 24, 2619. [Google Scholar] [CrossRef]
- Kang, G.; Taguchi, A.T.; Stubbe, J.; Drennan, C.L. Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex. Science 2020, 368, 424–427. [Google Scholar] [CrossRef]
- Pontarin, G.; Ferraro, P.; Bee, L.; Reichard, P.; Bianchi, V. Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells. Proc. Natl. Acad. Sci. USA 2012, 109, 13302–13307. [Google Scholar] [CrossRef]
- Xiong, W.; Zhang, B.; Yu, H.; Zhu, L.; Yi, L.; Jin, X. RRM2 Regulates Sensitivity to Sunitinib and PD-1 Blockade in Renal Cancer by Stabilizing ANXA1 and Activating the AKT Pathway. Adv. Sci. 2021, 8, e2100881. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xue, N.; Liu, K.; He, Q.; Wang, C.; Guo, Y.; Tian, J.; Liu, X.; Pan, Y.; Chen, G. USP12 promotes nonsmall cell lung cancer progression through deubiquitinating and stabilizing RRM2. Mol. Carcinog. 2023, 62, 1518–1530. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Guan, X.; Xu, E.; Zhou, J.; Xiong, R.; Yang, Q. Chimeric RNA RRM2-C2orf48 plays an oncogenic role in the development of NNK-induced lung cancer. iScience 2023, 26, 105708. [Google Scholar] [CrossRef] [PubMed]
- Corrales-Guerrero, S.; Cui, T.; Castro-Aceituno, V.; Yang, L.; Nair, S.; Feng, H.; Venere, M.; Yoon, S.; DeWees, T.; Shen, C.; et al. Inhibition of RRM2 radiosensitizes glioblastoma and uncovers synthetic lethality in combination with targeting CHK1. Cancer Lett. 2023, 570, 216308. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.C.; Zhang, Y.; Wang, T. High RRM2 expression has poor prognosis in specific types of breast cancer. PLoS ONE 2022, 17, e0265195. [Google Scholar] [CrossRef]
- Jiang, X.; Li, Y.; Zhang, N.; Gao, Y.; Han, L.; Li, S.; Li, J.; Liu, X.; Gong, Y.; Xie, C. RRM2 silencing suppresses malignant phenotype and enhances radiosensitivity via activating cGAS/STING signaling pathway in lung adenocarcinoma. Cell Biosci. 2021, 11, 74. [Google Scholar] [CrossRef]
- Kitab, B.; Satoh, M.; Ohmori, Y.; Munakata, T.; Sudoh, M.; Kohara, M.; Tsukiyama-Kohara, K. Ribonucleotide reductase M2 promotes RNA replication of hepatitis C virus by protecting NS5B protein from hPLIC1-dependent proteasomal degradation. J. Biol. Chem. 2019, 294, 5759–5773. [Google Scholar] [CrossRef]
- Livitsanou, M.; Vasilaki, E.; Stournaras, C.; Kardassis, D. Modulation of TGFbeta/Smad signaling by the small GTPase RhoB. Cell. Signal. 2018, 48, 54–63. [Google Scholar] [CrossRef]
- Peng, D.; Fu, M.; Wang, M.; Wei, Y.; Wei, X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol. Cancer 2022, 21, 104. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, G.; Moore, J.; Guix, I.; Placantonakis, D.; Barcellos-Hoff, M.H. Exploiting Canonical TGFbeta Signaling in Cancer Treatment. Mol. Cancer Ther. 2022, 21, 16–24. [Google Scholar] [CrossRef]
- Tan, B.; Khattak, A.; Felip, E.; Kelly, K.; Rich, P.; Wang, D.; Helwig, C.; Dussault, I.; Ojalvo, L.S.; Isambert, N. Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGF-β and PD-L1, in Patients with Esophageal Adenocarcinoma: Results from a Phase 1 Cohort. Target. Oncol. 2021, 16, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, W.; Jiao, H.; Chen, Y.; Ji, X.; Cao, J.; Yin, F.; Yin, W. Squalene epoxidase promotes hepatocellular carcinoma development by activating STRAP transcription and TGF-β/SMAD signalling. Br. J. Pharmacol. 2023, 180, 1562–1581. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.Y.; Chen, Y.; Zhou, J.Q.; Ma, L.; Shan, Y.T.; Cheng, X.Y.; Wang, Y.; Zhang, Z.X.; Ji, X.J.; Chen, L.L.; et al. Ursolic acid promotes apoptosis and mediates transcriptional suppression of CT45A2 gene expression in non-small-cell lung carcinoma harbouring EGFR T790M mutations. Br. J. Pharmacol. 2019, 176, 4609–4624. [Google Scholar] [CrossRef] [PubMed]
- Van Meeteren, L.A.; ten Dijke, P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 2012, 347, 177–186. [Google Scholar] [CrossRef]
- Chen, P.Y.; Qin, L.F.; Baeyens, N.; Li, G.X.; Afolabi, T.; Budatha, M.; Tellides, G.; Schwartz, M.A.; Simons, M. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J. Clin. Investig. 2015, 125, 4514–4528. [Google Scholar] [CrossRef]
- Conidi, A.; van den Berghe, V.; Huylebroeck, D. Aptamers and their potential to selectively target aspects of EGF, Wnt/β-catenin and TGFbeta-smad family signaling. Int. J. Mol. Sci. 2013, 14, 6690–6719. [Google Scholar] [CrossRef]
- Massague, J.; Seoane, J.; Wotton, D. Smad transcription factors. Gene Dev. 2005, 19, 2783–2810. [Google Scholar] [CrossRef]
- Bi, J.G.; Zheng, J.F.; Li, Q.; Bao, S.Y.; Yu, X.F.; Xu, P.; Liao, C.X. MicroRNA-181a-5p suppresses cell proliferation by targeting Egr1 and inhibiting Egr1/TGF-β/Smad pathway in hepatocellular carcinoma. Int. J. Biochem. Cell B 2019, 106, 107–116. [Google Scholar] [CrossRef]
- Venook, A.P.; Papandreou, C.; Furuse, J.; de Guevara, L.L. The Incidence and Epidemiology of Hepatocellular Carcinoma: A Global and Regional Perspective. Oncologist 2010, 15, 5–13. [Google Scholar] [CrossRef]
- Colak, S.; ten Dijke, P. Targeting TGF-β Signaling in Cancer. Trends Cancer 2017, 3, 56–71. [Google Scholar] [CrossRef]
- Massague, J.; Wotton, D. Transcriptional control by the TGF-β/Smad signaling system. Embo J. 2000, 19, 1745–1754. [Google Scholar] [CrossRef] [PubMed]
- Lovicu, F.J.; Shin, E.H.; McAvoy, J.W. Fibrosis in the lens. Sprouty regulation of TGF β-signaling prevents lens EMT leading to cataract. Exp. Eye Res. 2016, 142, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.H.; Chen, D.Q.; Wang, Y.N.; Feng, Y.L.; Cao, G.; Vaziri, N.D.; Zhao, Y.Y. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact. 2018, 292, 76–83. [Google Scholar] [CrossRef]
- Chen, L.; Yang, T.; Lu, D.W.; Zhao, H.; Feng, Y.L.; Chen, H.; Chen, D.Q.; Vaziri, N.D.; Zhao, Y.Y. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed. Pharmacother. 2018, 101, 670–681. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, Q.; Xiang, X.; Li, W.; Yang, Q.; Yu, H.; Liu, T. RRM2 promotes liver metastasis of pancreatic cancer by stabilizing YBX1 and activating the TGF-β pathway. iScience 2024, 27, 110864. [Google Scholar] [CrossRef]
- Lo, R.S.; Massague, J. Ubiquitin-dependent degradation of TGF-β-activated smad2. Nat. Cell Biol. 1999, 1, 472–478. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Zhang, H.; Liu, F.; Cheng, Z.; Wang, D.; Wang, G.; Xu, H.; Zhao, Y.; Cao, L.; et al. Oncogenic PAK4 regulates Smad2/3 axis involving gastric tumorigenesis. Oncogene 2014, 33, 3473–3484. [Google Scholar] [CrossRef]
- Yu, J.S.; Ramasamy, T.S.; Murphy, N.; Holt, M.K.; Czapiewski, R.; Wei, S.K.; Cui, W. PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat. Commun. 2015, 6, 7212. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Zuo, T.; Ma, S.; Xokrat, N.; Hu, Z.; Wang, Z.; Xu, R.; Wei, Y.; Shen, Q. Heparanase-driven sequential released nanoparticles for ferroptosis and tumor microenvironment modulations synergism in breast cancer therapy. Biomaterials 2021, 266, 120429. [Google Scholar] [CrossRef]
- Boon, R.A.; Fledderus, J.O.; Volger, O.L.; van Wanrooij, E.J.; Pardali, E.; Weesie, F.; Kuiper, J.; Pannekoek, H.; ten Dijke, P.; Horrevoets, A.J. KLF2 suppresses TGF-β signaling in endothelium through induction of Smad7 and inhibition of AP-1. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 532–539. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.H.; Li, C.L.; Lin, Y.Y.; Ho, M.C.; Wang, Y.C.; Tseng, S.T.; Chen, P.J. Hepatitis B Virus DNA Integration Drives Carcinogenesis and Provides a New Biomarker for HBV-related HCC. Cell Mol. Gastroenterol. Hepatol. 2023, 15, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.E.M.; Cabibbo, G.; Craxi, A. Hepatitis B Virus-Associated Hepatocellular Carcinoma. Viruses 2022, 14, 986. [Google Scholar] [CrossRef]
- Kostyusheva, A.; Brezgin, S.; Glebe, D.; Kostyushev, D.; Chulanov, V. Host-cell interactions in HBV infection and pathogenesis: The emerging role of m6A modification. Emerg. Microbes Infect. 2021, 10, 2264–2275. [Google Scholar] [CrossRef]
- Martinez, M.G.; Boyd, A.; Combe, E.; Testoni, B.; Zoulim, F. Covalently closed circular DNA: The ultimate therapeutic target for curing HBV infections. J. Hepatol. 2021, 75, 706–717. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Hu, K.Q. Rethinking the pathogenesis of hepatitis B virus (HBV) infection. J. Med. Virol. 2015, 87, 1989–1999. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, Q.; Zhao, H.; Zhang, J. The Mechanisms of HBV-Induced Hepatocellular Carcinoma. J. Hepatocell. Carcinoma 2021, 8, 435–450. [Google Scholar] [CrossRef]
- Yan, W.; Rao, D.; Fan, F.; Liang, H.; Zhang, Z.; Dong, H. Hepatitis B virus X protein and TGF-β: Partners in the carcinogenic journey of hepatocellular carcinoma. Front. Oncol. 2024, 14, 1407434. [Google Scholar] [CrossRef]
- Yang, P.; Li, Q.J.; Feng, Y.; Zhang, Y.; Markowitz, G.J.; Ning, S.; Deng, Y.; Zhao, J.; Jiang, S.; Yuan, Y.; et al. TGF-β-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 2012, 22, 291–303. [Google Scholar] [CrossRef]
- Ye, L.; Kan, F.; Yan, T.; Cao, J.; Zhang, L.; Wu, Z.; Li, W. Enhanced antiviral and antifibrotic effects of short hairpin RNAs targeting HBV and TGF-β in HBV-persistent mice. Sci. Rep. 2017, 7, 3860. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, X. Bioinformatics analysis of potential common pathogenic mechanisms for COVID-19 infection and primary Sjogren’s syndrome. Front. Immunol. 2022, 13, 938837. [Google Scholar] [CrossRef] [PubMed]
- Anacker, D.C.; Aloor, H.L.; Shepard, C.N.; Lenzi, G.M.; Johnson, B.A.; Kim, B.; Moody, C.A. HPV31 utilizes the ATR-Chk1 pathway to maintain elevated RRM2 levels and a replication-competent environment in differentiating Keratinocytes. Virology 2016, 499, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Leng, M.; Tan, C.; Zhu, L.; Pang, Y.; Zhang, X.; Chang, Y.F.; Lin, W. Critical role for ribonucleoside-diphosphate reductase subunit M2 in ALV-J-induced activation of Wnt/beta-catenin signaling via interaction with P27. J. Virol. 2023, 97, e0026723. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Sun, X.; Li, X.; Zuo, Z.; Yan, D.; Yin, W. RRM2 Regulates Hepatocellular Carcinoma Progression Through Activation of TGF-β/Smad Signaling and Hepatitis B Virus Transcription. Genes 2024, 15, 1575. https://doi.org/10.3390/genes15121575
Wu D, Sun X, Li X, Zuo Z, Yan D, Yin W. RRM2 Regulates Hepatocellular Carcinoma Progression Through Activation of TGF-β/Smad Signaling and Hepatitis B Virus Transcription. Genes. 2024; 15(12):1575. https://doi.org/10.3390/genes15121575
Chicago/Turabian StyleWu, Dandan, Xinning Sun, Xin Li, Zongchao Zuo, Dong Yan, and Wu Yin. 2024. "RRM2 Regulates Hepatocellular Carcinoma Progression Through Activation of TGF-β/Smad Signaling and Hepatitis B Virus Transcription" Genes 15, no. 12: 1575. https://doi.org/10.3390/genes15121575
APA StyleWu, D., Sun, X., Li, X., Zuo, Z., Yan, D., & Yin, W. (2024). RRM2 Regulates Hepatocellular Carcinoma Progression Through Activation of TGF-β/Smad Signaling and Hepatitis B Virus Transcription. Genes, 15(12), 1575. https://doi.org/10.3390/genes15121575