Retinal Patterns and the Role of Autofluorescence in Choroideremia
<p>Multimodal retinal imaging and retinal sensitivity testing of the left eye in a patient with choroideremia. Panel (<b>A</b>): short-wavelength blue autofluorescence (BAF) imaging demonstrating a smooth zone centrally around the fovea (outlined in red), a mottled zone eccentric to this (arrow), and an atrophic area peripherally (asterisk). Panel (<b>B</b>): Near-infrared autofluorescence (NIR-AF) imaging. The red outline demonstrates the correspondence between the smooth zone on BAF and the area of homogenous NIR-AF signal. Panel (<b>C</b>): microperimetry map taken with the MAIA microperimeter (CenterVue, Padova, Italy). This shows better function closer to the fovea (green points), impaired but present function in the area corresponding to mottled BAF (yellow-orange points), and no function outside the island of BAF (black points). Panel (<b>D</b>): Colour fundus photograph. Panel (<b>E</b>): trans-foveal optical computed tomography (OCT) image showing preserved ellipsoid zone within the area of smooth BAF/homogenous NIR-AF (between the two red markers), disrupted ellipsoid zone in the area of mottled BAF/absent NIR-AF (between the red and green markers), and absent ellipsoid zone with retinal and choroidal degeneration in the peripheries (outside the green markers). BAF, NIR-AF and OCT images were taken with Heidelberg Spectralis, Heidelberg Engineering GmbH, Heidelberg, Germany.</p> "> Figure 2
<p>Multimodal retinal imaging and retinal sensitivity testing in two female carriers. Case 1: 20-year-old asymptomatic female carrier, VA 6/5 (colour fundus photograph, (<b>D</b>)). Case 2: 44-year-old affected female carrier with male pattern choroideremia, VA 6/9 (colour fundus photograph, (<b>I</b>)). Fundus autofluorescence imaging demonstrates early ‘salt and pepper’ mottled appearance (BAF) (<b>A</b>) and normal smooth zone (NIR-AF) (<b>B</b>) in Case 1, compared with more advanced mottling and areas of atrophy (BAF) (<b>F</b>) and near-absent autofluorescence smooth zone (NIR-AF) (<b>G</b>) in Case 2. Microperimetry maps (MAIA microperimeter, CenterVue, Padova, Italy) show near normal sensitivity in the asymptomatic carrier (<b>C</b>) but reduced sensitivity over the mottled zone with absent sensitivity over the atrophic areas in the affected carrier typical of male pattern choroideremia (<b>H</b>). OCT imaging shows an intact ellipsoid zone in Case 1 (<b>E</b>), whilst disruption of the ellipsoid zone is visible in Case 2 (<b>J</b>).</p> "> Figure 3
<p>A schematic representation of the Rab prenylation pathway and effect on RPE melanin. REP1 (Rab Escort Protein 1) binds the newly synthesized Rabs (Ras-related proteins) and mediates the addition of a geranylgeranyl diphosphate group to the Rab C-terminus, resulting in prenylation. Rab27a is thought to have a role in melanosome transport, and its correct functioning is required for the light-dependent movement of melanosomes into the apical processes within RPE cells.</p> "> Figure 4
<p>Examples of corresponding 30° short wavelength blue autofluorescence (BAF) images and 30° near-infrared autofluorescence (NIR-AF) images for four patients with choroideremia ranging from children to older individuals, with varying phenotypes and visual acuities. These demonstrate qualitative visual correspondence between areas with a smooth appearance on BAF and areas with preserved homogenous NIR-AF (top four panels). The bottom panel is an example of a young patient with excellent visual acuity but without smooth zones on BAF and NIR-AF despite a large residual island.</p> "> Figure 5
<p>Longitudinal changes in 30° BAF and 30° NIR-AF imaging over a five-year follow-up period demonstrate slow progression over time. Correspondence of preserved NIR-AF and BAF smooth pattern is maintained throughout follow-up, with a qualitative reduction in the overall retinal island on BAF, as well as the smooth region on BAF, and are of homogenous NIR-AF.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Gene Therapy Trials and Outcome Measures
4. Fundus Autofluorescence
5. The Role of Melanin
6. Distinct Retinal Patterns on Autofluorescence Imaging
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cremers, F.P.; van de Pol, D.J.; van Kerkhoff, L.P.; Wieringa, B.; Ropers, H. Cloning of a gene that is rearranged in patients with choroideraemia. Nature 1990, 347, 674–677. [Google Scholar] [PubMed]
- Bokhoven, H.V.; Hurk, J.A.V.D.; Bogerd, L.; Philippe, C.; Gilgenkrantz, S.; Jong, P.D.; Ropers, H.H.; Cremers, F.P. Cloning and characterization of the human choroideremia gene. Hum. Mol. Genet. 1994, 3, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- van den Hurk, J.A.; Schwartz, M.; Van Bokhoven, H.; Van de Pol, T.; Bogerd, L.; Pinckers, A.; Bleeker-Wagemakers, E.M.; Pawlowitzki, I.H.; Rüther, K.; Ropers, H.H.; et al. Molecular basis of choroideremia (CHM): Mutations involving the Rab escort protein-1 (REP-1) gene. Hum. Mutat. 1997, 9, 110–117. [Google Scholar] [PubMed]
- Seabra, M.C.; Brown, M.S.; Goldstein, J.L. Retinal degeneration in choroideremia: Deficiency of rab geranylgeranyl transferase. Science 1993, 259, 377–381. [Google Scholar] [CrossRef]
- Morgan, J.I.; Han, G.; Klinman, E.; Maguire, W.M.; Chung, D.C.; Maguire, A.M.; Bennett, J. High-resolution adaptive optics retinal imaging of cellular structure in choroideremia. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6381–6397. [Google Scholar]
- Jolly, J.K.; Edwards, T.L.; Moules, J.; Groppe, M.; Downes, S.M.; MacLaren, R.E. A qualitative and quantitative assessment of fundus autofluorescence patterns in patients with choroideremia. Investig. Ophthalmol. Vis. Sci. 2016, 57, 4498–4503. [Google Scholar]
- Preising, M.; Ayuso, C. Rab escort protein 1 (REP1) in intracellular traffic: A functional and pathophysiological overview. Ophthalmic Genet. 2004, 25, 101–110. [Google Scholar]
- Aleman, T.S.; Han, G.; Serrano, L.W.; Fuerst, N.M.; Charlson, E.S.; Pearson, D.J.; Chung, D.C.; Traband, A.; Pan, W.; Ying, G.S.; et al. Natural history of the central structural abnormalities in choroideremia: A prospective cross-sectional study. Ophthalmology 2017, 124, 359–373. [Google Scholar]
- Jacobson, S.G.; Cideciyan, A.V.; Sumaroka, A.; Aleman, T.S.; Schwartz, S.B.; Windsor, E.A.; Roman, A.J.; Stone, E.M.; MacDonald, I.M. Remodeling of the human retina in choroideremia: Rab escort protein 1 (REP-1) mutations. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4113–4120. [Google Scholar]
- Song, W.K.; Cehajic-Kapetanovic, J.; Patrício, M.I.; Xue, K.; MacLaren, R.E. Choroideremia and Other Hereditary Conditions Manifesting with Choroidal Atrophy. In Albert and Jakobiec’s Principles and Practice of Ophthalmology; Springer: Cham, Switzerland, 2022; pp. 3997–4012. [Google Scholar]
- Sarkar, H.; Moosajee, M. Choroideremia: Molecular mechanisms and therapies. Trends Mol. Med. 2022, 28, 378–387. [Google Scholar] [CrossRef]
- Cehajic Kapetanovic, J.; Barnard, A.R.; MacLaren, R.E. Molecular therapies for choroideremia. Genes 2019, 10, 738. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, I.M.; Moen, C.; Duncan, J.L.; Tsang, S.H.; Cehajic-Kapetanovic, J.; Aleman, T.S. Perspectives on gene therapy: Choroideremia represents a challenging model for the treatment of other inherited retinal degenerations. Transl. Vis. Sci. Technol. 2020, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Cehajic Kapetanovic, J.; Patrício, M.I.; MacLaren, R.E. Progress in the development of novel therapies for choroideremia. Expert Rev. Ophthalmol. 2019, 14, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.L.; Jolly, J.K.; Groppe, M.; Barnard, A.R.; Cottriall, C.L.; Tolmachova, T.; Black, G.C.; Webster, A.R.; Lotery, A.J.; Holder, G.E.; et al. Visual acuity after retinal gene therapy for choroideremia. N. Engl. J. Med. 2016, 374, 1996–1998. [Google Scholar] [CrossRef]
- MacLaren, R.E.; Groppe, M.; Barnard, A.R.; Cottriall, C.L.; Tolmachova, T.; Seymour, L.; Clark, K.R.; During, M.J.; Cremers, F.P.; Black, G.C.; et al. Retinal gene therapy in patients with choroideremia: Initial findings from a phase 1/2 clinical trial. Lancet 2014, 383, 1129–1137. [Google Scholar] [CrossRef]
- Xue, K.; Jolly, J.K.; Barnard, A.R.; Rudenko, A.; Salvetti, A.P.; Patrício, M.I.; Edwards, T.L.; Groppe, M.; Orlans, H.O.; Tolmachova, T.; et al. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nat. Med. 2018, 24, 1507–1512. [Google Scholar] [CrossRef]
- Dimopoulos, I.S.; Hoang, S.C.; Radziwon, A.; Binczyk, N.M.; Seabra, M.C.; MacLaren, R.E.; Somani, R.; Tennant, M.T.; MacDonald, I.M. Two-year results after AAV2-mediated gene therapy for choroideremia: The Alberta experience. Am. J. Ophthalmol. 2018, 193, 130–142. [Google Scholar] [CrossRef]
- Lam, B.L.; Davis, J.L.; Gregori, N.Z.; MacLaren, R.E.; Girach, A.; Verriotto, J.D.; Rodriguez, B.; Rosa, P.R.; Zhang, X.; Feuer, W.J. Choroideremia gene therapy phase 2 clinical trial: 24-month results. Am. J. Ophthalmol. 2019, 197, 65–73. [Google Scholar] [CrossRef]
- Fischer, M.D.; Ochakovski, G.A.; Beier, B.; Seitz, I.P.; Vaheb, Y.; Kortuem, C.; Reichel, F.F.; Kuehlewein, L.; Kahle, N.A.; Peters, T.; et al. Efficacy and safety of retinal gene therapy using adeno-associated virus vector for patients with choroideremia: A randomized clinical trial. JAMA Ophthalmol. 2019, 137, 1247–1254. [Google Scholar] [CrossRef]
- Aleman, T.S.; Huckfeldt, R.M.; Serrano, L.W.; Pearson, D.J.; Vergilio, G.K.; McCague, S.; Marshall, K.A.; Ashtari, M.; Doan, T.M.; Weigel-DiFranco, C.A.; et al. Adeno-Associated Virus Serotype 2–hCHM Subretinal Delivery to the Macula in Choroideremia: Two-Year Interim Results of an Ongoing Phase I/II Gene Therapy Trial. Ophthalmology 2022, 129, 1177–1191. [Google Scholar] [CrossRef]
- Cehajic-Kapetanovic, J.; Bellini, M.P.; Taylor, L.J.; Yusuf, I.H.; Soomro, T.; da Cruz, L.; MacLaren, R.E. Gene therapy for choroideremia using an adeno-associated viral vector encoding Rab escort protein 1: The REGENERATE open-label trial. Effic. Mech. Eval. 2024, 11, 1–59. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, R.E.; Fischer, M.D.; Gow, J.A.; Lam, B.L.; Sankila, E.M.; Girach, A.; Panda, S.; Yoon, D.; Zhao, G.; Pennesi, M.E. Subretinal timrepigene emparvovec in adult men with choroideremia: A randomized phase 3 trial. Nat. Med. 2023, 29, 2464–2472. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Xu, M.; Radziwon, A.; Dimopoulos, I.S.; Crichton, P.; Mah, R.; MacLaren, R.E.; Somani, R.; Tennant, M.T.; MacDonald, I.M. AAV2-Mediated Gene Therapy for Choroideremia: 5-Year Results and Alternate Anti-sense Oligonucleotide Therapy. Am. J. Ophthalmol. 2023, 248, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Birch, D.G.; Bernstein, P.S.; MacDonald, I.M.; Stout, T.; Liao, D.S.; Locke, K.G.; Zhai, Y.; Miller, A.K.; Holt, J.; Leung, A.J.; et al. The natural history of choroideremia; progressive loss of visual function and retinal structure. Investig. Ophthalmol. Vis. Sci. 2020, 61, 1908. [Google Scholar]
- Hagag, A.M.; Mitsios, A.; Narayan, A.; Abbouda, A.; Webster, A.R.; Dubis, A.M.; Moosajee, M. Prospective deep phenotyping of choroideremia patients using multimodal structure-function approaches. Eye 2021, 35, 838–852. [Google Scholar] [CrossRef]
- Shen, L.L.; Ahluwalia, A.; Sun, M.; Young, B.K.; Nardini, H.K.G.; Del Priore, L.V. Long-term natural history of visual acuity in eyes with choroideremia: A systematic review and meta-analysis of data from 1004 individual eyes. Br. J. Ophthalmol. 2021, 105, 271–278. [Google Scholar] [CrossRef]
- Wood, L.J.; Jolly, J.K.; Andrews, C.D.; Wilson, I.R.; Hickey, D.; Cehajic-Kapetanovic, J.; Maclaren, R.E. Low-contrast visual acuity versus low-luminance visual acuity in choroideremia. Clin. Exp. Optom. 2021, 104, 90–94. [Google Scholar] [CrossRef]
- Heijl, A.; Krakau, C. An automatic static perimeter, design and pilot study. Acta Ophthalmol. 1975, 53, 293–310. [Google Scholar] [CrossRef]
- Pfau, M.; Jolly, J.K.; Wu, Z.; Denniss, J.; Lad, E.M.; Guymer, R.H.; Fleckenstein, M.; Holz, F.G.; Schmitz-Valckenberg, S. Fundus-controlled perimetry (microperimetry): Application as outcome measure in clinical trials. Prog. Retin. Eye Res. 2021, 82, 100907. [Google Scholar] [CrossRef]
- Jolly, J.K.; Xue, K.; Edwards, T.L.; Groppe, M.; MacLaren, R.E. Characterizing the natural history of visual function in choroideremia using microperimetry and multimodal retinal imaging. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5575–5583. [Google Scholar] [CrossRef]
- Dimopoulos, I.S.; Tseng, C.; MacDonald, I.M. Microperimetry as an outcome measure in choroideremia trials: Reproducibility and beyond. Investig. Ophthalmol. Vis. Sci. 2016, 57, 4151–4161. [Google Scholar] [CrossRef] [PubMed]
- Josan, A.S.; Buckley, T.M.; Wood, L.J.; Jolly, J.K.; Cehajic-Kapetanovic, J.; MacLaren, R.E. Microperimetry Hill of vision and volumetric measures of retinal sensitivity. Transl. Vision Sci. Technol. 2021, 10, 12. [Google Scholar] [CrossRef]
- Josan, A.S.; Taylor, L.J.; Xue, K.; Cehajic-Kapetanovic, J.; Maclaren, R.E. Ranked importance of visual function outcome measures in choroideremia clinical trials. Investig. Ophthalmol. Vis. Sci. 2024, in press. [Google Scholar]
- Schmitz-Valckenberg, S.; Holz, F.G.; Bird, A.C.; Spaide, R.F. Fundus autofluorescence imaging: Review and perspectives. Retina 2008, 28, 385–409. [Google Scholar] [CrossRef] [PubMed]
- Delori, F.C.; Dorey, C.K.; Staurenghi, G.; Arend, O.; Goger, D.G.; Weiter, J.J. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Investig. Ophthalmol. Vis. Sci. 1995, 36, 718–729. [Google Scholar]
- Sparrow, J.R.; Fishkin, N.; Zhou, J.; Cai, B.; Jang, Y.P.; Krane, S.; Itagaki, Y.; Nakanishi, K. A2E, a byproduct of the visual cycle. Vision Res. 2003, 43, 2983–2990. [Google Scholar] [CrossRef]
- Hariri, A.H.; Ip, M.S.; Girach, A.; Lam, B.L.; Fischer, M.D.; Sankila, E.; Pennesi, M.E.; Holz, F.G.; Maclaren, R.E.; Birch, D.G.; et al. Macular spatial distribution of preserved autofluorescence in patients with choroideremia. Br. J. Ophthalmol. 2019, 103, 933–937. [Google Scholar] [CrossRef]
- Xue, K.; Oldani, M.; Jolly, J.K.; Edwards, T.L.; Groppe, M.; Downes, S.M.; MacLaren, R. Correlation of optical coherence tomography and autofluorescence in the outer retina and choroid of patients with choroideremia. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3674–3684. [Google Scholar] [CrossRef]
- Hariri, A.H.; Velaga, S.B.; Girach, A.; Ip, M.S.; Le, P.V.; Lam, B.L.; Fischer, M.D.; Sankila, E.-M.; Pennesi, M.E.; Holz, F.G.; et al. Measurement and reproducibility of preserved ellipsoid zone area and preserved retinal pigment epithelium area in eyes with choroideremia. Am. J. Ophthalmol. 2017, 179, 110–117. [Google Scholar] [CrossRef]
- Stevanovic, M.; Cehajic Kapetanovic, J.; Jolly, J.K.; MacLaren, R.E. A distinct retinal pigment epithelial cell autofluorescence pattern in choroideremia predicts early involvement of overlying photoreceptors. Acta Ophthalmol. 2020, 98, e322–e327. [Google Scholar] [CrossRef]
- Poli, F.E.; Yusuf, I.H.; Jolly, J.K.; Taylor, L.J.; Adeyoju, D.; Josan, A.S.; Birtel, J.; Issa, P.C.; Cehajic-Kapetanovic, J.; Da Cruz, L.; et al. Correlation between fundus autofluorescence pattern and retinal function on microperimetry in Choroideremia. Transl. Vision Sci. Technol. 2023, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Curcio, C.A.; Sloan, K.R.; Kalina, R.E.; Hendrickson, A.E. Human photoreceptor topography. J. Comp. Neurol. 1990, 292, 497–523. [Google Scholar] [CrossRef] [PubMed]
- Keilhauer, C.N.; Delori, F.C. Near-infrared autofluorescence imaging of the fundus: Visualization of ocular melanin. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3556–3564. [Google Scholar] [CrossRef]
- Gibbs, D.; Cideciyan, A.V.; Jacobson, S.G.; Williams, D.S. Retinal pigment epithelium defects in humans and mice with mutations in MYO7A: Imaging melanosome-specific autofluorescence. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4386–4393. [Google Scholar] [CrossRef]
- Duncker, T.; Tabacaru, M.R.; Lee, W.; Tsang, S.H.; Sparrow, J.R.; Greenstein, V.C. Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 2013, 54, 585–591. [Google Scholar] [CrossRef]
- Birtel, J.; Salvetti, A.P.; Jolly, J.K.; Xue, K.; Gliem, M.; Müller, P.L.; Holz, F.G.; MacLaren, R.E.; Issa, P.C. Near-infrared autofluorescence in choroideremia: Anatomic and functional correlations. Am. J. Ophthalmol. 2019, 199, 19–27. [Google Scholar] [CrossRef]
- Meleppat, R.K.; Ronning, K.E.; Karlen, S.J.; Burns, M.E.; Pugh, E.N.; Zawadzki, R.J. In vivo multimodal retinal imaging of disease-related pigmentary changes in retinal pigment epithelium. Sci. Rep. 2021, 11, 16252. [Google Scholar] [CrossRef]
- Seagle, B.L.; Gasyna, E.M.; Mieler, W.F.; Norris, J.R. Photoprotection of human retinal pigment epithelium cells against blue light-induced apoptosis by melanin free radicals from Sepia officinalis. Proc. Natl. Acad. Sci. USA 2006, 103, 16644–16648. [Google Scholar] [CrossRef]
- Sarna, T. New trends in photobiology: Properties and function of the ocular melanin—A photobiophysical view. J. Photochem. Photobiol. B Biol. 1992, 12, 215–258. [Google Scholar] [CrossRef]
- Feeney-Burns, L. The pigments of the retinal pigment epithelium. Curr. Top. Eye Res. 1980, 2, 119–178. [Google Scholar]
- Feeney, L. Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Investig. Ophthalmol. Vis. Sci. 1978, 17, 583–600. [Google Scholar]
- Wang, Z.; Dillon, J.; Gaillard, E.R. Antioxidant properties of melanin in retinal pigment epithelial cells. Photochem. Photobiol. 2006, 82, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Boulton, M.; Dayhaw-Barker, P. The role of the retinal pigment epithelium: Topographical variation and ageing changes. Eye 2001, 15, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Sarna, T.; Burke, J.M.; Korytowski, W.; Różanowska, M.; Skumatz, C.M.; Zaręba, A.; Zaręba, M. Loss of melanin from human RPE with aging: Possible role of melanin photooxidation. Exp. Eye Res. 2003, 76, 89–98. [Google Scholar] [CrossRef]
- Boulton, M.E. Studying melanin and lipofuscin in RPE cell culture models. Exp. Eye Res. 2014, 126, 61–67. [Google Scholar] [CrossRef]
- Zareba, M.; Szewczyk, G.; Sarna, T.; Hong, L.; Simon, J.D.; Henry, M.M.; Burke, J.M. Effects of photodegradation on the physical and antioxidant properties of melanosomes isolated from retinal pigment epithelium. Photochem. Photobiol. 2006, 82, 1024–1029. [Google Scholar] [CrossRef]
- Olchawa, M.M.; Szewczyk, G.M.; Zadlo, A.C.; Krzysztynska-Kuleta, O.I.; Sarna, T.J. The effect of aging and antioxidants on photoreactivity and phototoxicity of human melanosomes: An in vitro study. Pigment. Cell Melanoma Res. 2021, 34, 670–682. [Google Scholar] [CrossRef]
- Pollreisz, A.; Neschi, M.; Sloan, K.R.; Pircher, M.; Mittermueller, T.; Dacey, D.M.; Schmidt-Erfurth, U.; Curcio, C.A. Atlas of human retinal pigment epithelium organelles significant for clinical imaging. Investig. Ophthalmol. Vis. Sci. 2020, 61, 13. [Google Scholar] [CrossRef]
- Kinsella, B.T.; Maltese, W.A. rab GTP-binding proteins implicated in vesicular transport are isoprenylated in vitro at cysteines within a novel carboxyl-terminal motif. J. Biol. Chem. 1991, 266, 8540–8544. [Google Scholar] [CrossRef]
- Seabra, M.C.; Ho, Y.K.; Anant, J.S. Deficient Geranylgeranylation of Ram/Rab27 in Choroideremia. J. Biol. Chem. 1995, 270, 24420–24427. [Google Scholar] [CrossRef]
- Pfeffer, S.R. Rab GTPases: Master regulators of membrane trafficking. Curr. Opin. Cell Biol. 1994, 6, 522–526. [Google Scholar] [PubMed]
- Novick, P.; Zerial, M. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 1997, 9, 496–504. [Google Scholar] [PubMed]
- Hume, A.N.; Collinson, L.M.; Rapak, A.; Gomes, A.Q.; Hopkins, C.R.; Seabra, M.C. Rab27a regulates the peripheral distribution of melanosomes in melanocytes. J. Cell Biol. 2001, 152, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Futter, C.E.; Ramalho, J.S.; Jaissle, G.B.; Seeliger, M.W.; Seabra, M.C. The role of Rab27a in the regulation of melanosome distribution within retinal pigment epithelial cells. Mol. Biol. Cell 2004, 15, 2264–2275. [Google Scholar] [CrossRef]
- Duncker, T.; Marsiglia, M.; Lee, W.; Zernant, J.; Tsang, S.H.; Allikmets, R.; Greenstein, V.C.; Sparrow, J.R. Correlations among near-infrared and short-wavelength autofluorescence and spectral-domain optical coherence tomography in recessive Stargardt disease. Investig. Ophthalmol. Vis. Sci. 2014, 55, 8134–8143. [Google Scholar] [CrossRef]
- Tuten, W.S.; Vergilio, G.K.; Young, G.J.; Bennett, J.; Maguire, A.M.; Aleman, T.S.; Brainard, D.H.; Morgan, J.I. Visual function at the atrophic border in choroideremia assessed with adaptive optics microperimetry. Ophthalmol. Retin. 2019, 3, 888–899. [Google Scholar]
- Tolmachova, T.; Tolmachov, O.E.; Barnard, A.R.; de Silva, S.R.; Lipinski, D.M.; Walker, N.J.; MacLaren, R.E.; Seabra, M.C. Functional expression of Rab escort protein 1 following AAV2-mediated gene delivery in the retina of choroideremia mice and human cells ex vivo. J. Mol. Med. 2013, 91, 825–837. [Google Scholar]
- John, M.C.; Quinn, J.; Hu, M.L.; Cehajic-Kapetanovic, J.; Xue, K. Gene-agnostic therapeutic approaches for inherited retinal degenerations. Front. Mol. Neurosci. 2023, 15, 1068185. [Google Scholar]
- Cehajic-Kapetanovic, J.; Singh, M.S.; Zrenner, E.; MacLaren, R.E. Bioengineering strategies for restoring vision. Nat. Biomed. Eng. 2023, 7, 387–404. [Google Scholar] [CrossRef]
Study Details | Centre | Start | Vector | Outcomes |
---|---|---|---|---|
NCT01461213 Phase I/II | University of Oxford, UK | 2011 Completed | r.AAV2-REP1 | At 2 years: median BCVA gain +4.5 letters (statistically significant) (n = 14) [15,16,17]. |
NCT02341807 Phase I/II | Philadelphia, USA Spark Therapeutics | 2015 Completed | AAV2-hCHM | At 2 years: BCVA within 15 letters of baseline in 13 of 15 participants. No significant differences between the control and intervention eye in sensitivity by perimetry or RPE preservation by OCT or BAF (n = 15) [21]. |
NCT02077361 Phase I/II | University of Alberta, Canada | 2015 Completed | r.AAV2-REP1 | At 2 years: no significant gain in BCVA compared to baseline in five of six treated eyes (one subject had an 8-ETDRS-letter loss and one subject had a >15 letter gain). Similar rate of decline in preserved RPE area by BAF between treated and untreated eyes (n = 6) [18]. At 4.5 years: non-significant mean BCVA change from baseline −0.2 vs. −3.2 letter in treated vs. untreated (n = 5) [24]. |
NCT02553135 Phase II | University of Miami, USA | 2015 Completed | r.AAV2-REP1 | At 2 years: BCVA +/− 2 letters in four of six treated eyes (one gained +10 letters and another +5 letters) (n = 6) [19]. |
NCT02671539 THOR TRIAL Phase II | University of Tubingen, Germany STZ eye trial | 2016 Completed | r.AAV2-REP1 | At 2 years: non-significant mean BCVA gain +3.7 letters (n = 6) [20]. |
NCT02407678 REGENERATE TRIAL Phase II | University of Oxford and Moorfields Eye Hospital, UK | 2016 Completed | r.AAV2-REP1 | At 2 years: no statistically different comparative change from baseline in BCVA between treated eyes (−2.63 letters, SE 2.76) and control eyes (+2.67 letters, SE 0.768) (n = 30) [22]. |
NCT03496012 STAR TRIAL Phase III | NightstaRx, a Biogen Company International multi-centre | 2017 Completed | r.AAV2-REP1 (BIIB111) | At 12 months: failed to meet primary endpoint (proportion of participants with >/= 15 letter gain BCVA) or key secondary endpoints (n = 170) [23]. |
NCT03507686 GEMINI TRIAL Phase II | NightstaRx, a Biogen Company International multi-centre | 2017 Completed | r.AAV2-REP1 (BIIB111) | No report to date |
NCT04483440 Phase I | 4D Molecular Therapeutics, USA | 2020 Ongoing | 4D-110 | No report to date |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poli, F.E.; MacLaren, R.E.; Cehajic-Kapetanovic, J. Retinal Patterns and the Role of Autofluorescence in Choroideremia. Genes 2024, 15, 1471. https://doi.org/10.3390/genes15111471
Poli FE, MacLaren RE, Cehajic-Kapetanovic J. Retinal Patterns and the Role of Autofluorescence in Choroideremia. Genes. 2024; 15(11):1471. https://doi.org/10.3390/genes15111471
Chicago/Turabian StylePoli, Federica E., Robert E. MacLaren, and Jasmina Cehajic-Kapetanovic. 2024. "Retinal Patterns and the Role of Autofluorescence in Choroideremia" Genes 15, no. 11: 1471. https://doi.org/10.3390/genes15111471
APA StylePoli, F. E., MacLaren, R. E., & Cehajic-Kapetanovic, J. (2024). Retinal Patterns and the Role of Autofluorescence in Choroideremia. Genes, 15(11), 1471. https://doi.org/10.3390/genes15111471