Paralogous Genes Involved in Embryonic Development: Lessons from the Eye and other Tissues
<p>Possible fates of paralogous genes after duplication. Duplicated genes can acquire divergent functions via (<b>a</b>) neofunctionalization, in which one duplicate retains the ancestral gene function while the other duplicate acquires a novel function, and the acquisition of the novel function occurs through mutations in the gene coding sequence (indicated by red asterisks) or changes in transcriptional regulation (black square), or (<b>b</b>) subfunctionalization, in which mutations change the functions of both duplicates at the level of coding sequence (red asterisks) or transcriptional regulation (missing black triangle or circle), therefore causing the presence of both copies to be essential for the maintenance of the ancestral function. Other possible fates of duplicated genes are (<b>c</b>) loss of function during the pseudogenization process, or, less frequently occurring, (<b>d</b>) maintained equivalent functions.</p> "> Figure 2
<p>Functional cooperation between paralogous genes. (<b>a</b>) Paralogous genes can maintain functional redundancy and the ability to compensate for the loss of each other without phenotypic consequences. <span class="html-italic">Meis1</span> can compensate for the lack of <span class="html-italic">Meis2</span> and vice versa. Only the combined deletion of paralogous genes results in severe phenotypic alterations. The combined loss of <span class="html-italic">Meis1</span> and <span class="html-italic">Meis2</span> leads to arrested lens development [<a href="#B60-genes-13-02082" class="html-bibr">60</a>]. (<b>b</b>) Paralogs can act additively according to the quantitative model of function. The decreased number of functional alleles causes gradual worsening of the mutant phenotype. Lack of two <span class="html-italic">Onecut1/Onecut2</span> alleles in the mouse retina causes a dramatically decreased number of horizontal cells in any combination. One remaining <span class="html-italic">Onecut1</span> or <span class="html-italic">Onecut2</span> allele, similarly to the combined loss of <span class="html-italic">Onecut1</span> together with <span class="html-italic">Onecut2</span>, results in complete loss of horizontal cells [<a href="#B62-genes-13-02082" class="html-bibr">62</a>]. (<b>c</b>) A synergistic interaction results in a mutant phenotype that exceeds expectations from observations of single knockouts. <span class="html-italic">Hfs1</span>-null mice have normal testes, in contrast to <span class="html-italic">Hsf2</span>-null mice with decreased testis size. Surprisingly, additional deletion of <span class="html-italic">Hsf1</span> in <span class="html-italic">Hsf2</span>-null mice causes an even more decreased testis size [<a href="#B76-genes-13-02082" class="html-bibr">76</a>].</p> "> Figure 2 Cont.
<p>Functional cooperation between paralogous genes. (<b>a</b>) Paralogous genes can maintain functional redundancy and the ability to compensate for the loss of each other without phenotypic consequences. <span class="html-italic">Meis1</span> can compensate for the lack of <span class="html-italic">Meis2</span> and vice versa. Only the combined deletion of paralogous genes results in severe phenotypic alterations. The combined loss of <span class="html-italic">Meis1</span> and <span class="html-italic">Meis2</span> leads to arrested lens development [<a href="#B60-genes-13-02082" class="html-bibr">60</a>]. (<b>b</b>) Paralogs can act additively according to the quantitative model of function. The decreased number of functional alleles causes gradual worsening of the mutant phenotype. Lack of two <span class="html-italic">Onecut1/Onecut2</span> alleles in the mouse retina causes a dramatically decreased number of horizontal cells in any combination. One remaining <span class="html-italic">Onecut1</span> or <span class="html-italic">Onecut2</span> allele, similarly to the combined loss of <span class="html-italic">Onecut1</span> together with <span class="html-italic">Onecut2</span>, results in complete loss of horizontal cells [<a href="#B62-genes-13-02082" class="html-bibr">62</a>]. (<b>c</b>) A synergistic interaction results in a mutant phenotype that exceeds expectations from observations of single knockouts. <span class="html-italic">Hfs1</span>-null mice have normal testes, in contrast to <span class="html-italic">Hsf2</span>-null mice with decreased testis size. Surprisingly, additional deletion of <span class="html-italic">Hsf1</span> in <span class="html-italic">Hsf2</span>-null mice causes an even more decreased testis size [<a href="#B76-genes-13-02082" class="html-bibr">76</a>].</p> ">
Abstract
:1. Introduction
2. Retained Functional Equivalency between Paralogous Genes
2.1. Interchangeable Paralogs with Divergent Functions
2.2. Common and Unique Functions of Paralogous Genes
3. Redundant Functions of Paralogous Genes
4. Gene Dosage Sensitivity and Allelic Interactions
4.1. Additive Functions
4.2. Synergistic Interaction between Paralogous Genes
5. Functionally Divergent Paralogs
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, W.; Li, L.; Ye, H.; Chen, H.; Shen, W.; Zhong, Y.; Tian, T.; He, H. From Saccharomyces cerevisiae to human: The important gene co-expression modules. Biomed Rep. 2017, 7, 153–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, M.D.; Celniker, S.E.; Holt, R.A.; Evans, C.A.; Gocayne, J.D.; Amanatides, P.G.; Scherer, S.E.; Li, P.W.; Hoskins, R.A.; Galle, R.F.; et al. The Genome Sequence of Drosophila melanogaster. Science 2000, 287, 2185–2195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004, 432, 695–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrander, E.A.; Wayne, R.K. The canine genome. Genome Res. 2005, 15, 1706–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, M.; Sjöstedt, E.; Oksvold, P.; Sivertsson, Å.; Huang, J.; Álvez, M.B.; Arif, M.; Li, X.; Lin, L.; Yu, J.; et al. Genome-wide annotation of protein-coding genes in pig. BMC Biol. 2022, 20, 25. [Google Scholar] [CrossRef]
- Weitzman, J.B. The mouse genome. Genome Biol. 2002, 3, spotlight-20021205–20021202. [Google Scholar] [CrossRef]
- Kuzmin, E.; Taylor, J.S.; Boone, C. Retention of duplicated genes in evolution. Trends Genet. 2022, 38, 59–72. [Google Scholar] [CrossRef]
- Koonin, E.V. Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 2005, 39, 309–338. [Google Scholar] [CrossRef] [Green Version]
- Grimwood, J.; Gordon, L.A.; Olsen, A.; Terry, A.; Schmutz, J.; Lamerdin, J.; Hellsten, U.; Goodstein, D.; Couronne, O.; Tran-Gyamfi, M.; et al. The DNA sequence and biology of human chromosome 19. Nature 2004, 428, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Fredriksson, R.; Lagerström, M.C.; Lundin, L.-G.; Schiöth, H.B. The G-Protein-Coupled Receptors in the Human Genome Form Five Main Families. Phylogenetic Analysis, Paralogon Groups, and Fingerprints. Mol. Pharmacol. 2003, 63, 1256–1272. [Google Scholar] [CrossRef]
- Heit, C.; Jackson, B.C.; McAndrews, M.; Wright, M.W.; Thompson, D.C.; Silverman, G.A.; Nebert, D.W.; Vasiliou, V. Update of the human and mouse SERPIN gene superfamily. Hum. Genom. 2013, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.E.; Hastie, N.D. Accelerated evolution in the reactive centre regions of serine protease inhibitors. Nature 1987, 326, 96–99. [Google Scholar] [CrossRef]
- Itoh, N.; Ornitz, D.M. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004, 20, 563–569. [Google Scholar] [CrossRef]
- Young, J.M.; Friedman, C.; Williams, E.M.; Ross, J.A.; Tonnes-Priddy, L.; Trask, B.J. Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum. Mol. Genet. 2002, 11, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Firestein, S. The olfactory receptor gene superfamily of the mouse. Nat. Neurosci. 2002, 5, 124–133. [Google Scholar] [CrossRef]
- Dehal, P.; Boore, J.L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005, 3, e314. [Google Scholar] [CrossRef] [Green Version]
- Amores, A.; Force, A.; Yan, Y.L.; Joly, L.; Amemiya, C.; Fritz, A.; Ho, R.K.; Langeland, J.; Prince, V.; Wang, Y.L.; et al. Zebrafish HOX clusters and vertebrate genome evolution. Science 1998, 282, 1711–1714. [Google Scholar] [CrossRef]
- Christoffels, A.; Koh, E.G.; Chia, J.M.; Brenner, S.; Aparicio, S.; Venkatesh, B. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol. Biol. Evol. 2004, 21, 1146–1151. [Google Scholar] [CrossRef]
- Holland, P.W.; Garcia-Fernàndez, J.; Williams, N.A.; Sidow, A. Gene duplications and the origins of vertebrate development. Dev. Suppl. 1994, 1994, 125–133. [Google Scholar] [CrossRef]
- Nowak, M.A.; Boerlijst, M.C.; Cooke, J.; Smith, J.M. Evolution of genetic redundancy. Nature 1997, 388, 167–171. [Google Scholar] [CrossRef]
- Ohno, S. Evolution by Gene Duplication; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Cooke, J.; Nowak, M.A.; Boerlijst, M.; Maynard-Smith, J. Evolutionary origins and maintenance of redundant gene expression during metazoan development. Trends Genet. 1997, 13, 360–364. [Google Scholar] [CrossRef]
- Force, A.; Lynch, M.; Pickett, F.B.; Amores, A.; Yan, Y.L.; Postlethwait, J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999, 151, 1531–1545. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.M.; Cui, L.; Wall, P.K.; Zhang, Q.; Zhang, X.; Leebens-Mack, J.; Ma, H.; Altman, N.; dePamphilis, C.W. Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol. Biol. Evol. 2006, 23, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Khoriaty, R.; Hesketh, G.G.; Bernard, A.; Weyand, A.C.; Mellacheruvu, D.; Zhu, G.; Hoenerhoff, M.J.; McGee, B.; Everett, L.; Adams, E.J.; et al. Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc. Natl. Acad. Sci. USA 2018, 115, E7748–E7757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malynn, B.A.; de Alboran, I.M.; O’Hagan, R.C.; Bronson, R.; Davidson, L.; DePinho, R.A.; Alt, F.W. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev. 2000, 14, 1390–1399. [Google Scholar] [CrossRef] [PubMed]
- Shew, C.J.; Carmona-Mora, P.; Soto, D.C.; Mastoras, M.; Roberts, E.; Rosas, J.; Jagannathan, D.; Kaya, G.; O’Geen, H.; Dennis, M.Y. Diverse Molecular Mechanisms Contribute to Differential Expression of Human Duplicated Genes. Mol. Biol. Evol. 2021, 38, 3060–3077. [Google Scholar] [CrossRef] [PubMed]
- Etheridge, S.L.; Ray, S.; Li, S.; Hamblet, N.S.; Lijam, N.; Tsang, M.; Greer, J.; Kardos, N.; Wang, J.; Sussman, D.J.; et al. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet. 2008, 4, e1000259. [Google Scholar] [CrossRef] [Green Version]
- Henseleit, K.D.; Nelson, S.B.; Kuhlbrodt, K.; Hennings, J.C.; Ericson, J.; Sander, M. NKX6 transcription factor activity is required for α- and β-cell development in the pancreas. Development 2005, 132, 3139–3149. [Google Scholar] [CrossRef] [Green Version]
- Nelson, S.B.; Schaffer, A.E.; Sander, M. The transcription factors Nkx6.1 and Nkx6.2 possess equivalent activities in promoting β-cell fate specification in Pdx1+ pancreatic progenitor cells. Development 2007, 134, 2491–2500. [Google Scholar] [CrossRef] [Green Version]
- Preuße, K.; Tveriakhina, L.; Schuster-Gossler, K.; Gaspar, C.; Rosa, A.I.; Henrique, D.; Gossler, A.; Stauber, M. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genet. 2015, 11, e1005328. [Google Scholar] [CrossRef]
- Vanhorenbeeck, V.; Jenny, M.; Cornut, J.F.; Gradwohl, G.; Lemaigre, F.P.; Rousseau, G.G.; Jacquemin, P. Role of the Onecut transcription factors in pancreas morphogenesis and in pancreatic and enteric endocrine differentiation. Dev. Biol. 2007, 305, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Sapkota, D.; Li, R.; Mu, X. Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J. Comp. Neurol. 2012, 520, 952–969. [Google Scholar] [CrossRef] [Green Version]
- Bochkis, I.M.; Schug, J.; Ye, D.Z.; Kurinna, S.; Stratton, S.A.; Barton, M.C.; Kaestner, K.H. Genome-wide location analysis reveals distinct transcriptional circuitry by paralogous regulators Foxa1 and Foxa2. PLoS Genet. 2012, 8, e1002770. [Google Scholar] [CrossRef] [Green Version]
- Kathiriya, I.S.; Rao, K.S.; Iacono, G.; Devine, W.P.; Blair, A.P.; Hota, S.K.; Lai, M.H.; Garay, B.I.; Thomas, R.; Gong, H.Z.; et al. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease. Dev. Cell 2021, 56, 292–309.e299. [Google Scholar] [CrossRef]
- Chowdhury, F.; Wang, L.; Al-Raqad, M.; Amor, D.J.; Baxová, A.; Bendová, Š.; Biamino, E.; Brusco, A.; Caluseriu, O.; Cox, N.J.; et al. Haploinsufficiency of PRR12 causes a spectrum of neurodevelopmental, eye, and multisystem abnormalities. Genet. Med. 2021, 23, 1234–1245. [Google Scholar] [CrossRef]
- Yi, F.; Danko, T.; Botelho, S.C.; Patzke, C.; Pak, C.; Wernig, M.; Südhof, T.C. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science 2016, 352, aaf2669. [Google Scholar] [CrossRef] [Green Version]
- Kummeling, J.; Stremmelaar, D.E.; Raun, N.; Reijnders, M.R.F.; Willemsen, M.H.; Ruiterkamp-Versteeg, M.; Schepens, M.; Man, C.C.O.; Gilissen, C.; Cho, M.T.; et al. Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Mol. Psychiatry 2021, 26, 2013–2024. [Google Scholar] [CrossRef]
- Zawerton, A.; Mignot, C.; Sigafoos, A.; Blackburn, P.R.; Haseeb, A.; McWalter, K.; Ichikawa, S.; Nava, C.; Keren, B.; Charles, P.; et al. Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency. Genet. Med. 2020, 22, 524–537. [Google Scholar] [CrossRef]
- Lalli, M.A.; Jang, J.; Park, J.H.; Wang, Y.; Guzman, E.; Zhou, H.; Audouard, M.; Bridges, D.; Tovar, K.R.; Papuc, S.M.; et al. Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. Hum. Mol. Genet. 2016, 25, 1294–1306. [Google Scholar] [CrossRef] [Green Version]
- Gennarino, V.A.; Palmer, E.E.; McDonell, L.M.; Wang, L.; Adamski, C.J.; Koire, A.; See, L.; Chen, C.A.; Schaaf, C.P.; Rosenfeld, J.A.; et al. A Mild PUM1 Mutation Is Associated with Adult-Onset Ataxia, whereas Haploinsufficiency Causes Developmental Delay and Seizures. Cell 2018, 172, 924–936.e911. [Google Scholar] [CrossRef]
- Hanks, M.; Wurst, W.; Anson-Cartwright, L.; Auerbach, A.B.; Joyner, A.L. Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science 1995, 269, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Chia, I.V.; Costantini, F. Mouse axin and axin2/conductin proteins are functionally equivalent in vivo. Mol. Cell Biol. 2005, 25, 4371–4376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, E.J.; Khoriaty, R.; Kiseleva, A.; Cleuren, A.C.A.; Tomberg, K.; van der Ent, M.A.; Gergics, P.; Tang, V.T.; Zhu, G.; Hoenerhoff, M.J.; et al. Murine SEC24D can substitute functionally for SEC24C during embryonic development. Sci. Rep. 2021, 11, 21100. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, M.; Pfeffer, P.; Busslinger, M. Functional equivalence of the transcription factors Pax2 and Pax5 in mouse development. Development 2000, 127, 3703–3713. [Google Scholar] [CrossRef] [PubMed]
- Savory, J.G.; Pilon, N.; Grainger, S.; Sylvestre, J.R.; Béland, M.; Houle, M.; Oh, K.; Lohnes, D. Cdx1 and Cdx2 are functionally equivalent in vertebral patterning. Dev. Biol. 2009, 330, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Suda, Y.; Nakabayashi, J.; Matsuo, I.; Aizawa, S. Functional equivalency between Otx2 and Otx1 in development of the rostral head. Development 1999, 126, 743–757. [Google Scholar] [CrossRef]
- Acampora, D.; Avantaggiato, V.; Tuorto, F.; Barone, P.; Perera, M.; Choo, D.; Wu, D.; Corte, G.; Simeone, A. Differential transcriptional control as the major molecular event in generating Otx1-/- and Otx2-/- divergent phenotypes. Development 1999, 126, 1417–1426. [Google Scholar] [CrossRef]
- Acampora, D.; Annino, A.; Puelles, E.; Alfano, I.; Tuorto, F.; Simeone, A. OTX1 compensates for OTX2 requirement in regionalisation of anterior neuroectoderm. Gene Expr. Patterns 2003, 3, 497–501. [Google Scholar] [CrossRef]
- Relaix, F.; Rocancourt, D.; Mansouri, A.; Buckingham, M. Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes Dev. 2004, 18, 1088–1105. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.T.; Kaartinen, V. Tgfb1 expressed in the Tgfb3 locus partially rescues the cleft palate phenotype of Tgfb3 null mutants. Dev. Biol. 2007, 312, 384–395. [Google Scholar] [CrossRef]
- Carbe, C.; Garg, A.; Cai, Z.; Li, H.; Powers, A.; Zhang, X. An allelic series at the paired box gene 6 (Pax6) locus reveals the functional specificity of Pax genes. J. Biol. Chem. 2013, 288, 12130–12141. [Google Scholar] [CrossRef] [Green Version]
- Wolf, L.; Harrison, W.; Huang, J.; Xie, Q.; Xiao, N.; Sun, J.; Kong, L.; Lachke, S.A.; Kuracha, M.R.; Govindarajan, V.; et al. Histone posttranslational modifications and cell fate determination: Lens induction requires the lysine acetyltransferases CBP and p300. Nucleic Acids Res. 2013, 41, 10199–10214. [Google Scholar] [CrossRef]
- Rocha, S.F.; Lopes, S.S.; Gossler, A.; Henrique, D. Dll1 and Dll4 function sequentially in the retina and pV2 domain of the spinal cord to regulate neurogenesis and create cell diversity. Dev. Biol. 2009, 328, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Yang, T.; Madakashira, B.P.; Thiels, C.A.; Bechtle, C.A.; Garcia, C.M.; Zhang, H.; Yu, K.; Ornitz, D.M.; Beebe, D.C.; et al. Fibroblast growth factor receptor signaling is essential for lens fiber cell differentiation. Dev. Biol. 2008, 318, 276–288. [Google Scholar] [CrossRef] [Green Version]
- Munroe, R.J.; Prabhu, V.; Acland, G.M.; Johnson, K.R.; Harris, B.S.; O’Brien, T.P.; Welsh, I.C.; Noden, D.M.; Schimenti, J.C. Mouse H6 Homeobox 1 (Hmx1) mutations cause cranial abnormalities and reduced body mass. BMC Dev. Biol. 2009, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Schorderet, D.F.; Nichini, O.; Boisset, G.; Polok, B.; Tiab, L.; Mayeur, H.; Raji, B.; de la Houssaye, G.; Abitbol, M.M.; Munier, F.L. Mutation in the human homeobox gene NKX5-3 causes an oculo-auricular syndrome. Am. J. Hum. Genet. 2008, 82, 1178–1184. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, M.; Izu, H.; Seki, K.; Fukuda, K.; Nishida, T.; Yamada, S.; Kato, K.; Yonemura, S.; Inouye, S.; Nakai, A. HSF4 is required for normal cell growth and differentiation during mouse lens development. Embo J. 2004, 23, 4297–4306. [Google Scholar] [CrossRef] [Green Version]
- Somasundaram, T.; Bhat, S.P. Developmentally dictated expression of heat shock factors: Exclusive expression of HSF4 in the postnatal lens and its specific interaction with alphaB-crystallin heat shock promoter. J. Biol. Chem. 2004, 279, 44497–44503. [Google Scholar] [CrossRef] [Green Version]
- Antosova, B.; Smolikova, J.; Klimova, L.; Lachova, J.; Bendova, M.; Kozmikova, I.; Machon, O.; Kozmik, Z. The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6. PLoS Genet. 2016, 12, e1006441. [Google Scholar] [CrossRef] [Green Version]
- Dupacova, N.; Antosova, B.; Paces, J.; Kozmik, Z. Meis homeobox genes control progenitor competence in the retina. Proc. Natl. Acad. Sci. USA 2021, 118, e2013136118. [Google Scholar] [CrossRef]
- Kreplova, M.; Kuzelova, A.; Antosova, B.; Zilova, L.; Jägle, H.; Kozmik, Z. Dose-dependent regulation of horizontal cell fate by Onecut family of transcription factors. PLoS ONE 2020, 15, e0237403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Deng, W.-T.; Du, W.; Zhu, P.; Li, J.; Xu, F.; Sun, J.; Gerstner, C.D.; Baehr, W.; Boye, S.L.; et al. Gene-based Therapy in a Mouse Model of Blue Cone Monochromacy. Sci. Rep. 2017, 7, 6690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaelides, M.; Johnson, S.; Simunovic, M.P.; Bradshaw, K.; Holder, G.; Mollon, J.D.; Moore, A.T.; Hunt, D.M. Blue cone monochromatism: A phenotype and genotype assessment with evidence of progressive loss of cone function in older individuals. Eye 2005, 19, 2–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neitz, J.; Neitz, M. The genetics of normal and defective color vision. Vis. Res. 2011, 51, 633–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosze, B.; Suarez-Navarro, J.; Soofi, A.; Lauderdale, J.D.; Dressler, G.R.; Brown, N.L. Multiple roles for Pax2 in the embryonic mouse eye. Dev. Biol. 2021, 472, 18–29. [Google Scholar] [CrossRef]
- Diacou, R.; Zhao, Y.; Zheng, D.; Cvekl, A.; Liu, W. Six3 and Six6 Are Jointly Required for the Maintenance of Multipotent Retinal Progenitors through Both Positive and Negative Regulation. Cell Rep. 2018, 25, 2510–2523.e2514. [Google Scholar] [CrossRef] [Green Version]
- Fromental-Ramain, C.; Warot, X.; Lakkaraju, S.; Favier, B.; Haack, H.; Birling, C.; Dierich, A.; Doll e, P.; Chambon, P. Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development 1996, 122, 461–472. [Google Scholar] [CrossRef]
- Gerner-Mauro, K.N.; Akiyama, H.; Chen, J. Redundant and additive functions of the four Lef/Tcf transcription factors in lung epithelial progenitors. Proc. Natl. Acad. Sci. USA 2020, 117, 12182–12191. [Google Scholar] [CrossRef]
- Hagelkruys, A.; Lagger, S.; Krahmer, J.; Leopoldi, A.; Artaker, M.; Pusch, O.; Zezula, J.; Weissmann, S.; Xie, Y.; Schöfer, C.; et al. A single allele of Hdac2 but not Hdac1 is sufficient for normal mouse brain development in the absence of its paralog. Development 2014, 141, 604–616. [Google Scholar] [CrossRef] [Green Version]
- Böhm, J.; Buck, A.; Borozdin, W.; Mannan, A.U.; Matysiak-Scholze, U.; Adham, I.; Schulz-Schaeffer, W.; Floss, T.; Wurst, W.; Kohlhase, J.; et al. Sall1, sall2, and sall4 are required for neural tube closure in mice. Am. J. Pathol. 2008, 173, 1455–1463. [Google Scholar] [CrossRef]
- Schmitz-Rohmer, D.; Probst, S.; Yang, Z.Z.; Laurent, F.; Stadler, M.B.; Zuniga, A.; Zeller, R.; Hynx, D.; Hemmings, B.A.; Hergovich, A. NDR Kinases Are Essential for Somitogenesis and Cardiac Looping during Mouse Embryonic Development. PLoS ONE 2015, 10, e0136566. [Google Scholar] [CrossRef] [Green Version]
- Carlisle, F.A.; Pearson, S.; Steel, K.P.; Lewis, M.A. Pitpnm1 is expressed in hair cells during development but is not required for hearing. Neuroscience 2013, 248, 620–625. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.Z.; Ding, J. Strain-dependent effects of transforming growth factor-β1 and 2 during mouse secondary palate development. Reprod Toxicol. 2014, 50, 129–133. [Google Scholar] [CrossRef]
- Gómez-Redondo, I.; Ramos-Ibeas, P.; Pericuesta, E.; Fernández-González, R.; Laguna-Barraza, R.; Gutiérrez-Adán, A. Minor Splicing Factors Zrsr1 and Zrsr2 Are Essential for Early Embryo Development and 2-Cell-Like Conversion. Int. J. Mol. Sci. 2020, 21, 14115. [Google Scholar] [CrossRef]
- Wang, G.; Ying, Z.; Jin, X.; Tu, N.; Zhang, Y.; Phillips, M.; Moskophidis, D.; Mivechi, N.F. Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis 2004, 38, 66–80. [Google Scholar] [CrossRef]
- Collette, N.M.; Yee, C.S.; Murugesh, D.; Sebastian, A.; Taher, L.; Gale, N.W.; Economides, A.N.; Harland, R.M.; Loots, G.G. Sost and its paralog Sostdc1 coordinate digit number in a Gli3-dependent manner. Dev. Biol. 2013, 383, 90–105. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Lan, Y.; Liu, H.; Jiang, R. The zinc finger transcription factors Osr1 and Osr2 control synovial joint formation. Dev. Biol. 2011, 352, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Miyoshi, J.; Takai, Y.; Thesleff, I. Cooperation of nectin-1 and nectin-3 is required for normal ameloblast function and crown shape development in mouse teeth. Dev. Dyn. 2010, 239, 2558–2569. [Google Scholar] [CrossRef]
- Batrakou, D.G.; de Las Heras, J.I.; Czapiewski, R.; Mouras, R.; Schirmer, E.C. TMEM120A and B: Nuclear Envelope Transmembrane Proteins Important for Adipocyte Differentiation. PLoS ONE 2015, 10, e0127712. [Google Scholar] [CrossRef] [Green Version]
- Boucherat, O.; Montaron, S.; Bérubé-Simard, F.A.; Aubin, J.; Philippidou, P.; Wellik, D.M.; Dasen, J.S.; Jeannotte, L. Partial functional redundancy between Hoxa5 and Hoxb5 paralog genes during lung morphogenesis. Am. J. Physiol. Lung Cell Mol. Physiol. 2013, 304, L817–L830. [Google Scholar] [CrossRef]
- Larsen, B.M.; Hrycaj, S.M.; Newman, M.; Li, Y.; Wellik, D.M. Mesenchymal Hox6 function is required for mouse pancreatic endocrine cell differentiation. Development 2015, 142, 3859–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Gerber, A.; Chen, W.Y.; Roeder, R.G. Functions of paralogous RNA polymerase III subunits POLR3G and POLR3GL in mouse development. Proc. Natl. Acad. Sci. USA 2020, 117, 15702–15711. [Google Scholar] [CrossRef] [PubMed]
- Bendall, A.J. Direct evidence of allele equivalency at the Dlx5/6 locus. Genesis 2016, 54, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Yallowitz, A.R.; Hrycaj, S.M.; Short, K.M.; Smyth, I.M.; Wellik, D.M. Hox10 genes function in kidney development in the differentiation and integration of the cortical stroma. PLoS ONE 2011, 6, e23410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, M.; Hayashida, N.; Katoh, T.; Oshima, K.; Shinkawa, T.; Prakasam, R.; Tan, K.; Inouye, S.; Takii, R.; Nakai, A. A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. Mol. Biol. Cell 2010, 21, 106–116. [Google Scholar] [CrossRef]
- Peters, H.; Wilm, B.; Sakai, N.; Imai, K.; Maas, R.; Balling, R. Pax1 and Pax9 synergistically regulate vertebral column development. Development 1999, 126, 5399–5408. [Google Scholar] [CrossRef]
- Manley, N.R.; Capecchi, M.R. HOX group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures. Dev. Biol. 1997, 192, 274–288. [Google Scholar] [CrossRef] [Green Version]
- Boulet, A.M.; Capecchi, M.R. Targeted disruption of hoxc-4 causes esophageal defects and vertebral transformations. Dev. Biol. 1996, 177, 232–249. [Google Scholar] [CrossRef] [Green Version]
- Wahba, G.M.; Hostikka, S.L.; Carpenter, E.M. The paralogous HOX genes Hoxa10 and Hoxd10 interact to pattern the mouse hindlimb peripheral nervous system and skeleton. Dev. Biol. 2001, 231, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Ashokkumar, D.; Zhang, Q.; Much, C.; Bledau, A.S.; Naumann, R.; Alexopoulou, D.; Dahl, A.; Goveas, N.; Fu, J.; Anastassiadis, K.; et al. MLL4 is required after implantation, whereas MLL3 becomes essential during late gestation. Development 2020, 147, dev186999. [Google Scholar] [CrossRef]
- Kobayashi, K.; Endo, T.; Matsumura, T.; Lu, Y.; Yu, Z.; Matzuk, M.M.; Ikawa, M. Prss55 but not Prss51 is required for male fertility in mice. Biol. Reprod. 2020, 103, 223–234. [Google Scholar] [CrossRef]
- Devlin, D.J.; Nozawa, K.; Ikawa, M.; Matzuk, M.M. Knockout of family with sequence similarity 170 member A (Fam170a) causes male subfertility, while Fam170b is dispensable in mice†. Biol. Reprod. 2020, 103, 205–222. [Google Scholar] [CrossRef]
- Bledau, A.S.; Schmidt, K.; Neumann, K.; Hill, U.; Ciotta, G.; Gupta, A.; Torres, D.C.; Fu, J.; Kranz, A.; Stewart, A.F.; et al. The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development 2014, 141, 1022–1035. [Google Scholar] [CrossRef] [Green Version]
- Bahat, A.; Kedmi, R.; Gazit, K.; Richardo-Lax, I.; Ainbinder, E.; Dikstein, R. TAF4b and TAF4 differentially regulate mouse embryonic stem cells maintenance and proliferation. Genes Cells 2013, 18, 225–237. [Google Scholar] [CrossRef]
- Messiaen, S.; Guiard, J.; Aigueperse, C.; Fliniaux, I.; Tourpin, S.; Barroca, V.; Allemand, I.; Fouchet, P.; Livera, G.; Vernet, M. Loss of the histone chaperone ASF1B reduces female reproductive capacity in mice. Reproduction 2016, 151, 477–489. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, L.; Dou, J.; Yu, T.; Cao, P.; Fan, N.; Borjigin, U.; Nashun, B. Distinct role of histone chaperone Asf1a and Asf1b during fertilization and pre-implantation embryonic development in mice. Epigenetics Chromatin 2021, 14, 55. [Google Scholar] [CrossRef]
- Akbas, G.E.; Taylor, H.S. HOXC and HOXD gene expression in human endometrium: Lack of redundancy with HOXA paralogs. Biol. Reprod. 2004, 70, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Winderickx, J.; Battisti, L.; Motulsky, A.G.; Deeb, S.S. Selective expression of human X chromosome-linked green opsin genes. Proc. Natl. Acad. Sci. USA 1992, 89, 9710–9714. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Motulsky, A.G.; Deeb, S.S. Visual Pigment Gene Structure and Expression in Human Retinae. Hum. Mol. Genet. 1997, 6, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Applebury, M.L.; Antoch, M.P.; Baxter, L.C.; Chun, L.L.Y.; Falk, J.D.; Farhangfar, F.; Kage, K.; Krzystolik, M.G.; Lyass, L.A.; Robbins, J.T. The Murine Cone Photoreceptor: A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning. Neuron 2000, 27, 513–523. [Google Scholar] [CrossRef]
- Stamboulian, M.; Guerrero, R.F.; Hahn, M.W.; Radivojac, P. The ortholog conjecture revisited: The value of orthologs and paralogs in function prediction. Bioinformatics 2020, 36, i219–i226. [Google Scholar] [CrossRef] [PubMed]
- Dandage, R.; Landry, C.R. Paralog dependency indirectly affects the robustness of human cells. Mol. Syst. Biol. 2019, 15, e8871. [Google Scholar] [CrossRef] [PubMed]
- Diss, G.; Ascencio, D.; DeLuna, A.; Landry, C.R. Molecular mechanisms of paralogous compensation and the robustness of cellular networks. J. Exp. Zool B Mol. Dev. Evol. 2014, 322, 488–499. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Chromosomal Location | Number of Exons | Length of Protein (AA) | Protein Identity (%) | Phenotypes | |||
---|---|---|---|---|---|---|---|---|
Mouse | Human | Mouse | Human | Mouse | Human | |||
CBP | 16 A1 | 16p13.3 | 31 | 33 | 2441 | 2442 | 95.57 | Altered lens induction [53] |
P300 | 15 E1 | 22q13.2 | 31 | 31 | 2412 | 2414 | 94.22 | |
Dll1 | 17 A2 | 6q27 | 11 | 11 | 722 | 723 | 88.77 | Affected neurogenesis and maintenance of RPCs [31,54] |
Dll4 | 2 E5 | 15q15.1 | 11 | 11 | 686 | 685 | 86.42 | |
Fgfr1 | 8 A2 | 8p11.23 | 28 | 24 | 822 | 822 | 98.42 | Altered lens fiber differentiation [55] |
Fgfr2 | 7 F3 | 10q26.13 | 19 | 26 | 821 | 821 | 96.95 | |
Fgfr3 | 5 B2 | 4p16.3 | 20 | 19 | 801 | 806 | 93.12 | |
Fgfr4 | 13 B1 | 5q35.2 | 19 | 18 | 799 | 802 | 89.86 | |
Hmx1 | 5 B3 | 4p16.1 | 3 | 3 | 332 | 348 | 89.46 | Ophthalmic anomalies [56,57] |
Hmx2 | 7 F3 | 10q26.13 | 3 | 2 | 273 | 273 | 93.77 | No eye-specific phenotype, hearing loss [56] |
Hmx3 | 7 F3 | 10q26.13 | 5 | 2 | 356 | 357 | 96.07 | |
Hsf1 | 15 D3 | 8q24.3 | 14 | 15 | 525 | 529 | 89.71 | Hsf4−/− cataract and abnormal lens fibers [58,59] |
Hsf2 | 10 B4 | 6q22.31 | 14 | 13 | 535 | 536 | 94.76 | |
Hsf4 | 8 D3 | 16q22.1 | 13 | 15 | 492 | 492 | 86.76 | |
Meis1 | 11 A3 | 2p14 | 14 | 13 | 390 | 390 | 99.74 | Arrested lens formation [60], hypocellular retina [61] |
Meis2 | 2 E4-E5 | 15q14 | 19 | 15 | 477 | 477 | 99.58 | |
Onecut1 | 9 D | 15q21.3 | 2 | 3 | 465 | 465 | 98.92 | Loss of horizontal cells [62] |
Onecut2 | 18 E1 | 18q21.31 | 3 | 6 | 505 | 504 | 99.01 | |
Opn1lw | - | X8q28 | - | 6 | - | 364 | - | Blue cone monochromacy (BMC) [63,64], deuteranopia, protanopia [65]. |
Opn1mw | X A7.3 | X8q28 | 6 | 6 | 359 | 364 | 87.74 | |
Opn1sw | 6 A3.3 | 7q32.1 | 5 | 5 | 346 | 348 | 85.26 | |
Pax6 | 2 E3 | 11p13 | 16 | 25 | 422 | 422 | 100 | Failure of lens and retinal development [52], ocular defects, incomplete fissure closure [66] |
Pax2 | 19 C3 | 10q24.31 | 13 | 14 | 414 | 417 | 99.03 | |
Six3 | 17 E4 | 2p21 | 3 | 2 | 333 | 332 | 97.59 | Defects in maintenance of multipotent neuroretinal progenitors [67] |
Six6 | 12 C3 | 14q23.1 | 2 | 2 | 246 | 246 | 97.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drobek, M. Paralogous Genes Involved in Embryonic Development: Lessons from the Eye and other Tissues. Genes 2022, 13, 2082. https://doi.org/10.3390/genes13112082
Drobek M. Paralogous Genes Involved in Embryonic Development: Lessons from the Eye and other Tissues. Genes. 2022; 13(11):2082. https://doi.org/10.3390/genes13112082
Chicago/Turabian StyleDrobek, Michaela. 2022. "Paralogous Genes Involved in Embryonic Development: Lessons from the Eye and other Tissues" Genes 13, no. 11: 2082. https://doi.org/10.3390/genes13112082
APA StyleDrobek, M. (2022). Paralogous Genes Involved in Embryonic Development: Lessons from the Eye and other Tissues. Genes, 13(11), 2082. https://doi.org/10.3390/genes13112082