MNBDR: A Module Network Based Method for Drug Repositioning
<p>Pipeline of Module Network Based Drug Repositioning (MNBDR). (<b>A</b>) MNBDR detects dense modules in the PPI networks and captures the cross-talks among the modules by permutation test to form a module network. (<b>B</b>) Based on the module network and gene expression data of disease samples, MNBDR applies the Pagerank algorithm to rank the important modules in disease. (<b>C</b>) Using the important modules in disease and the gene expression data of drug stimulating samples, MNBDR applies a new indicator to infer potential associations between drugs and diseases.</p> "> Figure 2
<p>Performance of three different methods. (<b>A</b>) AUC. (<b>B</b>) AUC0.1.</p> "> Figure 3
<p>Functional annotation of the module genes.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Data Set and Preprocessing
2.2. Benchmark Standard
2.3. Construction of the Module Network
2.4. Feature Space Transformation
2.5. Module Rank Based on Pagerank
2.6. Drug Prioritizing
2.7. Evaluation Metrics
2.8. Assessment
3. Results
3.1. Framework Overview
3.2. Comparing with CMap
3.3. Comparing with the Other Methods
3.4. Function Analysis of the Important Modules in Diseases
3.5. Case Study in Breast Cancer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement.
Data Availability Statement
Conflicts of Interest
References
- Tobinick, E.L. The value of drug repositioning in the current pharmaceutical market. Drug News Perspect. 2009, 22, 119. [Google Scholar] [CrossRef] [PubMed]
- Avorn, J. The $2.6 Billion Pill—Methodologic and Policy Considerations. N. Engl. J. Med. 2015, 372, 1877–1879. [Google Scholar] [CrossRef] [PubMed]
- Swinney, D.C.; Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 2011, 10, 507. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Sams-dodd, F. Target-based drug discovery: Is something wrong? define rational drug discovery programs. Drug Discov. Today 2005, 10, 139–147. [Google Scholar] [CrossRef]
- Nosengo, N. Can you teach old drugs new tricks? Nat. News 2016, 534, 314–316. [Google Scholar] [CrossRef]
- Molecules, S.; Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.; Subramanian, A.; et al. The connectivity map: Using using gene-expression signatures to connect small molecules, genes, and disease. Science 2006, 313, 1929–1935. [Google Scholar]
- Dudley, J.T.; Tibshirani, R.; Deshpande, T.; Butte, A.J. Disease signatures are robust across tissues and experiments. Mol. Syst. Biol. 2009, 5, 307. [Google Scholar] [CrossRef]
- Nevins, J.R.; Potti, A. Mining gene expression profiles: Expression signatures as cancer phenotypes. Nat. Rev. Genet. 2007, 8, 601–609. [Google Scholar] [CrossRef]
- Dudley, J.T.; Sirota, M.; Shenoy, M.; Pai, R.K.; Roedder, S.; Chiang, A.P.; Morgan, A.A.; Sarwal, M.M.; Pasricha, P.J.; Butte, A.J. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl. Med. 2011, 3, 96ra76. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-D.; Gant, T.W. A simple and robust method for connecting small-molecule drugs using gene-expression signatures. BMC Bioinform. 2008, 9, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.; Yang, L.; Kumar, V.; Agarwal, P. Systematic evaluation of connectivity map for disease indications. Genome Med. 2014, 6, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.; Xie, Q.; Kumar, V.; Hurle, M.; Freudenberg, J.M.; Yang, L.; Agarwal, P. Evaluation of analytical methods for connectivity map data. Biocomputing 2013, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Iorio, F.; Bosotti, R.; Scacheri, E.; Belcastro, V.; Mithbaokar, P.; Ferriero, R.; Murino, L.; Tagliaferri, R.; Brunetti-Pierri, N.; Isacchi, A.; et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc. Natl. Acad. Sci. USA 2010, 107, 14621–14626. [Google Scholar] [CrossRef] [Green Version]
- Saberian, N.; Peyvandipour, A.; Donato, M.; Ansari, S.; Draghici, S. A new computational drug repurposing method using established disease-drug pair knowledge. Bioinformatics 2019, 35, 3672–3678. [Google Scholar] [CrossRef]
- Xiong, M.; Li, B.; Zhu, Q.; Wang, Y.X.; Zhang, H.Y. Identification of transcription factors for drug-associated gene modules and biomedical implications. Bioinformatics 2014, 30, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Chung, F.H.; Chiang, Y.R.; Tseng, A.L.; Sung, Y.C.; Lu, J.; Huang, M.C.; Ma, N.; Lee, H.C. Functional Module Connectivity Map (FMCM): A framework for searching repurposed drug compounds for systems treatment of cancer and an application to colorectal adenocarcinoma. PLoS ONE 2014, 9, e86299. [Google Scholar] [CrossRef]
- Jia, Z.; Liu, Y.; Guan, N.; Bo, X.; Luo, Z.; Barnes, M.R. Cogena, a novel tool for co-expressed gene-set enrichment analysis, applied to drug repositioning and drug mode of action discovery. BMC Genom. 2016, 17, 414. [Google Scholar] [CrossRef] [Green Version]
- Spirin, V.; Mirny, L.A. Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. USA 2003, 100, 12123–12128. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.H.; Chu, X.Y.; Xue, G.; Xiong, J.H.; Zhang, H.Y. Identifying cancer prognostic modules by module network analysis. BMC Bioinform. 2019, 20, 85. [Google Scholar] [CrossRef] [Green Version]
- Page, L.; Brin, S.; Motwani, R. The PageRank Citation Ranking: Bringing Order to the Web; Stanford InfoLab: Stanford, CA, USA, 1999. [Google Scholar]
- Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 2017, 171, 1437–1452.e17. [Google Scholar] [CrossRef] [PubMed]
- Koboldt, D.C.; Fulton, R.S.; McLellan, M.D.; Schmidt, H.; Kalicki-Veizer, J.; McMichael, J.F.; Fulton, L.L.; Dooling, D.J.; Ding, L.; Mardis, E.R.; et al. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Wong, L. Comparative analysis and assessment of M. Tuberculosis H37Rv protein-protein interaction datasets. BMC Genom. 2011, 12, S20. [Google Scholar] [CrossRef] [Green Version]
- Quan, Y.; Luo, Z.H.; Yang, Q.Y.; Li, J.; Zhu, Q.; Liu, Y.M.; Lv, B.M.; Cui, Z.J.; Qin, X.; Xu, Y.H.; et al. Systems chemical genetics-based drug discovery: Prioritizing agents targeting multiple/reliable disease-associated genes as drug candidates. Front. Genet. 2019, 10, 474. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.H.; Coffman, A.C.; Ainscough, B.J.; Spies, N.C.; Skidmore, Z.L.; Campbell, K.M.; Krysiak, K.; Pan, D.; McMichael, J.F.; Eldred, J.M.; et al. DGIdb 2.0: Mining clinically relevant drug-gene interactions. Nucleic Acids Res. 2016, 44, D1036–D1044. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.; Zhang, C.; Zhu, F.; Xu, F.; Chen, S.Y.; Zhang, P.; Li, Y.H.; Yang, S.Y.; Wei, Y.Q.; Tao, L.; et al. Therapeutic target database update 2014: A resource for targeted therapeutics. Nucleic Acids Res. 2014, 42, 1118–1123. [Google Scholar] [CrossRef] [Green Version]
- Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A.C.; Liu, Y.; MacIejewski, A.; Arndt, D.; Wilson, M.; Neveu, V.; et al. DrugBank 4.0: Shedding new light on drug metabolism. Nucleic Acids Res. 2014, 42, 1091–1097. [Google Scholar] [CrossRef] [Green Version]
- Pruitt, K.D.; Maglott, D.R. RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res. 2001, 29, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Paul Shannon, A.M. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Cowen, L.; Ideker, T.; Raphael, B.J.; Sharan, R. Network propagation: A universal amplifier of genetic associations. Nat. Rev. Genet. 2017, 18, 551. [Google Scholar] [CrossRef] [PubMed]
- Halu, A.; Mondragón, R.J.; Panzarasa, P.; Bianconi, G. Multiplex PageRank. PLoS ONE 2013, 8, e78293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Järvelin, K.; Kekäläinen, J. Cumulated Gain-Based Evaluation in IR techniques. ACM Trans. Inf. Syst. 2002, 20, 422–446. [Google Scholar]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Wang, M.; Katsyv, I.; Irie, H.; Zhang, B. EMUDRA: Ensemble of multiple drug repositioning approaches to improve prediction accuracy. Bioinformatics 2018, 34, 3151–3159. [Google Scholar] [CrossRef] [Green Version]
- Deeds, E.J.; Ashenberg, O.; Shakhnovich, E.I. A simple physical model for scaling in protein-protein interaction networks. Proc. Natl. Acad. Sci. USA 2006, 103, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Umar, A.; Dunn, B.K.; Greenwald, P. Future directions in cancer prevention. Nat. Rev. Cancer 2012, 12, 835–848. [Google Scholar] [CrossRef]
- Lin, K.; Li, L.; Dai, Y.; Wang, H.; Teng, S.; Bao, X.; Lu, Z.J.; Wang, D. A comprehensive evaluation of connectivity methods for L1000 data. Brief. Bioinform. 2019, 21, 2194–2205. [Google Scholar] [CrossRef]
- Guney, E.; Menche, J.; Vidal, M.; Barábasi, A.L. Network-based in silico drug efficacy screening. Nat. Commun. 2016, 7, 10331. [Google Scholar] [CrossRef] [Green Version]
- Sumimoto, H.; Imabayashi, F.; Iwata, T.; Kawakami, Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med. 2006, 203, 1651–1656. [Google Scholar] [CrossRef] [Green Version]
- Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT Pathway for Cancer Drug Discovery. Nat. Rev. Drug Discov. 2005, 4, 988–1004. [Google Scholar] [CrossRef] [PubMed]
- Fresno Vara, J.Á.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C.; González-Barón, M. P13K/Akt signalling pathway and cancer. Cancer Treat. Rev. 2004, 30, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Montanaro, L.; Treré, D.; Derenzini, M. Nucleolus, ribosomes, and cancer. Am. J. Pathol. 2008, 173, 301–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Z.; Tindall, D.J. FOXOs, cancer and regulation of apoptosis. Oncogene 2008, 27, 2312–2319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, K. Rapid drug screen using 3D tumor organoids. Sci. Transl. Med. 2018, 10, eaar7507. [Google Scholar] [CrossRef]
- Yang, L.P.H. Romidepsin: In the treatment of T-cell lymphoma. Drugs 2011, 71, 1469–1480. [Google Scholar] [CrossRef]
- Campas-Moya, C. Romidepsin for the treatment of cutaneous T-cell lymphoma. Drugs Today 2009, 45, 787–795. [Google Scholar] [CrossRef]
- Robertson, F.M.; Chu, K.; Boley, K.M.; Ye, Z.; Liu, H.; Wright, M.C.; Moraes, R.; Zhang, X.; Green, T.L.; Barsky, S.H.; et al. The class I HDAC inhibitor Romidepsin targets inflammatory breast cancer tumor emboli and synergizes with paclitaxel to inhibit metastasis. J. Exp. Ther. Oncol. 2013, 10, 219–233. [Google Scholar]
- Roberts, W.N.; Liang, M.H.; Stern, S.H. Colchicine in Acute Gout: Reassessment of Risks and Benefits. JAMA J. Am. Med. Assoc. 1987, 257, 1920–1922. [Google Scholar] [CrossRef]
- Niel, E.; Scherrmann, J.M. Colchicine today. Jt. Bone Spine 2006, 73, 672–678. [Google Scholar] [CrossRef]
- Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 2010, 9, 790–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Lin, X.; Chang, H. Proliferation inhibition and apoptosis of Breast Cancer MCF-7 cells under the influence of colchicine. J. BUON 2016, 21, 570–575. [Google Scholar] [PubMed]
- Wang, R.C.; Chen, X.; Parissenti, A.M.; Joy, A.A.; Tuszynski, J.; Brindley, D.N.; Wang, Z. Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents. PLoS ONE 2017, 12, e0182400. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, R.; Yang, Y.; Huang, Y.; Li, X.; Liu, R.; Shen, X. Triptolide-induced in vitro and in vivo cytotoxicity in human breast cancer stem cells and primary breast cancer cells. Oncol. Rep. 2014, 31, 2181–2186. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Ma, J.; Guo, T.; Hu, R. Triptolide induces apoptosis of breast cancer cells via a mechanism associated with the Wnt/β-catenin signaling pathway. Exp. Ther. Med. 2014, 8, 505–508. [Google Scholar] [CrossRef] [Green Version]
Method | AveAUC | p-Value | AveAUC0.1 | p-Value |
---|---|---|---|---|
Gene based method | 0.520 | 4.6 × 10−6 | 0.0055 | 2.7 × 10−2 |
Module based method | 0.579 | 3.3 × 10−69 | 0.0086 | 2.6 × 10−41 |
MNBDR | 0.602 | 6.2 × 10−114 | 0.0101 | 1.7 × 10−80 |
Method | AveAUC | p-Value | AveAUC0.1 | p-Value |
---|---|---|---|---|
GASE2Score | 0.534 | 2.3 × 10−14 | 0.0065 | 8.7 × 10−9 |
GASE1Score | 0.532 | 6.2 × 10−13 | 0.0063 | 4.9 × 10−7 |
GASE0Score | 0.520 | 4.6 × 10−6 | 0.0055 | 2.7 × 10−2 |
ZhangScore | 0.518 | 3.3 × 10−5 | 0.0055 | 2.7 × 10−2 |
XSumScore | 0.548 | 8.2 × 10−27 | 0.0079 | 1.4 × 10−27 |
MNBDR | 0.602 | 6.2 × 10−114 | 0.0101 | 1.7 × 10−80 |
LLE-DML | 0.586 | 1.3 × 10−81 | 0.0086 | 2.6 × 10−41 |
Cogena | 0.572 | 7.7 × 10−58 | 0.0080 | 2.3 × 10−29 |
EMUDRA | 0.538 | 1.7 × 10−17 | 0.0058 | 1.1 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-G.; Zhou, X.-H. MNBDR: A Module Network Based Method for Drug Repositioning. Genes 2021, 12, 25. https://doi.org/10.3390/genes12010025
Chen H-G, Zhou X-H. MNBDR: A Module Network Based Method for Drug Repositioning. Genes. 2021; 12(1):25. https://doi.org/10.3390/genes12010025
Chicago/Turabian StyleChen, He-Gang, and Xiong-Hui Zhou. 2021. "MNBDR: A Module Network Based Method for Drug Repositioning" Genes 12, no. 1: 25. https://doi.org/10.3390/genes12010025
APA StyleChen, H. -G., & Zhou, X. -H. (2021). MNBDR: A Module Network Based Method for Drug Repositioning. Genes, 12(1), 25. https://doi.org/10.3390/genes12010025