Increasing Water Absorptivity of an Aerogel-Based Coating Mortar in Subsequent Wetting and Drying
"> Figure 1
<p>The mass gain (kg/m<sup>2</sup>) of all sample sets (1–4) during 90 min of capillary water absorption from free water. Each measurement point represents the mean value of the three samples in each set.</p> "> Figure 2
<p>The calculated water absorption coefficient, A<sub>cap</sub> (kg/m<sup>2</sup>·min<sup>0.5</sup>), for all three rounds of measurement using Equation (1). Each value represents the mean value of three samples in each set. The declared A<sub>cap</sub> of the ACM is stated to be less than 0.2 kg/m<sup>2</sup>·min<sup>0.5</sup>.</p> "> Figure 3
<p>(<b>Left</b>): Relative humidity at checkpoints P2 (middle of brick). (<b>Right</b>): Temperature at checkpoint P4 (interior surface).</p> "> Figure 4
<p>(<b>Left</b>): Relative humidity at checkpoints P2 (middle of brick). (<b>Right</b>): Temperature at checkpoint P4 (interior surface).</p> "> Figure 5
<p>(<b>Left</b>): Relative humidity at checkpoint P2 (middle of brick). (<b>Right</b>): Relative humidity at checkpoint P3 (interior of the brick).</p> "> Figure 6
<p>(<b>a</b>,<b>b</b>) Mixing and casting of the cubic samples. (<b>c</b>) Hardened sample: unsealed (left) and sealed on the edges by epoxy (right). (<b>d</b>) The set up used for the measurements. Continuous surface contact with water was maintained in all containers (minimum water level of 5–10 mm). A high absorbent dishcloth (blue) was placed at the bottom of each container to help maintain constant and even water content on the entire surface area of each sample. Photo: the authors.</p> "> Figure 7
<p>Parts of the exterior of the Örgryte New Church, selected as a reference building in this study. Photo: the authors.</p> "> Figure 8
<p>Example of the moisture-related damage at the interior of the Örgryte New Church: weathering of the internal coating mortar (plaster) and paint, and salt efflorescence. Photo: the authors.</p> "> Figure 9
<p>Schematic illustrating a multilayer wall system with ACM. To compensate for the low mechanical strength of the ACM, it is applied in a multilayer wall system. On the load-bearing structure, an undercoat layer is applied under the ACM (10–50 mm). To protect the ACM, a primer, reinforcement mortar and layer of coating and paint is applied to the surface. In total, this led to the system being 5–10 mm thicker than the ACM layer.</p> "> Figure 10
<p>Geometries of the simulated wall elements (wall A, B, and C) and the positioning of the checkpoints (marked with ×).</p> "> Figure 11
<p>Declared moisture-dependent thermal conductivity of the ACM. The thermal conductivity is increased by less than 13% up to 80% RH and then rises sharply up to 100 mW/(m·K) at saturation [<a href="#B30-gels-08-00764" class="html-bibr">30</a>].</p> "> Figure A1
<p>Scenario 0: Relative humidity at checkpoints P1–P4.</p> "> Figure A2
<p>Scenario 0: Total water content in wall A and number of freeze-thaw cycles at checkpoint P1 (exterior surface).</p> "> Figure A3
<p>Scenario 1: Relative humidity at checkpoints P1–P4.</p> "> Figure A4
<p>Scenario 1: Temperature at checkpoints P4 and number of freeze-thaw cycles at checkpoint P1.</p> "> Figure A5
<p>Scenario 2: Relative humidity at checkpoints P1–P4.</p> "> Figure A6
<p>Scenario 2: Temperature at checkpoints P4 (interior surface) and number of freeze-thaw cycles at checkpoint P1 (exterior surface).</p> "> Figure A7
<p>Scenario 3: Relative humidity at checkpoints P1–P4.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Laboratory Measurements
2.2. Numerical Hygrothermal Simulations
3. Conclusions
4. Materials and Methods
4.1. Laboratory Measurements
4.2. Impact Case Study on a Reference Building: Numerical Hygrothermal Simulations
4.2.1. Reference Building: Örgryte New Church
4.2.2. Multilayer Wall System with ACM
4.2.3. Numerical Hygrothermal Simulations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Scenario | Rain: AFR | Additional Vapor Resistance: Exterior | Brick Type | ACM |
---|---|---|---|---|
No | Masonry | NO | ||
Scenario 0 | 0.7 | No | Extruded | NO |
No | Historical | NO |
Material | ρ (kg/m3) | (mW/(m·K)) | µ (−) | 10−11 (m2/s) | 10−8 (m2/s) |
---|---|---|---|---|---|
Brick masonry a | 1900 | 600 | 10 | 2.5 | 1.2 |
Extruded brick a | 1650 | 600 | 9.5 | 5.3 | 4.4 |
Historical brick a | 1800 | 600 | 15 | 10 | 9.3 |
Internal coating mortar | 1200 | 820 | 10 | 4.1 | 1.0 |
Paint c (sd:0.01) | - | - | 50 | - | - |
Appendix B
Appendix C
Appendix D
References
- Karim, A.N.; Johansson, P.; Kalagasidis, A.S. Knowledge gaps regarding the hygrothermal and long-term performance of aerogel-based coating mortars. Constr. Build. Mater. 2021, 314, 125602. [Google Scholar] [CrossRef]
- Stahl, T.; Wakili, K.G.; Heiduk, E. Stability Relevant Properties of an SiO2 Aerogel-Based Rendering and Its Application on Buildings. Sustainability 2021, 13, 10035. [Google Scholar] [CrossRef]
- Stahl, T.; Wakili, K.G.; Hartmeier, S.; Franov, E.; Niederberger, W.; Zimmermann, M. Temperature and moisture evolution beneath an aerogel based rendering applied to a historic building. J. Build. Eng. 2017, 12, 140–146. [Google Scholar] [CrossRef]
- Fenoglio, E.; Fantucci, S.; Perino, M.; Serra, V.; Dutto, M.; Marino, V. Energy retrofit of residential buildings with a novel super-insulating aerogel-based plaster. AiCARR J. 2020, 61, 44–48. [Google Scholar]
- Frick, J.; Sakiyama, N.R.M.; Stipetic, M.; Garrecht, H. Large Scale Laboratory and Field Tests of Aerogel Renders. In Proceedings of the XV International Conference on Durability of Building Materials and Components—DBMC 2020, Barcelona, Spain, 20–23 October 2020. [Google Scholar] [CrossRef]
- Sakiyama, N.R.M.; Frick, J.; Stipetic, M.; Oertel, T.; Garrecht, H. Hygrothermal performance of a new aerogel-based insulating render through weathering: Impact on building energy efficiency. Build. Environ. 2021, 202, 108004. [Google Scholar] [CrossRef]
- Maia, J.; Pedroso, M.; Ramos, N.M.M.; Flores-Colen, I.; Pereira, P.F.; Silva, L. Durability of a New Thermal Aerogel-Based Rendering System under Distinct Accelerated Aging Conditions. Materials 2021, 14, 5413. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.N. Aerogel-Based Plasters for Renovation of Buildings in Sweden: Identification of Possibilities, Information Deficiencies and Challenges. Licentiate Thesis, Chalmers University of Technology, Göteborg, Sweden, 2021. [Google Scholar]
- Cornick, S.M.; Lacasse, M.A. A Review of Climate Loads Relevant to Assessing the Watertightness Performance of Walls, Windows, and Wall-Window Interfaces. J. ASTM Int. 2005, 2, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Geving, S.; Erichsen, T.H.; Nore, K.; Time, B. Hygrothermal Conditions in Wooden Claddings—Test House Measurements; Project report 407—2006; Norwegian Building Research Institute: Oslo, Norway, 2006. [Google Scholar]
- Lacasse, M. Recent Studies on the Control of Rain Penetration in Exterior Wood-Frame Walls; National Research Council Canada: Ottawa, ON, Canada, 2003. [Google Scholar]
- Samuelson, I.; Mjörnell, K.; Jansson, A. Moisture damage in rendered, undrained, well insulated stud walls. In Third International Symposium on Tunnel Safety; Danish Society of Engineers, IDA: Copenhagen, Denmark, 2008. [Google Scholar]
- Lacasse, M.A.; Miyauchi, H.; Hiemstra, J.; Wolf, A.T.; Dean, S.W. Water Penetration of Cladding Components—Results from Laboratory Tests on Simulated Sealed Vertical and Horizontal Joints of Wall Cladding. J. ASTM Int. 2009, 6, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- EN 998-1; Specification for Mortar for Masonry—Part 1: Rendering and Plastering Mortar. European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- EN 1015-18; Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient due to Capillary Action of Hardened Mortar. European Committee for Standardization (CEN): Brussels, Belgium, 2002.
- De Fátima Júlio, M.; Soares, A.; Ilharco, L.M.; Flores-Colen, I.; de Brito, J. Aerogel-based renders with lightweight aggregates: Correlation between molecular/pore structure and performance. Constr. Build. Mater. 2016, 124, 485–495. [Google Scholar] [CrossRef]
- Pedroso, M.; Flores-Colen, I.; Silvestre, J.D.; Gomes, M.G.; Silva, L.; Sequeira, P.; de Brito, J. Characterisation of a multilayer external wall thermal insulation system. Application in a Mediterranean climate. J. Build. Eng. 2020, 30, 101265. [Google Scholar] [CrossRef]
- Soares, A.; De Fátima Júlio, M.; Flores-Colen, I.; Ilharco, L.M.; De Brito, J. EN 998-1 performance requirements for thermal aerogel-based renders. Constr. Build. Mater. 2018, 179, 453–460. [Google Scholar] [CrossRef]
- Flores-Colen, I.; Pedroso, M.; Soares, A.; Gomes, M.D.G.; Ramos, N.M.; Maia, J.; Sousa, R.; Sousa, H.; Silva, L. In-Situ Tests on Silica Aerogel-Based Rendering Walls. In Proceedings of the XV International Conference on Durability of Building Materials and Components—DBMC 2020, Barcelona, Spain, 20–23 October 2020. [Google Scholar] [CrossRef]
- Maia, J.; Pedroso, M.; Ramos, N.M.M.; Pereira, P.F.; Flores-Colen, I.; Gomes, M.G.; Silva, L. Hygrothermal performance of a new thermal aerogel-based render under distinct climatic conditions. Energy Build. 2021, 243, 111001. [Google Scholar] [CrossRef]
- Pedroso, M.; Flores-Colen, I.; Silvestre, J.; Gomes, M.; Silva, L.; Ilharco, L. Physical, mechanical, and microstructural characterisation of an innovative thermal insulating render incorporating silica aerogel. Energy Build. 2020, 211, 109793. [Google Scholar] [CrossRef]
- Ibrahim, M.; Wurtz, E.; Biwole, P.H.; Achard, P.; Sallee, H. Hygrothermal performance of exterior walls covered with aerogel-based insulating rendering. Energy Build. 2014, 84, 241–251. [Google Scholar] [CrossRef]
- Berardi, U.; Nosrati, R.H. Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions. Energy 2018, 147, 1188–1202. [Google Scholar] [CrossRef]
- Nosrati, R.; Berardi, U. Long-term performance of aerogel-enhanced materials. Energy Procedia 2017, 132, 303–308. [Google Scholar] [CrossRef]
- Morgado, A.; Soares, A.; Flores-Colen, I.; Veiga, M.; Gomes, M. Durability of Thermal Renders with Lightweight and Thermal Insulating Aggregates: Regranulated Expanded Cork, Silica Aerogel and Expanded Polystyrene. Gels 2021, 7, 35. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, L.; Gao, J.; Punkki, J. The Surface Moisture Transport Model for Cement Mortar Under Dry-Wet Cycles. Electron J. 2018, 1–22. [Google Scholar] [CrossRef]
- Zhou, X.; Carmeliet, J.; Derome, D. Influence of envelope properties on interior insulation solutions for masonry walls. Build. Environ. 2018, 135, 246–256. [Google Scholar] [CrossRef]
- Guizzardi, M.; Carmeliet, J.; Derome, D. Risk analysis of biodeterioration of wooden beams embedded in internally insulated masonry walls. Constr. Build. Mater. 2015, 99, 159–168. [Google Scholar] [CrossRef]
- Wall Systems. HECK AERO iP 2022. Available online: https://www.wall-systems.com/produkte/daemmputze-innendaemmung/aero-ip (accessed on 23 October 2022).
- METTLER TOLEDO. PG503-S DeltaRange—Overview—METTLER TOLEDO n.d. Available online: https://www.mt.com/us/en/home/phased_out_products/others/PG503-S_DR.html (accessed on 22 August 2022).
- Balksten, K.; Lange, J.; Lindholm, M. Fuktproblem i Salt-Och Frostskadat Tegelmurverk-Fördjupad Analys av Örgryte nya Kyrka; Göteborgs Stift: Göteborg, Sweden, 2012. [Google Scholar]
- Fraunhofer IBP. WUFI 2020. Available online: https://wufi.de/en/ (accessed on 20 July 2022).
- Künzel, H.M. Simultaneous Heat and Moisture Transport in Building Components: One- and Two-Dimensional Calculation Using Simple Parameters; Fraunhofer IRB Verlag: Suttgart, Germany, 1995. [Google Scholar]
- Geving, S.; Holme, J. Vapour retarders in wood frame walls and their effect on the drying capability. Front. Archit. Res. 2013, 2, 42–49. [Google Scholar] [CrossRef]
- EN 15026; Hygrothermal Performance of Building Components and Building Elements—Assessment of Moisture Transfer by Numerical Simulation. European Committee for Standardization (CEN): Brussels, Belgium, 2007.
P1 | P2 | P3 | P4 | |
---|---|---|---|---|
Wall A | 99 | 99 | 83 | 74 |
Wall B1 | 99 | 99 | 99 | 59 |
Wall B2 | 99 | 99 | 99 | 73 |
Wall B3 | 99 | 99 | 99 | 72 |
Maximum variation B1–B3 (%) | 0 | 0 | 0 | 21 |
P1 | P2 | P3 | P4 | |
---|---|---|---|---|
Wall A | 62 | 58 | 53 | 53 |
Wall B1 | 62 | 63 | 64 | 52 |
Wall B2 | 63 | 63 | 64 | 52 |
Wall B3 | 62 | 63 | 64 | 52 |
Maximum variation B1–B3 (%) | 2 | 0 | 0 | 0 |
P1 | P2 | P3 | P4 | |
---|---|---|---|---|
Wall A | 99 | 99 | 83 | 74 |
Wall B1 | 57 | 56 | 52 | 71 |
Wall B2 | 69 | 61 | 52 | 71 |
Wall B3 | 78 | 81 | 54 | 72 |
Maximum variation B1–B3 (%) | 31 | 36 | 4 | 1 |
Property | Unit | Declared Value |
---|---|---|
Bulk Density (ρ) | (kg/m3) | 180 |
Thermal conductivity (λ) | mW/(m·K) | 40 |
Water vapor permeability coefficient (µ-value) | - | ≤5 |
Water absorption coefficient (Acap) | kg/(m2·min0.5) | 0.2 (W2) |
Compressive strength (σc) | N/mm2 | 0.5 (CS I) |
Dynamic modulus of elasticity (Edyn) | N/mm2 | <100 |
Sample Set | Number of Samples | Sample Size | Drying Condition | Edge Condition | Number of Testing Rounds/Duration |
---|---|---|---|---|---|
1 | 3 | 100 × 100 × 100 mm3 | 60 °C | Sealed | 3 rounds/90 min |
2 | 3 | 100 × 100 × 100 mm3 | 60 °C | unsealed | 3 rounds/90 min |
3 | 3 | 100 × 100 × 100 mm3 | 20 °C (50% RH) | Sealed | 3 a rounds/90 min |
4 | 3 | 100 × 100 × 100 mm3 | 20 °C (50% RH) | unsealed | 3 rounds/90 min |
Material | ρ (kg/m3) | (mW/(m·K)) | µ (−) | 10−11 (m2/s) | 10−8 (m2/s) |
---|---|---|---|---|---|
Extruded brick a | 1650 | 600 | 9.5 | 5.3 | 4.4 |
Additional vapor resistance a,b (sd:0.1 m) | - | - | 1000 | - | - |
Internal coating mortar | 1200 | 820 | 10 | 4.1 | 1.0 |
Paint c (sd:0.01) | - | - | 50 | - | - |
ACM-1 | 181 | 40 | 5 | 0.05 | 0.04 |
ACM-2 | 181 | 40 | 5 | 1.2 | 1.1 |
ACM-3 | 181 | 40 | 5 | 5.2 | 4.4 |
Scenario | Rain: AFR | Wall A | Wall B (B1, B2, B3) | Wall C (C1, C2, C3) | Additional Vapor Resistance: Exterior | ACM |
---|---|---|---|---|---|---|
Sd = 0.1 m | ACM-1 | |||||
Scenario 1 | 0.7 | Yes | Yes | No | Sd = 0.1 m | ACM-2 |
Sd = 0.1 m | ACM-3 | |||||
Sd = 0.1 m | ACM-1 | |||||
Scenario 2 | 0 | Yes | Yes | No | Sd = 0.1 m | ACM-2 |
Sd = 0.1 m | ACM-3 | |||||
Sd = 0.1 m a | ACM-1 | |||||
Scenario 3 | 0.7 | Yes | No | Yes | Sd = 0.1 m a | ACM-2 |
Sd = 0.1 m a | ACM-3 |
Exterior heat transfer coefficient | 25 W/m2·K |
Interior heat transfer coefficient | 8 W/m2·K |
Initial condition | 8.8 °C, 74% RH a |
Short-wave radiation absorptivity | 0.68 |
Long-wave radiation emissivity | 0.9 |
Orientation | South b |
Adhering fraction of rain | 0.7, 0 |
Indoor climate | ISO EN 15026: Normal moisture load |
Maximum temperature (°C) | 27.8 | Maximum relative humidity (%) | 94 |
Average temperature (°C) | 8.8 | Average relative humidity (%) | 74 |
Minimum temperature (°C) | −12.2 | Minimum relative humidity (%) | 19 |
Average wind a (m/s) | 2.97 | Accumulated rain load (mm/year) | 1074 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karim, A.N.; Johansson, P.; Sasic Kalagasidis, A. Increasing Water Absorptivity of an Aerogel-Based Coating Mortar in Subsequent Wetting and Drying. Gels 2022, 8, 764. https://doi.org/10.3390/gels8120764
Karim AN, Johansson P, Sasic Kalagasidis A. Increasing Water Absorptivity of an Aerogel-Based Coating Mortar in Subsequent Wetting and Drying. Gels. 2022; 8(12):764. https://doi.org/10.3390/gels8120764
Chicago/Turabian StyleKarim, Ali Naman, Pär Johansson, and Angela Sasic Kalagasidis. 2022. "Increasing Water Absorptivity of an Aerogel-Based Coating Mortar in Subsequent Wetting and Drying" Gels 8, no. 12: 764. https://doi.org/10.3390/gels8120764
APA StyleKarim, A. N., Johansson, P., & Sasic Kalagasidis, A. (2022). Increasing Water Absorptivity of an Aerogel-Based Coating Mortar in Subsequent Wetting and Drying. Gels, 8(12), 764. https://doi.org/10.3390/gels8120764