The Effect of Hydrogels with Different Chemical Compositions on the Behavior of Alkali-Activated Slag Pastes
<p>Absorption of different hydrogels in (<b>a</b>) activator solution and (<b>b</b>) slag and activator solution mixture.</p> "> Figure 2
<p>Heat flow of the pastes with and without hydrogels.</p> "> Figure 3
<p>Autogenous shrinkage of the pastes with and without hydrogels.</p> "> Figure 4
<p>Compressive strength of the pastes with and without hydrogels after 28 days of curing.</p> "> Figure 5
<p>Electrical resistivity of the pastes with and without hydrogels at different ages of curing.</p> "> Figure 6
<p>TGA and DTG curves of the paste without hydrogel and the pastes with select hydrogels after 28 days of curing.</p> "> Figure 7
<p>FTIR spectra of the paste without hydrogel and the pastes with select hydrogels after 28 days of curing.</p> "> Figure 8
<p>Two-dimensional images of a cross section of AAS-H-a at (<b>a</b>) 4 h, (<b>b</b>) 8 h, (<b>c</b>) 24 h, and (<b>d</b>) 72 h obtained from micro-CT.</p> "> Figure 9
<p>Total volume fraction of hydrogels in AAS-H-a and AAS-H-b at different times of curing.</p> "> Figure 10
<p>Desorption of hydrogels in AAS-H-a and AAS-H-b at different times of curing.</p> "> Figure 11
<p>Size of hydrogels in AAS-H-a and AAS-H-b at different times of curing.</p> "> Figure 12
<p>SEM image showing the particle size and morphology of H-d.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Absorption in Solution
2.2. Absorption in Slag Mixture
2.3. Flow Test
2.4. Setting Time
2.5. Heat Flow
2.6. Autogenous Shrinkage
2.7. Compressive Strength
2.8. Electrical Resistivity
2.9. Thermogravimetric Analysis (TGA)
2.10. Fourier Transform Infrared Spectroscopy (FTIR)
2.11. Micro-CT
3. Conclusions
- The absorption of hydrogels in AAS was measured using the teabag test, modified teabag test, and flow test as a direct and an indirect method, respectively. While a similar hydrogel absorption trend was observed in the teabag test, modified teabag test, and flow test, the values of hydrogel absorption were largely different between the modified teabag test and flow test.
- Compressive strength and electrical resistivity of AAS with hydrogels were shown to decrease compared to AAS without hydrogels; the creation of macrovoids resulting from hydrogel absorption/desorption and change in capillary pore structure are stipulated to be the reasons for this reduction.
- TGA and FTIR indicated that the addition of hydrogels did not significantly affect the chemical characteristics of AAS.
- Micro-CT allowed for the monitoring of the absorption and desorption of hydrogels in AAS starting from the first few hours until several days after mixing. For the pastes studied in micro-CT, the onset of hydrogel desorption seemed to be close to the final setting time of the pastes. This observation is in agreement with prior investigations using Portland cement systems [66,67,68].
- It is recommended that the use of the flow test to determine hydrogel absorption in the alkali-activated slag systems be undertaken with caution. Further research is needed to explore the dependence of this method on various parameters, including the water/slag and the time from the first contact of the slag with the activator solution until the test is conducted.
4. Materials and Methods
4.1. Materials
4.1.1. Hydrogels
4.1.2. Paste Mix Design
4.2. Absorption Using Teabag Test and Modified Teabag Test
4.3. Absorption Using Flow Test
4.4. Setting Time Test
4.5. Autogenous Shrinkage Test
4.6. Isothermal Calorimetry Test
4.7. Thermogravimetric Analysis (TGA)
4.8. Fourier Transform Infrared Spectroscopy (FTIR)
4.9. Micro-CT Analysis
4.10. Compressive Strength Test
4.11. Electrical Resistivity Test
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hendricks, C.A.; Worrell, E.; Jager, D.; Blok, K.; Riemer, P. Emission reduction of greenhouse gases from the cement industry. In Proceedings of the Fourth International Conference on Greenhouse Gas Control Technologies, Cheltenham, UK, 1 July 1999; pp. 939–944. [Google Scholar]
- Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. Carbondioxide emissions from the global cement industry. Annu. Rev. Energy Environ. 2001, 26, 303–329. [Google Scholar] [CrossRef]
- World Energy Council. Efficient Use of Energy Utilizing High Technology: An Assessment of Energy Use in Industry and Building; World Energy Council: London, UK, 1995. [Google Scholar]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. The role of inorganic polymer technology in the development of “green concrete”. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Sakulich, A.R.; Anderson, E.; Schauer, C.; Barsoum, M.W. Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete. Constr. Build. Mater. 2009, 23, 2951–2957. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 2003, 33, 1607–1611. [Google Scholar] [CrossRef]
- Hi, C.; Krivenko, P.; Roy, D. Alkali-Activated Cements and Concrete; Taylor and Francis: New York, NY, USA, 2006. [Google Scholar]
- Cartwright, C.; Rajabipour, F.; Radli, A. Shrinkage Characteristics of Alkali-Activated Slag Cements. J. Mater. Civ. Eng. 2014, 27, 1–9. [Google Scholar] [CrossRef]
- Ye, H.; Cartwright, C.; Rajabipour, F.; Radlińska, A. Understanding the drying shrinkage performance of alkali-activated slag mortars. Cem. Concr. Compos. 2017, 76, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Sakulich, A.R.; Bentz, D.P. Mitigation of autogenous shrinkage in alkali activated slag mortars by internal curing. Mater. Struct. Constr. 2013, 46, 1355–1367. [Google Scholar] [CrossRef]
- Palacios, M.; Puertas, F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 2007, 37, 691–702. [Google Scholar] [CrossRef]
- Collins, F.; Sanjayan, J. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem. Concr. Res. 2000, 30, 1401–1406. [Google Scholar] [CrossRef]
- Neto, A.A.M.; Cincotto, M.A.; Repette, W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem. Concr. Res. 2008, 38, 565–574. [Google Scholar] [CrossRef]
- Neto, A.A.M.; Cincotto, M.A.; Repette, W. Mechanical properties, drying and autogenous shrinkage of blast furnace slag activated with hydrated lime and gypsum. Cem. Concr. Compos. 2010, 32, 312–318. [Google Scholar] [CrossRef]
- Atiş, C.D.; Bilim, C.; Çelik, Ö.; Karahan, O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr. Build. Mater. 2009, 23, 548–555. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cem. Concr. Res. 1999, 29, 1619–1625. [Google Scholar] [CrossRef]
- Lura, P.; Jensen, O.M.; van Breugel, K. Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cem. Concr. Res. 2003, 33, 223–232. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. Effect of admixtures on properties of alkali-activated slag concrete. Cem. Concr. Res. 2000, 30, 1367–1374. [Google Scholar] [CrossRef]
- Jensen, O.M.; Hansen, P.F. Water-entrained cement-based materials II. Experimental observations. Cem. Concr. Res. 2002, 32, 973–978. [Google Scholar] [CrossRef]
- Beushausen, H.; Gillmer, M.; Alexander, M. The influence of superabsorbent polymers on strength and durability properties of blended cement mortars. Cem. Concr. Compos. 2014, 52, 73–80. [Google Scholar] [CrossRef]
- Hasholt, M.T.; Jensen, O.M. Chloride migration in concrete with superabsorbent polymers. Cem. Concr. Compos. 2015, 55, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Mechtcherine, V.; Secrieru, E.; Schröfl, C. Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars—Development of yield stress and plastic viscosity over time. Cem. Concr. Res. 2015, 67, 52–65. [Google Scholar] [CrossRef]
- Snoeck, D.; Schaubroeck, D.; Dubruel, P.; de Belie, N. Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50. Constr. Build. Mater. 2014, 72, 148–157. [Google Scholar] [CrossRef]
- Jensen, O.M.; Hansen, P.F. Water-entrained cement-based materials I. Principles and theoretical background. Cem. Concr. Res. 2001, 31, 647–654. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Reinhardt, H.-W. Application of Super Absorbent Polymers (SAP) in Concrete Construction; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Cusson, D.; Hoogeveen, T. Internal curing of high-performance concrete with pre-soaked fine lightweight aggregate for prevention of autogenous shrinkage cracking. Cem. Concr. Res. 2008, 38, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Şahmaran, M.; Lachemi, M.; Hossain, K.M.a.; Li, V.C. Internal curing of engineered cementitious composites for prevention of early age autogenous shrinkage cracking. Cem. Concr. Res. 2009, 39, 893–901. [Google Scholar] [CrossRef]
- Bentur, A.; Igarashi, S.; Kovler, K. Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates. Cem. Concr. Res. 2001, 31, 1587–1591. [Google Scholar] [CrossRef]
- de Sensale, G.R.; Goncalves, A.F. Effects of fine LWA and SAP as internal water curing agents. Int. J. Concr. Struct. Mater. 2014, 8, 229–238. [Google Scholar] [CrossRef]
- Zhu, Q.; Barney, C.W.; Erk, K.A. Effect of ionic crosslinking on the swelling and mechanical response of model superabsorbent polymer hydrogels for internally cured concrete. Mater. Struct. 2015, 48, 2261–2276. [Google Scholar] [CrossRef]
- Siriwatwechakul, W.; Siramanont, J.; Vichit-Vadakan, W. Behavior of Superabsorbent Polymers in Calcium- and Sodium-Rich Solutions. J. Mater. Civ. Eng. 2012, 24, 976–980. [Google Scholar] [CrossRef]
- Farzanian, K.; Vafaei, B.; Ghahremaninezhad, A. The behavior of superabsorbent polymers (SAPs) in cement mixtures with glass powders as supplementary cementitious materials. Materials 2019, 12, 3597. [Google Scholar] [CrossRef] [Green Version]
- Schröfl, C.; Mechtcherine, V.; Gorges, M. Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cem. Concr. Res. 2012, 42, 865–873. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Fakoorpoor, S.M.; Hosseini, P.; Khaloo, A. Interactions between superabsorbent polymers and cement-based composites incorporating colloidal silica nanoparticles. Cem. Concr. Compos. 2013, 37, 196–204. [Google Scholar] [CrossRef]
- Farzanian, K.; Teixeira, K.P.; Rocha, I.P.; Carneiro, L.D.; Ghahremaninezhad, A. The mechanical strength, degree of hydration, and electrical resistivity of cement pastes modified with superabsorbent polymers. Constr. Build. Mater. 2016, 109, 156–165. [Google Scholar] [CrossRef]
- Kamali, M.; Ghahremaninezhad, A. An investigation into the influence of superabsorbent polymers on the properties of glass powder modified cement pastes. Constr. Build. Mater. 2017, 149, 236–247. [Google Scholar] [CrossRef]
- Jensen, O.M. Use of superabsorbent polymers in construction materials. In Proceedings of the 1st International Conference on Microstructure Related Durability of Cementitious Composites, Nanjing, China, 13–15 October 2008; Sun, H.C.W., van Breugel, K., Miao, C., Ye, G., Eds.; RILEM Publications: Bagneux, France, 2008; pp. 757–764. [Google Scholar]
- Sikora, K.S.; Klemm, A.J. Effect of Superabsorbent Polymers on Workability and Hydration Process in Fly Ash Cementitious Composites. J. Mater. Civ. Eng. 2015, 27, 04014170. [Google Scholar] [CrossRef]
- Igarashi, S.; Watanabe, A.; Jensen, O.M.; Lura, P.; Kovler, K. Experimental study on prevention of autogenous deformation by internal curing using super-absorbent polymer particles. In Proceedings of the International RILEM Conference on Volume Changes of Hardening Concrete: Testing and Mitigation, Lyngby, Denmark, 20–23 August 2006; Jensen, O.M., Lura, P., Kovler, K., Eds.; RILEM Publications: Gabneus, France, 2006; pp. 77–86. [Google Scholar]
- Snoeck, D.; Velasco, L.F.; Mignon, A.; van Vlierberghe, S.; Dubruel, P.; Lodewyckx, P.; de Belie, N. The effects of superabsorbent polymers on the microstructure of cementitious materials studied by means of sorption experiments. Cem. Concr. Res. 2015, 77, 26–35. [Google Scholar] [CrossRef]
- Lura, P.; Durand, F.; Loukili, A.; Kovler, K. Compressive strength of cement pastes and mortars with superabsorbent polymers. In Proceedings of the International RILEM Conference on Volume Changes of Hardening Concrete: Testing and Mitigation, Lyngby, Denmark, 20–23 August 2006; pp. 117–125. [Google Scholar]
- Li, Z.; Wyrzykowski, M.; Dong, H.; Granja, J.; Azenha, M.; Lura, P.; Ye, G. Internal curing by superabsorbent polymers in alkali-activated slag. Cem. Concr. Res. 2020, 135, 106123. [Google Scholar] [CrossRef]
- Oh, S.; Choi, Y.C. Superabsorbent polymers as internal curing agents in alkali activated slag mortars. Constr. Build. Mater. 2018, 159, 1–8. [Google Scholar] [CrossRef]
- Song, C.; Cheol, Y.; Choi, S. Effect of internal curing by superabsorbent polymers—Internal relative humidity and autogenous shrinkage of alkali-activated slag mortars. Constr. Build. Mater. 2016, 123, 198–206. [Google Scholar] [CrossRef]
- Tu, W.; Zhu, Y.; Fang, G.; Wang, X.; Zhang, M. Internal curing of alkali-activated fly ash-slag pastes using superabsorbent polymer. Cem. Concr. Res. 2019, 116, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Krafcik, M.J.; Erk, K.A. Characterization of superabsorbent poly (sodium-acrylate acrylamide) hydrogels and influence of chemical structure on internally cured mortar. Mater. Struct. 2016, 49, 4765–4778. [Google Scholar] [CrossRef]
- Kang, S.H.; Hong, S.G.; Moon, J. Importance of monovalent ions on water retention capacity of superabsorbent polymer in cement based solutions. Cem. Concr. Compos. 2018, 88, 64–72. [Google Scholar] [CrossRef]
- Lee, H.X.D.; Wong, H.S.; Buenfeld, N.R. Effect of alkalinity and calcium concentration of pore solution on the swelling and ionic exchange of superabsorbent polymers in cement paste. Cem. Concr. Compos. 2018, 88, 150–164. [Google Scholar] [CrossRef]
- Kang, S.H.; Hong, S.G.; Moon, J. Absorption kinetics of superabsorbent polymers (SAP) in various cement-based solutions. Cem. Concr. Res. 2017, 97, 73–83. [Google Scholar] [CrossRef]
- Gruskovnjak, A.; Lothenbach, B.; Holzer, L.; Figi, R.; Winnefeld, F. Hydration of alkali-activated slag: Comparison with ordinary Portland cement. Adv. Cem. Res. 2006, 18, 119–128. [Google Scholar] [CrossRef]
- Zuo, Y.; Nedeljković, M.; Ye, G. Pore solution composition of alkali-activated slag/fly ash pastes. Cem. Concr. Res. 2019, 115, 230–250. [Google Scholar] [CrossRef]
- Krafcik, M.J.; Bose, B.; Erk, K.A. Synthesis and characterization of polymer-silica composite hydrogel particles and influence of hydrogel composition on cement paste microstructure. Adv. Civ. Eng. Mater. 2018, 7, 590–613. [Google Scholar]
- Mignon, A.; Graulus, G.J.; Snoeck, D.; Martins, J.; de Belie, N.; Dubruel, P.; van Vlierberghe, S. pH-sensitive superabsorbent polymers: A potential candidate material for self-healing concrete. J. Mater. Sci. 2014, 50, 970–979. [Google Scholar] [CrossRef]
- Farzanian, K.; Ghahremaninezhad, A. On the Effect of Chemical Composition on the Desorption of Superabsorbent Hydrogels in Contact with a Porous Cementitious Material. Gels 2018, 4, 70. [Google Scholar] [CrossRef] [Green Version]
- Mechtcherine, V.; Snoeck, D.; Schröfl, C.; De Belie, N.; Klemm, A.J.; Ichimiya, K.; Moon, J.; Wyrzykowski, M.; Lura, P.; Toropovs, N.; et al. Testing superabsorbent polymer (SAP) sorption properties prior to implementation in concrete: Results of a RILEM Round-Robin Test. Mater. Struct. Constr. 2018, 51, 1–16. [Google Scholar] [CrossRef]
- Esteves, L.P. Superabsorbent polymers: On their interaction with water and pore fluid. Cem. Concr. Compos. 2011, 33, 717–724. [Google Scholar] [CrossRef]
- Esteves, L.P. Recommended method for measurement of absorbency of superabsorbent polymers in cement-based materials. Mater. Struct. Constr. 2015, 48, 2397–2401. [Google Scholar] [CrossRef]
- Prabahar, J.; Vafaei, B.; Baffoe, E.; Ghahremaninezhad, A. The Effect of Biochar on the Properties of Alkali-Activated Slag Pastes. Constr. Mater. 2022, 2, 1–14. [Google Scholar] [CrossRef]
- Brough, A.R.; Atkinson, A. Sodium silicate-based, alkali-activated slag mortars—Part I. Strength, hydration and microstructure. Cem. Concr. Res. 2002, 32, 865–879. [Google Scholar] [CrossRef]
- Vafaei, B.; Farzanian, K.; Ghahremaninezhad, A. The influence of superabsorbent polymer on the properties of alkali-activated slag pastes. Constr. Build. Mater. 2020, 236, 117525. [Google Scholar] [CrossRef]
- Vafaei, B.; Farzanian, K.; Ghahremaninezhad, A. Effect of hydrogels containing nanosilica on the properties of cement pastes. J. Compos. Sci. 2021, 5, 105. [Google Scholar] [CrossRef]
- Zuo, Y.; Nedeljković, M.; Ye, G. Coupled thermodynamic modelling and experimental study of sodium hydroxide activated slag. Constr. Build. Mater. 2018, 188, 262–279. [Google Scholar] [CrossRef]
- Sakulich, A.R.; Miller, S.; Barsoum, M.W. Chemical and microstructural characterization of 20-month-old alkali-activated slag cements. J. Am. Ceram. Soc. 2010, 93, 1741–1748. [Google Scholar] [CrossRef]
- Swanepoel, J.C.; Strydom, C.A. Utilisation of fly ash in a geopolymeric material. Appl. Geochem. 2002, 17, 1143–1148. [Google Scholar] [CrossRef]
- Nedeljković, M.; Zuo, Y.; Arbi, K.; Ye, G. Carbonation Resistance of Alkali-Activated Slag Under Natural and Accelerated Conditions. J. Sustain. Metall. 2018, 4, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Schroefl, C.; Mechtcherine, V.; Vontobel, P.; Hovind, J.; Lehmann, E. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration. Cem. Concr. Res. 2015, 75, 1–13. [Google Scholar] [CrossRef]
- Farzanian, K.; Ghahremaninezhad, A. Desorption of superabsorbent hydrogels with varied chemical compositions in cementitious materials. Mater. Struct. 2018, 51, 3. [Google Scholar] [CrossRef]
- Farzanian, K.; Ghahremaninezhad, A. On the interaction between superabsorbent hydrogels and blended mixtures with supplementary cementitious materials. Adv. Civ. Eng. Mater. 2018, 7, 567–589. [Google Scholar] [CrossRef]
- Lin, D.C.; Dimitriadis, E.K.; Horkay, F. Robust strategies for automated AFM force curve analysis-II: Adhesion-influenced indentation of soft, elastic materials. J. Biomech. Eng. 2007, 129, 904–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horkay, F.; Tasaki, I.; Basser, P.J. Osmotic Swelling of Polyacrylate Hydrogels in Physiological Salt Solutions. Biomacromolecules 2000, 1, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Tunstall, L.E.; Scherer, G.W.; Prud’homme, R.K. Studying AEA interaction in cement systems using tensiometry. Cem. Concr. Res. 2017, 92, 29–36. [Google Scholar] [CrossRef]
- Snoeck, D.; Jensen, O.M.; de Belie, N. The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials. Cem. Concr. Res. 2015, 74, 59–67. [Google Scholar] [CrossRef]
- Jain, J.A.; Neithalath, N. Chloride transport in fly ash and glass powder modified concretes—Influence of test methods on microstructure. Cem. Concr. Compos. 2010, 32, 148–156. [Google Scholar] [CrossRef]
- Neithalath, N.; Weiss, J.; Olek, J. Characterizing Enhanced Porosity concrete using electrical impedance to predict acoustic and hydraulic performance. Cem. Concr. Res. 2006, 36, 2074–2085. [Google Scholar] [CrossRef]
Hydrogel | Absorption (g/gdry) |
---|---|
H-a | 73 |
H-b | 47 |
H-c | 33 |
H-d | 36 |
H-e | 10 |
Paste | Initial Setting Time (min) | Final Setting Time (min) |
---|---|---|
AAS-0.39 | 136 | 356 |
AAS | 132 | 438 |
AAS-H-a | 114 | 468 |
AAS-H-b | 125 | 533 |
AAS-H-c | 117 | 503 |
AAS-H-d | 108 | 409 |
AAS-H-e | 102 | 497 |
Hydrogel | AM (g) | AA (g) | MBA (g) | APS (g) | NaOH (g) | Alg (g) | NSi (g) | Distilled Water (g) |
---|---|---|---|---|---|---|---|---|
H-a | 10 | 10 | 0.05 | 0.128 | 1.35 | - | - | 100 |
H-b | 18 | 2 | 0.05 | 0.128 | 0.27 | - | - | 100 |
H-c | 20 | - | 0.05 | 0.128 | - | 0.6 | - | 100 |
H-d | 20 | - | 0.05 | 0.64 | - | - | - | 100 |
H-e | 20 | - | 0.05 | 0.64 | - | - | 10 | 100 |
Composition | (%) |
---|---|
SiO2 | 31.6 |
Al2O3 | 11.0 |
Fe2O3 | 0.9 |
CaO | 44.6 |
MgO | 6.4 |
Na2O | 0.2 |
K2O | 0.4 |
SO3 | 3.1 |
LOI | 1.8 |
Designation | Overall Water/Slag | Effective Water/Slag | Superplasticizer (% per Slag Mass) | Hydrogel (% per Slag Mass) | Water (g) | NaOH (g) |
---|---|---|---|---|---|---|
AAS-0.39 | 0.39 | 0.39 | 0.17 | - | 1170 | 93.6 |
AAS | 0.44 | 0.39 | 0.17 | - | 1320 | 93.6 |
AAS-H-a | 0.44 | 0.39 | 0.17 | 0.17 | 1320 | 93.6 |
AAS-H-b | 0.44 | 0.39 | 0.17 | 0.19 | 1320 | 93.6 |
AAS-H-c | 0.44 | 0.39 | 0.17 | 0.45 | 1320 | 93.6 |
AAS-H-d | 0.44 | 0.39 | 0.17 | 0.31 | 1320 | 93.6 |
AAS-H-e | 0.44 | 0.39 | 0.17 | 0.56 | 1320 | 93.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prabahar, J.; Vafaei, B.; Ghahremaninezhad, A. The Effect of Hydrogels with Different Chemical Compositions on the Behavior of Alkali-Activated Slag Pastes. Gels 2022, 8, 731. https://doi.org/10.3390/gels8110731
Prabahar J, Vafaei B, Ghahremaninezhad A. The Effect of Hydrogels with Different Chemical Compositions on the Behavior of Alkali-Activated Slag Pastes. Gels. 2022; 8(11):731. https://doi.org/10.3390/gels8110731
Chicago/Turabian StylePrabahar, Joshua, Babak Vafaei, and Ali Ghahremaninezhad. 2022. "The Effect of Hydrogels with Different Chemical Compositions on the Behavior of Alkali-Activated Slag Pastes" Gels 8, no. 11: 731. https://doi.org/10.3390/gels8110731
APA StylePrabahar, J., Vafaei, B., & Ghahremaninezhad, A. (2022). The Effect of Hydrogels with Different Chemical Compositions on the Behavior of Alkali-Activated Slag Pastes. Gels, 8(11), 731. https://doi.org/10.3390/gels8110731