Progress in Composite Hydrogels and Scaffolds Enriched with Icariin for Osteochondral Defect Healing
<p>Types of cartilage defects. Partial thickness defect develops only in the articular cartilage. In full-thickness defect, the subchondral bone plate is exposed, but not disturbed. The osteochondral defect develops in the cartilage and subchondral bone.</p> "> Figure 2
<p>Chemical structure of icariin.</p> "> Figure 3
<p>Icariin’s effect on bone marrow stem cells (BMSCs) as a promoter of bone formation and a potential accelerator of chondrogenesis via different signaling pathways. Icariin exerts an osteogenic effect by promoting the expression of osteoblastic specific genes, bone morphogenetic proteins (BMP-2, BMP-4), SMAD4, RUNX2, osteoprotegerin (OPG), alkaline phosphatase (ALP), collagen type I (COL I), osteocalcin (OCN) and the downregulation of the receptor activator of nuclear factor kappa-B ligand (RANKL). Icariin also upregulates calcium deposition and bone nodule formation. Its chondrogenic effect is due to the upregulated expression of SRY-Box transcription factor 9 (SOX9), collagen type II (COL II), aggrecan (AGG), and the downregulation of COL I. It also serves as an activator of hypoxia-inducible factors (HIF-1α and HIF-2α) and several metalloproteinases (MMP) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) in chondrocytes.</p> "> Figure 4
<p>Types of functional composite biomaterials conditioned as hydrogel, containing bioceramics or bioglasses for controlled delivery of icariin are a promising therapeutic approach in osteochondral defect reconstruction.</p> ">
Abstract
:1. Introduction
2. Osteochondral Tissue and Associated Defects
2.1. Osteochondral Tissue
2.2. Osteochondral Defects: Basic Aspects and Restoration
3. ICA—Trigger for Osteochondral Regeneration
3.1. ICA Structure
3.2. ICA Extraction Methods
3.3. ICA Effect on Osteochondral Regeneration
4. Hydrogels and Scaffolds Enriched with ICA for Osteochondral Tissue Engineering
5. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Gorbaciova, T.; Melenevsky, Y.; Cohen, M.; Cerniglia, B.W. Osteochondral lesions of the knee: Differentiating the most common entities at MRI. Radiogr. 2018, 39, 1478–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, S.; Roldo, M.; Blunn, G.; Tozzi, G.; Roncada, T. Influence of the mechanical environment on the regeneration of osteochondral defects. Front. Bioeng. Biotechnol. 2021, 9, 603408. [Google Scholar] [CrossRef] [PubMed]
- Magni, A.; Agostoni, P.; Bonezzi, C.; Massazza, G.; Mene, P.; Savarino, V.; Fornasari, D. Management of osteoarthritis: Expert opinion on NSAIDs. Pain Ther. 2021, 10, 783–808. [Google Scholar] [CrossRef] [PubMed]
- Sacitharan, P.K. Ageing and osteoarthritis. In Biochemistry and Cell Biology of Ageing: Part II Clinical Science. Subcellular Biochemistry; Harris, J., Korolchuk, V., Eds.; Springer: Singapore, 2019; pp. 123–159. [Google Scholar]
- He, L.; He, T.; Xing, J.; Zhou, Q.; Fan, L.; Liu, C.; Chen, Y.; Wu, D.; Tian, Z.; Liu, B.; et al. Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res. Ther. 2020, 11, 276. [Google Scholar] [CrossRef] [PubMed]
- Cope, P.J.; Ourradi, K.; Li, Y.; Sharif, M. Models of osteoarthritis: The good, the bad and the promising. Osteoarthr. Cartil. 2019, 27, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.J.; Yoon, J.; Rho, J.G.; Han, H.S.; Lee, S.; Oh, Y.S.; Kim, H.; Kim, E.; Kim, S.J.; Lim, Y.T.; et al. Self-assembled hyaluronic acid nanoparticles for osteoarthritis treatment. Biomaterials 2021, 275, 120967. [Google Scholar] [CrossRef] [PubMed]
- Coryell, P.R.; Diekman, B.O.; Loeser, R.F. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat. Rev. Rheumatol. 2021, 17, 47–57. [Google Scholar] [CrossRef]
- Martel-Pelletier, J.; Maheu, E.; Pelletier, J.P.; Alekseeva, L.; Mkinsi, O.; Branco, J.; Monod, P.; Planta, F.; Reginster, J.Y.; Rannou, F. A new decision tree for diagnosis of osteoarthritis in primary care: International consensus of experts. Aging Clin. Exp. Res. 2018, 31, 19–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramoff, B.; Caldera, F.E. Osteoarthritis. Med. Clin. North Am. 2020, 104, 293–311. [Google Scholar] [CrossRef]
- Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the global burden of disease study 2010. Lancet 2012, 380, 2163–2196. [Google Scholar] [CrossRef]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Antony, B.; Singh, A. Imaging and biochemical markers for osteoarthritis. Diagnostics 2021, 11, 1205. [Google Scholar] [CrossRef]
- Wittenauer, R.; Smith, L.; Aden, K. Update on 2004 Background Paper, BP 6.12 Osteoarthritis. In Priority Medicines for Europe and the World-2013 Update; Kaplan, W., Wirtz, V.J., Mantel-Teeuwisse, A., Stolk, P., Duthey, B., Laing, R., Eds.; World Health Organization: Geneva, Switzerland, 2013; pp. 1–31. [Google Scholar]
- Samvelyan, H.J.; Hughes, D.; Stevens, C.; Staines, K.A. Models of osteoarthritis: Relevance and new insights. Calcif. Tissue Int. 2021, 109, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Buhrmann, C.; Honarvar, A.; Setayeshmehr, M.; Karbasi, S.; Shakibaei, M.; Valiani, A. Herbal remedies as potential in cartilage tissue engineering: An overview of new therapeutic approaches and strategies. Molecules 2020, 25, 3075. [Google Scholar] [CrossRef] [PubMed]
- Australian IHW (Institute of Health and Welfare). Arthritis. Cat. No. PHE 234; AIHW: Canberra, Australia, 2020. Available online: https://www.aihw.gov.au/reports/chronicmusculoskeletal-conditions/arthritis (accessed on 21 June 2021).
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Garrison, L.P.; Schepman, P.; Bushmakin, A.G.; Robinson, R.L.; Tive, L.; Hall, J.; Dzingina, M.; Jackson, J.; Berry, M.; Cappelleri, J.C.; et al. Concern about addiction is associated with lower quality of life in patients with osteoarthritis: An exploratory, real-world data analysis. Qual. Life Res. 2021, 31, 185–191. [Google Scholar] [CrossRef]
- Bruyere, O.; Honvo, G.; Veronese, N.; Arden, N.K.; Branco, J.; Curtis, E.M.; Al-Daghri, N.M.; Herrero-Beaumont, G.; Martel-Pelletier, J.; Pelletier, J.P.; et al. An updated algorithm recommendation for the management of knee osteoarthritis from the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Semin. Arthritis Rheum. 2019, 49, 337–350. [Google Scholar] [CrossRef]
- Ghouri, A.; Conaghan, P.G. Update on novel pharmacological therapies for osteoarthritis. Ther. Adv. Musculoskelet. Dis. 2019, 11, 1759720X1986449. [Google Scholar] [CrossRef] [Green Version]
- Arden, N.K.; Perry, T.A.; Bannuru, R.R.; Bruyère, O.; Cooper, C.; Haugen, I.K.; Hochberg, M.C.; McAlindon, T.E.; Mobasheri, A.; Reginster, J.Y. Non-surgical management of knee osteoarthritis: Comparison of ESCEO and OARSI 2019 guidelines. Nat. Rev. Rheumatol. 2020, 17, 59–66. [Google Scholar] [CrossRef]
- Li, H.; Wu, R.; Yu, H.; Zheng, Q.; Chen, Y. Bioactive herbal extracts of traditional Chinese medicine applied with the biomaterials: For the current applications and advances in the musculoskeletal system. Front. Pharmacol. 2021, 12, 778041. [Google Scholar] [CrossRef]
- He, C.; Wang, Z.; Shi, J. Pharmacological effects of icariin. In Pharmacological Advances in Natural Product Drug Discovery; Du, G., Ed.; Academic Press: Cambridge, UK, 2020; pp. 179–203. [Google Scholar]
- Li, C.; Li, Q.; Mei, Q.; Lu, T. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component of Herba Epimedii. Life Sci. 2015, 126, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Cui, Y.; Li, H.; Luan, J.; Zhou, X.; Han, J. Icariin promotes the osteogenic action of BMP2 by activating the cAMP signaling pathway. Molecules 2019, 24, 3875. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Que, Q.; Pan, J.; Guo, J. Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. J. Mol. Struct. 2008, 881, 132–138. [Google Scholar] [CrossRef]
- Ming, L.G.; Chen, K.M.; Xian, C.J. Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J. Cell. Physiol. 2021, 228, 513–521. [Google Scholar] [CrossRef]
- Gui, Z.P.; Hu, Y.; Zhou, Y.N.; Lin, K.L.; Xu, Y.J. Effect of quercetin on chondrocyte phenotype and extracellular matrix expression. Chin. J. Nat. Med. 2020, 18, 922–933. [Google Scholar] [CrossRef]
- Quinn, T.M.; Hunziker, E.B.; Häuselmann, H.J. Variation of cell and matrix morphologies in articular cartilage among locations in the adult human knee. Osteoarthr. Cartil. 2005, 13, 672–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, N.J.; Hacking, S.A.; Zhang, L.G. Recent progress in interfacial tissue engineering approaches for osteochondral defects. Ann. Biomed. Eng. 2012, 40, 1628–1640. [Google Scholar] [CrossRef]
- Deng, C.; Chang, J.; Wu, C. Bioactive scaffolds for osteochondral regeneration. J. Orthop. Translat. 2019, 17, 15–25. [Google Scholar] [CrossRef]
- Morouco, P.; Fernandes, C.; Lattanzi, W. Challenges and innovations in osteochondral regeneration: Insights from biology and inputs from bioengineering toward the optimization of tissue engineering strategies. J. Funct. Biomater. 2021, 12, 17. [Google Scholar] [CrossRef]
- Vyas, C.; Poologasundarampillai, G.; Hoyland, J.; Bartolo, P. 3D printing of biocomposites for osteochondral tissue engineering. In Biomedical Composites, 2nd ed.; Ambrosio, L., Ed.; Woodhead Publishing Series in Biomaterials: Cambridge, UK, 2017; pp. 261–302. [Google Scholar]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.; Li, Y.; Zhou, Z.; Dai, Y.; Liu, H.; Liu, H. Icariin delivery porous PHBV scaffolds for promoting osteoblast expansion in vitro. Mater. Sci. Eng. C 2013, 33, 3545–3552. [Google Scholar] [CrossRef]
- García-Carvajal, Z.Y.; Garciadiego-Cázares, D.; Parra-Cid, C. Cartilage tissue engineering: The role of extracellular matrix (ECM) and novel strategie. In Regenerative Medicine and Tissue Engineering; Andrades, J.A., Ed.; IntechOpen Ltd.: London, UK, 2013; pp. 365–398. [Google Scholar]
- Klein, T.J.; Chaudhry, M.; Bae, W.C.; Sah, R.L. Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage. J. Biomech. 2007, 40, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Baumann, C.A.; Hinckel, B.B.; Bozynski, C.C.; Farr, J. Articular cartilage: Structure and restoration: A clinical casebook. In Joint Preservation of the Knee; Yanke, A., Cole, B., Eds.; Springer: New York, NY, USA, 2019; pp. 3–24. [Google Scholar]
- Nooeaid, P.; Salih, V.; Beier, J.P.; Boccaccini, A.R. Osteochondral tissue engineering: Scaffolds, stem cells and applications. J. Cell. Mol. Med. 2012, 16, 2247–2270. [Google Scholar] [CrossRef] [PubMed]
- Goldring, M.B. Chondrogenesis, chondrocyte differentiation and articular cartilage metabolism in health and osteoarthritis. Ther. Adv. Musculoskelet. Dis. 2012, 4, 269–285. [Google Scholar] [CrossRef] [PubMed]
- Arkill, K.P.; Winlove, C.P. Solute transport in the deep and calcified zones of articular cartilage. Osteoarthr. Cartil. 2008, 16, 708–714. [Google Scholar] [CrossRef] [Green Version]
- Chung, E.J.; Shah, N.; Shah, R.N. Nanomaterials for cartilage tissue engineering. In Nanomaterials in Tissue Engineering: Fabrication and Application; Gaharwar, A.K., Ed.; Woodhead Publishing Series in Biomaterials: Cambridge, UK, 2013; pp. 301–334. [Google Scholar]
- Rolauffs, B.; Williams, J.M.; Aurich, M.; Grodzinsky, A.J.; Kuettner, K.E.; Cole, A.A. Proliferative remodeling of the spatial organization of human superficial chondrocytes distant from focal early osteoarthritis. Arthritis Rheum. 2010, 62, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Alsalameh, S.; Amin, R.; Gemba, T.; Lotz, M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 2004, 50, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
- Killen, M.C.; Charalambous, C.P. Advances in cartilage restoration techniques. In Advances in Medical and Surgical Engineering; Ahmed, W., Phoenix, D., Jackson, M., Charalambous, C.P., Eds.; Academic Press: Cambridge, UK, 2020; pp. 71–83. [Google Scholar]
- Maroudas, A.; Bayliss, M.T.; Uchitel-Kaushansky, N.; Schneiderman, R.; Gilav, E. Aggrecan turnover in human articular cartilage: Use of aspartic acid racemization as a marker of molecular age. Arch. Biochem. Biophys. 1998, 350, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Verzijl, N.; DeGroot, J.; Thorpe, S.R.; Bank, R.A.; Shaw, J.N.; Lyons, T.J.; Bijlsma, J.W.J.; Lafeber, F.P.J.G.; Baynes, J.W.; TeKoppele, J.M. Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 2000, 275, 39027–39031. [Google Scholar] [CrossRef] [Green Version]
- Hollander, A.P.; Dickinson, S.C.; Kafienah, W. Stem cells and cartilage development: Complexities of a simple tissue. Stem Cells 2010, 28, 1992–1996. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.J.; Temenoff, J.S. Engineering orthopedic tissue interfaces. Tissue Eng. B Rev. 2009, 15, 127–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madry, H.; van Dijk, C.N.; Muller-Gerbl, M. The basic science of subchondral bone. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 419–433. [Google Scholar] [CrossRef]
- Cucchiarini, M.; Madry, H.; Guilak, F.; Saris, D.B.; Stoddart, M.J.; Koon Wong, M.; Roughley, P. A vision on the future of articular cartilage repair. Eur. Cell Mater. 2014, 27, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ming, D.; Liu, A.; Zhang, C.; Jiao, J.; Shang, M. Repair of osteochondral defect using icariin-conditioned serum combined with chitosan in rabbit knees. BMC Complem. Med. Ther. 2020, 20, 193. [Google Scholar] [CrossRef] [PubMed]
- Lydon, H.; Getgood, A.; Henson, F.M.D. Healing of osteochondral defects via endochondral ossification in an ovine model. Cartilage 2019, 10, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Redman, S.N.; Oldfield, S.F.; Archer, C.W. Current strategies for articular cartilage repair. Eur. Cell Mater. 2005, 9, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, Y.; He, L.; Wang, Q.; Wang, L.; Yuan, T.; Xiao, Y.; Fan, Y.; Zhang, X. Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration. Acta Biomater. 2018, 74, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Y.S.; Yue, K.; Khademhosseini, A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017, 57, 1–25. [Google Scholar] [CrossRef]
- Seo, S.J.; Mahapatra, C.; Singh, R.K.; Knowles, J.C.; Kim, H.W. Strategies for osteochondral repair: Focus on scaffolds. J. Tissue Eng. 2014, 5, 2041731414541850. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, T.; Huang, Y.; Zheng, Y.; Liu, T.; Wismeijer, D. Osteogenic potential of icariin compared with recombinant human bone morphogenetic protein 2 in vitro: A preliminary study. J. Biomater. Tissue Eng. 2014, 5, 226–233. [Google Scholar] [CrossRef]
- Yang, A.; Yu, C.; Lu, Q.; Li, H.; Li, Z.; He, C. Mechanism of action of icariin in bone marrow mesenchymal stem cells. Stem Cells Int. 2019, 2019, 5747298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Zhang, Y.; Yang, M.; Shen, Z.; Zhang, X.; Zhang, W.; Li, H. LC–MS/MS method for the simultaneous determination of icariin and its major metabolites in rat plasma. J. Pharm. Biomed. Anal. 2007, 45, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Wang, J.H. The effect of icariin on immunity and its potential application. Am. J. Clin. Exp. Immunol. 2018, 7, 50–56. [Google Scholar] [PubMed]
- Jia, L.; Zhang, Q.; Wang, J.R.; Mei, X. Versatile solid modifications of icariin: Structure, properties and form transformation. Cryst. Eng. Comm. 2015, 17, 7500–7509. [Google Scholar] [CrossRef]
- Qian, Q.; Li, S.L.; Sun, E.; Zhang, K.R.; Tan, X.B.; Wei, Y.J.; Fan, H.W.; Cui, L.; Jia, X.B. Metabolite profiles of icariin in rat plasma by ultra-fast liquid chromatography coupled to triple-quadrupole/time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 2012, 66, 392–398. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep eutectic solvents for the extraction of bioactive compounds from natural sources and agricultural by-products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, B.; Zhao, J.; Wang, M.; Zhao, L. Efficient extraction and determination of prenylflavonol glycosides in Epimedium pubescens Maxim. using deep eutectic solvents. Phytochem. Anal. 2020, 31, 375–383. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, L.; Zhang, H.; Hu, X.; Bu, F. Comparison of the different extraction methods of flavonoids in Epimedium Koreamum Nakai by HPLC-DAD-ESI-MSn. J. Liq. Chromatogr. Relat. Technol. 2006, 29, 5. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, L.; Zhang, S.; Jiang, T.; Yang, Y.; Li, R. Effects of icariin on the regulation of the OPG-RANKL-RANK system are mediated through the MAPK pathways in IL-1β-stimulated human SW1353 chondrosarcoma cells. Int. J. Mol. Med. 2014, 34, 1720–1726. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, X.; Li, K.F.; Li, D.X.; Xiao, Y.M.; Fan, Y.J.; Zhang, X.D. Icariin promotes extracellular matrix synthesis and gene expression of chondrocytes in vitro. Phytother. Res. 2012, 26, 1385–1392. [Google Scholar] [CrossRef]
- Li, D.; Yuan, T.; Zhang, X.; Xiao, Y.; Wang, R.; Fan, Y.; Zhang, X. Icariin: A potential promoting compound for cartilage tissue engineering. Osteoarthr. Cartil. 2012, 20, 1647–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.J.; Cao, L.G.; Wu, T.; Wang, D.X.; Jin, D.; Jiang, S.; Zhang, Z.Y.; Bi, L.; Pei, G.X. The dose-effect of icariin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cells. Molecules 2011, 16, 10123–10133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.M.; Ge, B.F.; Ma, H.P.; Liu, X.Y.; Bai, M.H.; Wang, Y. Icariin, a flavonoid from the herb Epimedium enhances the osteogenic differentiation of rat primary bone marrow stromal cells. Pharmazie 2005, 60, 939–942. [Google Scholar]
- Zhao, J.; Ohba, S.; Komiyama, Y.; Shinkai, M.; Chung, U.; Nagamune, T. Icariin: A potential osteoinductive compound for bone tissue engineering. Tissue Eng. A 2010, 16, 233–243. [Google Scholar] [CrossRef]
- Ma, H.P.; Ming, L.G.; Ge, B.F.; Zhai, Y.K.; Song, P.; Xian, C.J.; Chen, K.M. Icariin is more potent than genistein in promoting osteoblast differentiation and mineralization in vitro. J. Cell. Biochem. 2011, 112, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Peng, S.; Yang, S.H.; Shao, Z.W.; Yang, C.; Feng, Y.; Wu, W.; Zhen, W.X. The beneficial effect of icariin on bone is diminished in osteoprotegerin-deficient mice. Bone 2012, 51, 85–92. [Google Scholar] [CrossRef]
- Hsieh, T.P.; Sheu, S.Y.; Sun, J.S.; Chen, M.H.; Liu, M.H. Icariin isolated from Epidemium pubescens regulates osteoblasts anabolism through BMP-2, SMAD4 and Cbfa1 expression. Phytomedicine 2010, 17, 414–423. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, P.; Qi, Q.H.; Ni, H.; Ma, X.L.; Guo, S.B. The experimental study of the effects of icariin on increasing smad4 mRNA level in MC3T3-E1 cell in vitro. Chin. J. Orthop. 2005, 25, 119–124. [Google Scholar]
- Qian, G.; Zhang, X.; Lu, L.; Wu, X.; Li, S.; Meng, J. Regulation of Cbfa1 expression by total flavonoids of Herba Epimedii. Endocr. J. 2006, 53, 87. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.M.; Ge, B.F.; Liu, X.Y.; Ma, P.H.; Lu, M.B.; Bai, M.H.; Wang, Y. Icariin inhibits the osteoclast formation induced by RANKL and macrophage-colony stimulating factor in mouse bone marrow culture. Pharmazie 2007, 62, 388–391. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, Y.; Chen, N.; Yang, L. Icariin Regulates Cellular Functions and Gene Expression of Osteoarthritis Patient-Derived Human Fibroblast-Like Synoviocytes. Int. J. Mol. Sci 2017, 18, 2656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, T.; Yang, J.R.; Liu, P.X.; Liu, M.J.; Li, D.X.; Xiao, Y.M.; Wang, Y.; Zhang, X.D. Icariin self-crosslinked network functionalized strontium-doped bioceramic scaffolds synergistically enhanced the healing of osteoporotic bone defects. Compos. B Eng. 2022, 235, 109759. [Google Scholar] [CrossRef]
- Li, X.; Ding, J.; Wang, J.; Zhuang, X.; Chen, X. Biomimetic biphasic scaffolds for osteochondral defect repair. Regen. Biomater. 2015, 2, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zu, Y.; Mu, Y.; Li, Q.; Zhang, S.T.; Yan, H.J. Icariin alleviates osteoarthritis by inhibiting NLRP3-mediated pyroptosis. J. Orthop. Surg. Res. 2019, 14, 307. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Meng, Q.; Wang, W.; Zhang, S.; Xiong, X.; Qin, S.; Zhang, J.; Li, A.; Liu, Z. Icariin inhibits the inflammation through down-regulation NF-kB/HIF-2α signal pathways in chondrocytes. Biosci. Rep. 2020, 40, BSR2020307. [Google Scholar] [CrossRef]
- Wang, X.F.; Wang, J. Icaritin suppresses the proliferation of human osteosarcoma cells in vitro by increasing apoptosis and decreasing MMP expression. Acta Pharmacol. Sin. 2014, 35, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Rong, X.F.; Li, R.H.; Wu, X.Y. Icariin inhibits MMP-1, MMP-3 and MMP-13 expression through MAPK pathways in IL-1β-stimulated SW1353 chondrosarcoma cells. Mol. Med. Rep. 2017, 15, 2853–2858. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhang, F.; He, Q.; Wang, J.; Shiu, H.T.; Shu, Y.; Tsang, W.P.; Liang, S.; Zhao, K.; Wan, C. Flavonoid compound icariin activates hypoxia inducible factor-1α in chondrocytes and promotes articular cartilage repair. PLoS ONE 2016, 11, e0148372. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Xiong, X.; Zhang, J.; Qin, S.; Wang, W.; Liu, Z. Icariin increases chondrocytes vitality by promoting hypoxia-inducible factor-1α expression and anaerobic glycolysis. Knee 2020, 27, 18–25. [Google Scholar] [CrossRef]
- Hsieh, T.P.; Shen, S.Y.; Sun, J.S.; Chen, M.H. Icariin inhibits osteoclast differentiation and bone resorption by suppression of MAPKs/NF-kappa B regulated HIF-1 alpha and PGE(2) synthesis. Phytomedicine 2011, 18, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, Y.; Li, D.X.; Wang, R.; Fan, H.S.; Xiao, Y.M.; Zhang, L.; Zhang, X.D. The effect of loading icariin on biocompatibility and bioactivity of porous β-TCP ceramic. J. Mater. Sci. Mater. Med. 2011, 22, 371–379. [Google Scholar] [CrossRef]
- Yan, H.; Zhou, Z.; Huang, T. Controlled release in vitro of icariin from gelatin/ hyaluronic acid composite microspheres. Polym. Bull. 2016, 73, 1055–1066. [Google Scholar] [CrossRef]
- Wu, T.; Nan, K.H.; Chen, J.D.; Jin, D.; Jiang, S.; Zhao, P.R.; Xu, J.C.; Du, H.; Zhang, X.Q.; Li, J.W.; et al. A new bone repair scaffold combined with chitosan/hydroxyapatite and sustained releasing icariin. Chin. Sci. Bull. 2009, 54, 2953–2961. [Google Scholar] [CrossRef]
- Choi, S.; Noh, S.H.; Lim, C.O.; Kim, H.J.; Jo, H.S.; Min, J.S.; Park, K.; Kim, S.E. Icariin-functionalized nanodiamonds to enhance osteogenic capacity in vitro. Nanomaterials 2020, 10, 2071. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Yiu, W.; Tian, H.; Chen, M.; Yao, X.; Zhu, W.; Guo, F.; Ye, Y. Icariin doped bioactive glasses seeded with rat adipose-derived stem cells to promote bone repair via enhanced osteogenic and angiogenic activities. Life Sci. 2018, 202, 52–60. [Google Scholar] [CrossRef]
- Reiter, T.; Panick, T.; Schuhladen, K.; Roether, J.; Hum, J.; Boccaccini, A.R. Bioactive glass based scaffolds coated with gelatin for the sustained release of icariin. Bioact. Mater. 2019, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; He, L.; Yang, J.R.; Zhang, L.; Xiao, Y.M.; Fan, Y.J.; Zhang, X.D. Conjugated icariin promotes tissue-engineered cartilage formation in hyaluronic acid/collagen hydrogel. Process Biochem. 2015, 50, 2242–2250. [Google Scholar] [CrossRef]
- Yuan, T.; He, L.; Yang, J.; Xiao, Y.; Fan, Y.; Zhang, X. Enhancing osteochondral defect repair ability of hyaluronic acid/collagen hydrogel by icariin chemical conjugation. In Proceedings of the 10th World Biomaterials Congress, Montréal, QC, Canada, 17–22 May 2016; Volume 4. [Google Scholar] [CrossRef]
- Zou, L.; Hu, L.; Pan, P.; Tarafder, S.; Du, M.; Geng, Y.; Xu, G.; Chen, L.; Chen, J.; Lee, C.H. Icariin-releasing 3D printed scaffold for bone regeneration. Compos. B Eng. 2022, 232, 109625. [Google Scholar] [CrossRef]
- Gorji, M.; Ghasemi, N.; Setayeshmehr, M.; Zargar, A.; Kazemi, M.; Soleimani, M.; Hashemibeni, B. The effects of fibrin-icariin nanoparticle loaded in poly(lactic-co-glycolic) acid scaffold as a localized delivery system on chondrogenesis of human adipose-derived stem cells. Adv. Biomed. Res. 2020, 9, 6. [Google Scholar] [CrossRef]
- Zhao, C.F.; Li, Z.H.; Li, S.J.; Li, J.A.; Hou, T.T.; Wang, Y. PLGA scaffold carrying icariin to inhibit the progression of osteoarthritis in rabbits. R. Soc. Open Sci. 2019, 6, 181877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Tang, J.; Zhou, D.; Weng, Y.; Qin, W.; Liu, C.; Lv, S.; Wang, W.; Zhao, X. Electrospun icariin-loaded core-shell collagen, polycaprolactone, hydroxyapatite composite scaffolds for the repair of rabbit tibia bone defects. Int. J. Nanomed. 2020, 15, 3039–3056. [Google Scholar] [CrossRef]
- Zhu, Y.; Ye, L.; Cai, X.; Li, Z.; Fan, Y.; Yang, F. Icariin-loaded hydrogel regulates bone marrow mesenchymal stem cell chondrogenic differentiation and promotes cartilage repair in osteoarthritis. Front. Bioeng. Biotechnol. 2022, 10, 755260. [Google Scholar] [CrossRef]
Composite Hydrogels and Scaffolds | Experimental Model | Results | References |
---|---|---|---|
ICA-alginate hydrogel 3D complexes | in vivo | Enhanced articular cartilage repair in a mouse osteochondral defect model by improving the ICRS II histological score, compared to controls | [87] |
ICA-hydroxyapatite/COL hydrogel | in vitro | Upregulated expression of chondrogenic and osteogenic genes (RUNX2, alkaline phosphatase, osteocalcin) and enhanced matrix synthesis of glycosaminoglycans and COL type II; | [56,96,97] |
in vivo | Higher expression of COL types X (marker of calcified layer formation), II (in neo-cartilage layer), and I (in new subchondral bone) | ||
ICA-functionalized nanodiamonds | in vitro | Increased osteogenic markers secretion (alkaline phosphatase, calcium) and mRNA level (alkaline phosphatase, COL type I, osteopontin, RUNX2); | [93] |
in vivo | Bone regeneration by the upregulated expression level of osteogenic marker genes (alkaline phosphatase, RUNX2, osteocalcin); inhibited osteoclast activity | ||
ICA/β-tricalcium phosphate disks | in vitro | Promoted proliferation and differentiation of Ros17/28 cells; no effect on attachment and morphology of Ros17/28cells; bone-apatite formation on the surface of disks after 3 days of soaking in simulated body fluid solution | [90] |
in vivo | Enhanced the bioactivity of β-tricalcium phosphate; new bone formation with fibrous tissue and slight inflammatory reaction | ||
ICA-calcium phosphate cement tablets | in vitro | Enhanced in vitro osteogenic differentiation | [73] |
in vivo | Accelerated bone regeneration at 4 and 6 weeks after transplantation | ||
ICA-self-crosslinked network functionalized with Sr-doped biphasic calcium phosphate bioceramics | in vitro | Co-delivery system with potential synergistic effect on promoting osteogenesis by an increased level of osteogenesis-related proteins alkaline phosphatase, osteocalcin, and BMP2 | [81] |
in vivo | Inhibited osteoclastogenesis | ||
ICA-Chitosan/hydroxyapatite | in vitro | Cell compatibility | [92] |
in vivo | Promoted osteogenic differentiation of human bone marrow stem cells, osteoconduction, and osteoinduction | ||
45S5 bioactive glass doped with ICA and gelatin-coating | in vitro | Hydroxyapatite formation in simulated body fluid after 14 days of immersion | [95] |
ICA-releasing PCL/PLGA/nanohydroxyapatite 3D printed composite scaffold | in vitro | Promoted osteogenic differentiation of MC3T3-E1 cells | [98] |
in vivo | Healing of calvaria bone |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oprita, E.I.; Iosageanu, A.; Craciunescu, O. Progress in Composite Hydrogels and Scaffolds Enriched with Icariin for Osteochondral Defect Healing. Gels 2022, 8, 648. https://doi.org/10.3390/gels8100648
Oprita EI, Iosageanu A, Craciunescu O. Progress in Composite Hydrogels and Scaffolds Enriched with Icariin for Osteochondral Defect Healing. Gels. 2022; 8(10):648. https://doi.org/10.3390/gels8100648
Chicago/Turabian StyleOprita, Elena Iulia, Andreea Iosageanu, and Oana Craciunescu. 2022. "Progress in Composite Hydrogels and Scaffolds Enriched with Icariin for Osteochondral Defect Healing" Gels 8, no. 10: 648. https://doi.org/10.3390/gels8100648
APA StyleOprita, E. I., Iosageanu, A., & Craciunescu, O. (2022). Progress in Composite Hydrogels and Scaffolds Enriched with Icariin for Osteochondral Defect Healing. Gels, 8(10), 648. https://doi.org/10.3390/gels8100648