Transcription of Nanofibrous Cerium Phosphate Using a pH-Sensitive Lipodipeptide Hydrogel Template
"> Figure 1
<p>(<b>a</b>) TEM image of HCl-C12GA hydrogel (Pt-shadowing) formed in aqueous acidic medium (HCl vapors); (<b>b</b>–<b>d</b>) SEM images of H<sub>3</sub>PO<sub>4</sub>-C12GA hydrogel in aqueous NaH<sub>2</sub>PO<sub>4</sub> medium (lyophilized xerogel). The inset in (<b>d</b>) shows a representative EDX spectrum of the NaH<sub>2</sub>PO<sub>4</sub>-containing C12GA xerogel (average P/Na molar ratio = 1.19 ± 0.07).</p> "> Figure 2
<p>XRD patterns of the NaH<sub>2</sub>PO<sub>4</sub>-based C12GA xerogel: (<b>a</b>) overall pattern; and (<b>b</b>) magnification of the low-angle region marked with the dashed rectangle. The peaks labelled with an asterisk correspond to the periodical arrangement of C12GA gelator molecules (the distances are shown in the magnification), and all the remaining peaks correspond to NaH<sub>2</sub>PO<sub>4</sub> phase (monoclinic P21/c space group, JCPDF number 70-0954) marked as <b>P</b> only in the low angle region; the Miller indexes and theoretical relative intensities of the three most intense peaks of NaH<sub>2</sub>PO<sub>4</sub> are indicated.</p> "> Figure 3
<p>FTIR spectra of C12GA dried xerogels obtained in acidic media: HCl (dashed line), H<sub>3</sub>PO<sub>4</sub> (solid line): (<b>a</b>) 3500–2800 cm<sup>−1</sup>; (<b>b</b>) 2800–1800 cm<sup>−1</sup>; (<b>c</b>) 1800–1500 cm<sup>−1</sup>; (<b>d</b>) 1500–600 cm<sup>−1</sup>.</p> "> Figure 4
<p>Energy-minimized structure models (MACROMODEL 7.0, AMBER* [<a href="#B98-gels-03-00023" class="html-bibr">98</a>]) for the packing of compound C12GA in phosphorylated xerogel (non-polar hydrogens are omitted for clarity in the bottom image).</p> "> Figure 5
<p>FE-SEM images (<b>a</b>,<b>b</b>), and TEM images (<b>c</b>–<b>e</b>) of the as-prepared C12GA-templated nanofibrous CePO<sub>4</sub> (60 °C-dried and washed xerogel); (<b>f</b>) Representative energy-dispersive EDX spectrum of this CePO<sub>4</sub> xerogel (60 °C).</p> "> Figure 6
<p>(<b>a</b>) HRTEM image of a representative nanofiber of as-prepared C12GA-templated nanofibrous CePO<sub>4</sub> (60 °C-dried and washed xerogel), the inset showing the corresponding digital diffraction pattern (DDP) of the region marked with an square, with indicated distances; (<b>b</b>) same DDP with indexed (<span class="html-italic">hkl</span>) values (taken along zone axis [uvw]: [010]); (<b>c</b>) Corresponding simulated kinetic diffraction diagram.</p> "> Figure 7
<p>Differential thermal and thermogravimetric analysis (DTA-TGA) of as-prepared (60 °C-dried and washed) samples: (<b>a</b>) non-templated reference CePO<sub>4</sub>; and (<b>b</b>) templated CePO<sub>4</sub> xerogel.</p> "> Figure 8
<p>XRD patterns with the evolution of crystalline phase in non-templated reference CePO<sub>4</sub> (bottom, red-colored) and C12GA-templated CePO<sub>4</sub> (up; dark-colored): (<b>a</b>) as-prepared 60 °C-dried samples; (<b>b</b>) 250 °C-annealed samples (air conditions); (<b>c</b>) 600 °C-annealed samples (air conditions).</p> "> Figure 9
<p>(<b>a</b>) XRD patterns of: non-templated reference CePO<sub>4</sub> (a); and C12GA-templated CePO<sub>4</sub> (b) after annealing treatment at 900 °C under air atmosphere; (<b>b</b>) XRD patterns of templated CePO<sub>4</sub> after subsequent annealing treatments at: 250 °C (a), 600 °C (b), and 900 °C (c) under N<sub>2</sub> atmosphere.</p> "> Figure 10
<p>FE-SEM images (<b>a</b>,<b>b</b>) and TEM images (<b>c</b>) of templated nanofibrous CePO<sub>4</sub> annealed at 600 °C (air conditions); (<b>d</b>) FE-SEM image of templated CePO<sub>4</sub> annealed at 900 °C (air conditions).</p> "> Figure 11
<p>FE-SEM images corresponding to C12GA-templated nanofibrous CePO<sub>4</sub> annealed at 900 °C under N<sub>2</sub> conditions: (<b>a</b>) Well-preserved nanofibrous region (x 35000); (<b>b</b>) Higher magnification region (x 70000) showing thicker, more grown and aggregated nanofibers. Bar length: 100 nm.</p> "> Figure 12
<p>(<b>a</b>–<b>e</b>) HRTEM images of a C12GA-templated CePO<sub>4</sub> annealed at 900 °C under N<sub>2</sub> conditions, the inset of (<b>e</b>) showing the corresponding digital diffraction pattern (DDP) of the region of the nanofiber marked with an square, with indicated distance; (<b>f</b>) same DDP with some indexed (<span class="html-italic">hkl</span>) values; (<b>g</b>) corresponding simulated kinetic diffraction diagram.</p> "> Figure 13
<p>(<b>a</b>–<b>d</b>) STEM-HAADF images of C12GA-templated CePO<sub>4</sub> sample, as-prepared (<b>a</b> and <b>b</b>) and annealed at 600 °C/air (<b>c</b> and <b>d</b>); (<b>e</b>) Corresponding EELS spectra performed in a nanofiber of as-prepared and 600 °C-annealed templated CePO<sub>4</sub>; For comparison purposes, the electron energy loss near edge structure (ELNES) spectra of Ce<sup>3+</sup> and Ce<sup>4+</sup> ions are also shown as a reference [<a href="#B102-gels-03-00023" class="html-bibr">102</a>].</p> "> Figure 14
<p>Absorbance spectra of: (<b>a</b>) reference and C12GA-templated as-prepared CePO<sub>4</sub> samples (60 °C-dried); and (<b>b</b>) reference and templated CePO<sub>4</sub> materials after annealing at 900 °C (under air or N<sub>2</sub> conditions), showing also the spectrum of 60 °C-dried templated sample for comparison purposes.</p> "> Figure 15
<p>Photoluminiscence emission spectra corresponding to: (<b>a</b>) non-templated reference and C12GA-templated CePO<sub>4</sub> samples, as-prepared (60 °C) and after annealing at 900 °C/air; and (<b>b</b>) comparison of photoluminescence emission of as-prepared (60 °C) templated CePO<sub>4</sub> with respect to corresponding CePO<sub>4</sub> once annealed at 250, 600 and 900 °C (under N<sub>2</sub> atmosphere).</p> "> Scheme 1
<p>Proposed scheme for the hierarchical self-assembly of lipodipeptide C12GA gelator (C<sub>17</sub>H<sub>32</sub>N<sub>2</sub>O<sub>4</sub>, <span class="html-italic">N</span>-Dodecanoyl-glycyl-<span class="html-small-caps">l</span>-alanine) in aqueous NaH<sub>2</sub>PO<sub>4</sub> media: gelator molecules self-assemble into lamellar-like elongated nanotapes (<b>I</b>). The single nanotapes merge into lamellar ribbons (<b>II</b>), which entangle and collapse forming the 3D-hidrogel (<b>III</b>).</p> "> Scheme 2
<p>Transcription strategy (post-diffusion) for the mineralization of nanofibrous CePO<sub>4</sub>·H<sub>2</sub>O through the use of a preformed hydrogel template of phosphorylated C12GA.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Self-Assembled Nanofibrous Hydrogel Template
2.1.1. Aggregation Behavior and Morphology (SEM/EDX + TEM) of Nanofibrous C12GA Hydrogel
2.1.2. Crystal-Chemical Characterization (by WAXD and FTIR) of Hydrogel Template
2.1.3. Proposed Model for the Packing of C12GA Gelator in Self-Assembled Hydrogel
2.2. Templated-Based Synthesis and Characterization of Hybrid C12GA-CePO4 Xerogel (60 °C)
2.2.1. Transcription Strategy for the Preparation of C12GA-Templated Nanofibrous CePO4
2.2.2. Characterization of Templated Nanofibrous C12GA-CePO4 Xerogel (60 °C)
2.3. Morphology and Crystal-Chemical Characterization of Annealed CePO4 Samples (250, 600 and 900 °C)
2.3.1. Crystalline Phase Evolution (XRD) after Annealing Treatments at 250, 600 and 900 °C
2.3.2. Morphology and Crystal-Chemical Evolution (FE-SEM, TEM and HRTEM)
2.4. Elucidation of Ce Oxidation State (Ce3+ vs. Ce4+) in CePO4 Samples by STEM-EELS Spectroscopy
2.5. Optical Absorption and Photo-Luminescence Properties of CePO4 Samples
3. Conclusions
4. Materials and Methods
4.1. Preparation of C12GA Lipodipeptide Gelator and of HCl-C12GA and H3PO4-C12GA Hydrogels/Xerogels
4.2. Transcription of Nanofibrous CePO4·xH2O Using the H3PO4-C12GA Hydrogel as Nanofibrous Template
4.3. Preparation of a Non-Templated Reference Sample of CePO4·xH2O (Reference-CePO4)
4.4. Characterization of C12GA Xerogels and of as-Prepared (60 °C) and Annealed CePO4 Samples
4.4.1. Thermal Analysis
4.4.2. X-ray Powder Diffraction (WA)XRD
4.4.3. Fourier-Transformed Infrarred (FTIR) Spectroscopy
4.4.4. Electron Microscopy Characterization (FE-SEM, TEM, HRTEM and STEM-HAADF)
4.4.5. Determination of Ce4+/Ce3+ Ratio from STEM-EELS Spectroscopy
4.4.6. Optical Absorption and Photo-Luminescence Spectra
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bu, W.; Chen, H.; Hua, Z.; Liu, Z.; Huang, W.; Zhang, L.; Shi, J. Surfactant-assisted synthesis of Tb(III)-doped cerium phosphate single-crystalline nanorods with enhanced green emission. Appl. Phys. Lett. 2004, 85, 4307–4309. [Google Scholar] [CrossRef]
- Bu, W.; Hua, Z.; Chen, H.; Shi, J. Epitaxial Synthesis of Uniform Cerium Phosphate One-Dimensional Nanocable Heterostructures with Improved Luminescence. J. Phys. Chem. B 2005, 109, 14461–14464. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.-P.; Xu, A.-W.; Song, R.-Q.; Zhang, H.-X.; You, L.-P.; Yu, J.C.; Liu, H.-Q. Systematic Synthesis and Characterization of Single-Crystal Lanthanide Orthophosphate Nanowires. J. Am. Chem. Soc. 2003, 125, 16025–16034. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Bando, Y.; Golberg, D.; Ma, R. Cerium phosphate nanotubes: Synthesis, valence state, and optical properties. Angew. Chem. Int. Ed. 2005, 44, 576–579. [Google Scholar] [CrossRef]
- Bao, J.; Yu, R.; Zhang, J.; Wang, D.; Deng, J.; Chen, J.; Xing, X. Oxalate-induced hydrothermal synthesis of CePO4:Tb nanowires with enhanced photoluminescence. Scr. Mater. 2010, 62, 133–136. [Google Scholar] [CrossRef]
- Li, G.; Chao, K.; Peng, H.; Chen, K.; Zhang, Z. Facile synthesis of CePO4 nanowires attached to CeO2 octahedral micrometer crystals and their enhanced photoluminescence properties. J. Phys. Chem. C 2008, 112, 16452–16456. [Google Scholar] [CrossRef]
- Ma, L.; Chen, W.X.; Zheng, Y.F.; Xu, Z.-D. Hydrothermal growth and morphology evolution of CePO4 aggregates by a complexing method. Mater. Res. Bull. 2008, 43, 2840–2849. [Google Scholar] [CrossRef]
- Yang, M.; You, H.; Zheng, Y.; Liu, K.; Jia, G.; Song, Y.; Huang, Y.; Zhang, L.; Zhang, H. Hydrothermal Synthesis and Luminescent Properties of Novel Ordered Sphere CePO4 Hierarchical Architectures. Inorg. Chem. 2009, 48, 11559–11565. [Google Scholar] [CrossRef] [PubMed]
- Komban, R.; Beckmann, R.; Rode, S.; Ichilmann, S.; Kühnle, A.; Beginn, U.; Haase, M. Surface Modification of Luminescent Lanthanide Phosphate Nanorods with Cationic “Quat-primer” Polymers. Langmuir 2011, 27, 10174–10183. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Qin, J.; Li, M.; Liu, Y.; Li, F. Redox hydrothermal synthesis of cerium phosphate microspheres with different architectures. CrystEngComm 2011, 13, 7284. [Google Scholar] [CrossRef]
- Fang, J.; Evans, C.W.; Willis, G.J.; Sherwood, D.; Guo, Y.; Lu, G.; Raston, C.L.; Iyer, K.S.; Li, Y. Sequential microfluidic flow synthesis of CePO4 nanorods decorated with emission tunable quantum dots. Lab Chip 2010, 10, 2579. [Google Scholar] [CrossRef] [PubMed]
- Kitsuda, M.; Fujihara, S. Quantitative Luminescence Switching in CePO4:Tb by Redox Reactions. J. Phys. Chem. C 2011, 115, 8808–8815. [Google Scholar] [CrossRef]
- Fujihara, S.; Takano, Y.; Kitsuda, M. Microstructural Aspects of the CePO4:Tb3+ Phosphor for Luminescence Sensing. Int. J. Appl. Ceram. Technol. 2015, 12, 411–417. [Google Scholar] [CrossRef]
- Chen, H.; Ren, J. Selective detection of Fe2+ by combination of CePO4:Tb3+ nanocrystal–H2O2 hybrid system with synchronous fluorescence scan technique. Analyst 2012, 137, 1899. [Google Scholar] [CrossRef] [PubMed]
- Di, W.; Shirahata, N.; Zeng, H.; Sakka, Y. Fluorescent sensing of colloidal CePO4:Tb nanorods for rapid, ultrasensitive and selective detection of vitamin C. Nanotechnology 2010, 21, 365501. [Google Scholar] [CrossRef] [PubMed]
- Di, W.; Wang, X.; Ren, X. Nanocrystalline CePO4:Tb as a novel oxygen sensing material on the basis of its redox responsive reversible luminescence. Nanotechnology 2010, 21, 75709. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yuan, F.; Xu, J.; Zhang, Y.; Wu, Y.; Wang, L. Simple and sensitive detection method for Cobalt(II) in water using CePO4:Tb3+ nanocrystals as fluorescent probes. Spectrochim. ACTA PART A Mol. Biomol. Spectrosc. 2013, 107, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Dezfuli, A.S.; Ganjali, M.R.; Norouzi, P. Facile sonochemical synthesis and morphology control of CePO4 nanostructures via an oriented attachment mechanism: Application as luminescent probe for selective sensing of Pb2+ ion in aqueous solution. Mater. Sci. Eng. C 2014, 42, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, X.; Chen, K. CePO4:Tb,Gd hollow nanospheres as peroxidase mimic and magnetic–fluorescent imaging agent. Chem. Commun. 2012, 48, 6839–6841. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wong, S.S. Ambient Large-Scale Template-Mediated Synthesis of High-Aspect Ratio Single-Crystalline, Chemically Doped Rare-Earth Phosphate Nanowires for Bioimaging. ACS Nano 2010, 4, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Guo, H.; Zhang, M.; Zhu, H.; Hu, J.; Lai, X.; Li, A. Synthesis and enhanced electrochemical property of Au-doped cerium phosphate nanowires. Mater. Lett. 2014, 131, 141–144. [Google Scholar] [CrossRef]
- Rodriguez-Liviano, S.; Aparicio, F.J.; Becerro, A.I.; García-Sevillano, J.; Cantelar, E.; Rivera, S.; Hernández, Y.; De La Fuente, J.M.; Ocaña, M. Synthesis and functionalization of biocompatible Tb:CePO4 nanophosphors with spindle-like shape. J. Nanopart. Res. 2013, 15, 1402. [Google Scholar] [CrossRef]
- Liu, H.; Xi, P.; Xie, G.; Chen, F.; Li, Z.; Bai, D.; Zeng, Z. Biocompatible hydroxyapatite nanoparticles as a redox luminescence switch. J. Biol. Inorg. Chem. 2011, 16, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, K.; Mukundan, P.; Krishna Pillai, P.; Nair, V.R.; Warrier, K.G.K. High-Surface-Area Nanocrystalline Cerium Phosphate through Aqueous Sol–Gel Route. Chem. Mater. 2004. [Google Scholar] [CrossRef]
- Dhaouadi, H.; Fadhalaoui, A.; Mdani, A.; Rsaigui, M. Structural and electrical properties of nanostructured cerium phosphate. Ionics (Kiel) 2013, 20, 857–866. [Google Scholar] [CrossRef]
- Kang, J.; Byun, S.; Nam, S.; Kang, S.; Moon, T.; Park, B. Synergistic improvement of oxygen reduction reaction on gold/cerium-phosphate catalysts. Int. J. Hydrogen Energy 2014, 39, 10921–10926. [Google Scholar] [CrossRef]
- Uy, D.; O’Neill, A.E.; Xu, L.; Weber, W.H.; McCabe, R.W. Observation of cerium phosphate in aged automotive catalysts using Raman spectroscopy. Appl. Catal. B Environ. 2003, 41, 269–278. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, F.; Niu, X.; Kang, C.; Li, P.; Li, Z.; Zhu, Y. Effect of cerous phosphates with different crystal structures on their acidity and catalytic activity for the dehydration of glucose into 5-(hydroxymethyl)furfural. RSC Adv. 2016, 6, 40175–40184. [Google Scholar] [CrossRef]
- Romero-Sarria, F.; Domínguez, M.I.; Centeno, M.A.; Odriozola, J.A. CO oxidation at low temperature on Au/CePO4: Mechanistic aspects. Appl. Catal. B Environ. 2011, 107, 268–273. [Google Scholar] [CrossRef]
- Ho, L.-N.; Nishiguchi, H.; Nagaoka, K.; Takita, Y. Preparation of mesoporous nanocrystalline cerium phosphate with controllable pore size by using chelating agent. Mater. Chem. Phys. 2006, 97, 494–500. [Google Scholar] [CrossRef]
- Pusztai, P.; Haspel, H.; Tóth, I.Y.; Tombácz, E.; László, K.; Kukovecz, Á.; Kónya, Z. Structure-independent proton transport in cerium(III) phosphate nanowires. ACS Appl. Mater. Interfaces 2015, 7, 9947–9956. [Google Scholar] [CrossRef] [PubMed]
- Masui, T.; Tategaki, H.; Furukawa, S.; Imanaka, N. Synthesis and Characterization of New Environmentally-Friendly Pigments Based on Cerium Phosphate. J. Ceram. Soc. Jpn. 2004, 112, 646–649. [Google Scholar] [CrossRef]
- Imanaka, N.; Masui, T.; Itaya, M. Synthesis of an Environmentally Friendly and Nontoxic New Pigment Based on Rare Earth Phosphate. Chem. Lett. 2003, 32, 400–401. [Google Scholar] [CrossRef]
- Sumaletha, N.; Rajesh, K.; Mukundan, P.; Warrier, K.G.K. Environmentally benign sol-gel derived nanocrystalline rod shaped calcium doped cerium phosphate yellow-green pigment. J. Sol-Gel Sci. Technol. 2009, 52, 242–250. [Google Scholar] [CrossRef]
- Seixas, V.C.; Serra, O.A. Stability of sunscreens containing CePO4: Proposal for a new inorganic UV filter. Molecules 2014, 19, 9907–9925. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Duan, X.; Wei, Q.; Lieber, C.M. Directed Assembly of One-Dimensional Nanostructures into Functional Networks. Science 2001, 291, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Odom, T.W.; Lieber, C.M. Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes. Acc. Chem. Res. 1999, 32, 435–445. [Google Scholar] [CrossRef]
- Bu, W.-B.; Hua, Z.-L.; Chen, H.-R.; Zhang, L.-X.; Shi, J.-L. Hydrothermal Synthesis of Ultraviolet-Emitting Cerium Phosphate Single-Crystal Nanowires. Chem. Lett. 2004, 33, 612–613. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, H. Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO4 single-crystal nanowires. J. Cryst. Growth 2003, 256, 156–161. [Google Scholar] [CrossRef]
- Xing, Y.; Li, M.; Davis, S.A.; Mann, S. Synthesis and Characterization of Cerium Phosphate Nanowires in Microemulsion Reaction Media. J. Phys. Chem. B 2006, 110, 1111–1113. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Guo, B.; Qiu, Y.; Xu, P.; Fan, H. Surfactant-free hydrothermal synthesis of CePO4 microbundles assembled by aligned nanorods. Mater. Lett. 2017, 194, 49–52. [Google Scholar] [CrossRef]
- Ma, L.; Xu, L.-M.; Chen, W.-X.; Xu, Z.-D. Microwave-assisted synthesis and characterization of LaPO4:Re (Re = Ce3+, Eu3+, Tb3+) nanorods. Mater. Lett. 2009, 63, 1635–1637. [Google Scholar] [CrossRef]
- Ma, M.G.; Zhu, J.F.; Sun, R.C.; Zhu, Y.J. Hydrothermal synthesis and characterization of CePO4/C core-shell nanorods. Mater. Lett. 2009, 63, 2513–2515. [Google Scholar] [CrossRef]
- Meng, L.; Yang, L.; Zhou, B.; Cai, C. Cerium phosphate nanotubes: Synthesis, characterization and biosensing. Nanotechnology 2009, 20, 35502. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.B.; Shao, X.; Zhao, L.M.; Li, W.Z. Synthesis and characterization of CePO4 nanowires via microemulsion method at room temperature. Chin. Chem. Lett. 2009, 20, 857–860. [Google Scholar] [CrossRef]
- Di, W.; Li, J.; Shirahata, N.; Sakka, Y. An efficient and biocompatible fluorescence resonance energy transfer system based on lanthanide-doped nanoparticles. Nanotechnology 2010, 21, 455703. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, Z.; Ma, L.; Zhang, X.; Yao, M.; Joly, A.G.; Liu, Z.; Chen, W. Synthesis and luminescence of CePO4:Tb/LaPO4 core/sheath nanowires. Nanotechnology 2010, 21, 125604. [Google Scholar] [CrossRef] [PubMed]
- Ekthammathat, N.; Thongtem, T.; Phuruangrat, A.; Thongtem, S. Facile hydrothermal synthesis and optical properties of monoclinic CePO4 nanowires with high aspect ratio. J. Nanomater. 2012, 2012, 1–6. [Google Scholar] [CrossRef]
- Wen, X.; Li, C.; Meng, F. Synthesis and characterization of CePO4 nanorods via solvothermal process. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2014, 29, 229–232. [Google Scholar] [CrossRef]
- Kirubanithy, M.; Irudayaraj, A.A.; Raj, A.D.; Manikandan, S. Synthesis, Characterization and Photoluminescence Behaviours of CePO4 and Tb-doped CePO4 Nanostructures. Mater. Today Proc. 2015, 2, 4344–4347. [Google Scholar] [CrossRef]
- Fan, Y.; Hu, Z.; Yang, J.; Zhang, C.; Zhu, L. Ultrasonic-assisted synthesis of core–shell structure CePO4:Tb/GdPO4 and GdPO4/CePO4:Tb nanophosphors and their photoluminescence properties. Appl. Surf. Sci. 2013, 266, 22–26. [Google Scholar] [CrossRef]
- Qian, L.; Du, W.; Gong, Q.; Qian, X. Controlled synthesis of light rare earth phosphate nanowires via a simple solution route. Mater. Chem. Phys. 2009, 114, 479–484. [Google Scholar] [CrossRef]
- Pusztai, P.; Tóth-Szeles, E.; Horváth, D.; Tóth, Á.; Kukovecz, Á.; Kónya, Z. A simple method to control the formation of cerium phosphate architectures. CrystEngComm 2015, 17, 8477–8485. [Google Scholar] [CrossRef]
- Pusztai, P.; Kukovecz, Á.; Kónya, Z. Green synthesis of biomimetic CePO4:Tb nanostructures using the simplest morphology control. RSC Adv. 2014, 4, 49879–49887. [Google Scholar] [CrossRef]
- Bao, J.; Zhu, X.; Liu, Y.; Li, W.; Yu, R. N,N-Dimethylformamide-induced synthesis and photoluminescence of CePO4 and Ce0.95PO4:Tb0.05 with sphere-like nanostructures. Mater. Lett. 2014, 124, 97–100. [Google Scholar] [CrossRef]
- Palma-Ramírez, D.; Domínguez-Crespo, M.A.; Torres-Huerta, A.M.; Dorantes-Rosales, H.; Ramírez-Meneses, E.; Rodríguez, E. Microwave-assisted hydrothermal synthesis of CePO4 nanostructures: Correlation between the structural and optical properties. J. Alloys Compd. 2015, 643, S209–S218. [Google Scholar] [CrossRef]
- Bao, J.; Yu, R.; Zhang, J.; Yang, X.; Wang, D.; Deng, J.; Chen, J.; Xing, X. Low-temperature hydrothermal synthesis and structure control of nano-sized CePO4. CrystEngComm 2009, 11, 1630. [Google Scholar] [CrossRef]
- Bao, J.R.; Zhu, X.W.; Yu, R.B.; Zhang, J.Y.; Xing, X.R. Hydrothermal Synthesis of Neodymium Orthophosphate with Controlled Structure and Morphology. Adv. Mater. Res. 2012, 399–401, 635–640. [Google Scholar] [CrossRef]
- Guan, M.; Sun, J.; Shang, T.; Zhou, Q.; Han, J.; Ji, A. A facile synthesis of cerium phosphate nanofiber by solution-solid method. J. Mater. Sci. Technol. 2010, 26, 45–48. [Google Scholar] [CrossRef]
- Cao, M.; Hu, C.; Wu, Q.; Guo, C.; Qi, Y.; Wang, E. Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires. Nanotechnology 2005, 16, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.S.; Im, H.J.; Rondinone, A.J.; Dai, S. Facile, alternative synthesis of lanthanum phosphate nanocrystals by ultrasonication. J. Colloid Interface Sci. 2005, 292, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, X.; Liu, X.; Li, Q.; Li, J.; Zhang, S.; Meng, J.; Cao, X. Facile sonochemical synthesis of CePO4:Tb/LaPO4 core/shell nanorods with highly improved photoluminescent properties. Nanotechnology 2006, 17, 4217–4222. [Google Scholar] [CrossRef] [PubMed]
- Onoda, H.; Nariai, H.; Maki, H.; Motooka, I. Addition of urea or biuret on synthesis of Rhabdophane-type neodymium and cerium phosphates. J. Mater. Synth. Process. 2002, 10, 121–126. [Google Scholar] [CrossRef]
- Ono, Y.; Nakashima, K.; Sano, M.; Kanekiyo, Y.; Inoue, K.; Shinkai, S.; Sano, M.; Hojo, J.; Schüth, F.; Stucky, G.D.; et al. Organic gels are useful as a template for the preparation of hollow fiber silica. Chem. Commun. 1998, 368, 1477–1478. [Google Scholar] [CrossRef]
- Ono, Y.; Nakashima, K.; Sano, M.; Hojo, J.; Shinkai, S. Organogels are useful as a template for the preparation of novel helical silica fibers. J. Mater. Chem. 2001, 11, 2412–2419. [Google Scholar] [CrossRef]
- Van Bommel, K.J.C.; Friggeri, A.; Shinkai, S. Organic templates for the generation of inorganic materials. Angew. Chem.-Int. Ed. 2003, 42, 980–999. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Shinkai, S. Gels as Templates for Nanotubes. In Templates in Chemistry I, Topics in Current Chemistry 248; Springer: Berlin/Heidelberg, Germany, 2005; pp. 223–260. [Google Scholar]
- Friggeri, A.; van Bommel, K.J.C.; Shinkai, S. Molecular Gels. In Molecular Gels; Weiss, R.G., Terech, P., Eds.; Springer: New York, NY, USA, 2006; pp. 857–893. [Google Scholar]
- Llusar, M.; Sánchez, C. Inorganic and Hybrid Nanofibrous Materials Templated with Organogelators. Chem. Mater. 2008, 20, 782–820. [Google Scholar] [CrossRef]
- Jung, J.H.; Kobayashi, H.; van Bommel, K.J.C.; Shinkai, S.; Shimizu, T. Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem. Mater. 2002, 14, 1445–1447. [Google Scholar] [CrossRef]
- Jung, J.H.; Amaike, M.; Nakashima, K.; Shinkai, S. Preparation of novel silica structures, using a library of carbohydrate gel assemblies as templates for sol-gel transcription. J. Chem. Soc. Trans. 2 2001, 1938–1943. [Google Scholar] [CrossRef]
- Llusar, M.; Pidol, L.; Roux, C.; Pozzo, J.L.; Sanchez, C. Templated Growth of Alumina-Based Fibers through the Use of Anthracenic Organogelators. Chem. Mater. 2002, 14, 5124–5133. [Google Scholar] [CrossRef]
- Roy, G.; Miravet, J.F.; Escuder, B.; Sanchez, C.; Llusar, M. Morphology templating of nanofibrous silica through pH-sensitive gels: “In situ” and “post-diffusion” strategies. J. Mater. Chem. 2006, 16, 1817–1824. [Google Scholar] [CrossRef]
- Suzuki, M.; Nakajima, Y.; Sato, T.; Shirai, H.; Hanabusa, K. Fabrication of TiO2 using L-lysine-based organogelators as organic templates: control of the nanostructures. Chem. Commun. 2006, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Sato, T.; Shirai, H.; Hanabusa, K. Powerful low-molecular-weight gelators based on L-valine and L-isoleucine with various terminal groups. New J. Chem. 2006, 30, 1184–1191. [Google Scholar] [CrossRef]
- Escuder, B.; Marti, S.; Miravet, J.F. Organogel formation by coaggregation of adaptable amidocarbamates and their tetraamide analogues. Langmuir 2005, 21, 6776–6787. [Google Scholar] [CrossRef] [PubMed]
- Escuder, B.; Miravet, J.F. Silk-inspired low-molecular-weight organogelator. Langmuir 2006, 22, 7793–7797. [Google Scholar] [CrossRef] [PubMed]
- Pozzo, J.L.; Clavier, G.M.; Desvergne, J.P. Rational design of new acid-sensitive organogelators. J. Mater. Chem. 1998, 8, 2575–2577. [Google Scholar] [CrossRef]
- Suzuki, M.; Yumoto, M.; Kimura, M.; Shirai, H.; Hanabusa, K. New low-molecular-mass gelators based on L-lysine: Amphiphilic gelators and water-soluble organogelators. Helv. Chim. Acta 2004, 87, 1–10. [Google Scholar] [CrossRef]
- Suzuki, M.; Nakajima, Y.; Yumoto, M.; Kimura, M.; Shirai, H.; Hanabusa, K. Effects of hydrogen bonding and van der Waals interactions on organogelation using designed low-molecular-weight gelators and gel formation at room temperature. Langmuir 2003, 19, 8622–8624. [Google Scholar] [CrossRef]
- Hartgerink, J.D.; Beniash, E.; Stupp, S.I. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc. Natl. Acad. Sci. USA 2002, 99, 5133–5138. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Miravet, J.F.; Escuder, B. Biomimetic Self-Assembly of Tetrapeptides into Fibrillar Networks and Organogels. Eur. J. Org. Chem. 2008, 2008, 4580–4590. [Google Scholar] [CrossRef]
- Miravet, J.F.; Escuder, B. Reactive organogels: Self-assembled support for functional materials. Org. Lett. 2005, 7, 4791–4794. [Google Scholar] [CrossRef] [PubMed]
- Hartgerink, J.D.; Beniash, E.; Stupp, S.I. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers. Science 2001, 294, 1684–1688. [Google Scholar] [CrossRef] [PubMed]
- Hosseinkhani, H.; Hosseinkhani, M.; Kobayashi, H. Design of Tissue-engineered Nanoscaffold Through Self-assembly of Peptide Amphiphile. J. Bioact. Compat. Polym. 2006, 21, 277–296. [Google Scholar] [CrossRef]
- Semino, C.E. Self-assembling Peptides: From Bio-inspired Materials to Bone Regeneration. J. Dent. Res. 2008, 87, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.G.; Suzuki, M.; Kimura, M.; Shirai, H.; Hanabusa, K. Preparation of cotton-like silica. Chem. Commun. 2004, 1332–1333. [Google Scholar] [CrossRef] [PubMed]
- Delbecq, F. Supramolecular gels from lipopeptide gelators: Template improvement and strategies for the in-situ preparation of inorganic nanomaterials and for the dispersion of carbon nanomaterials. Adv. Colloid Interface Sci. 2014, 209, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.; Nagano, K.; Iitaka, Y. The crystal structure of L-arginine phosphate monohydrate. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1971, 27, 11–23. [Google Scholar] [CrossRef]
- Heinemann, S.; Heinemann, C.; Jäger, M.; Neunzehn, J.; Wiesmann, H.P.; Hanke, T. Effect of Silica and Hydroxyapatite Mineralization on the Mechanical Properties and the Biocompatibility of Nanocomposite Collagen Scaffolds. ACS Appl. Mater. Interfaces 2011, 3, 4323–4331. [Google Scholar] [CrossRef] [PubMed]
- Smolin, Y.I.; Lapshin, A.E.; Pankova, G.A. Crystal structure of L-alanine phosphate. Crystallogr. Rep. 2003, 48, 283–285. [Google Scholar] [CrossRef]
- Iqbal, S. Biomimetic Self-Assembly of Peptides into Fibrillar Networks. Ph.D. Thesis, Universitat Jaume I, Castellón, Spain, 2011. [Google Scholar]
- Bouas-Laurent, H.; Desvergne, J.P. Optical Spectroscopic Methods as Tools to Investigate Gel Structures. In Molecular Gels. Materials with Self-Assembled Fibrillar Networks; Weiss, R.G., Terech, P., Eds.; Springer: New York, NY, USA, 2006; pp. 363–429. [Google Scholar]
- Abraham, S.; Lan, Y.; Lam, R.S.H.; Grahame, D.A.S.; Kim, J.J.H.; Weiss, R.G.; Rogers, M.A. Influence of positional isomers on the macroscale and nanoscale architectures of aggregates of racemic hydroxyoctadecanoic acids in their molecular gel, dispersion, and solid states. Langmuir 2012, 28, 4955–4964. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Yumoto, M.; Shirai, H.; Hanabusa, K. Supramolecular gels formed by amphiphilic low-molecular-weight gelators of N-alpha, N-epsilon-diacyl-L-lysine derivatives. Chem. Eur. J. 2008, 14, 2133–2144. [Google Scholar] [CrossRef] [PubMed]
- Miller, F.A.; Wilkins, C.H. Infrared Spectra and Characteristic Frequencies of Inorganic Ions. Anal. Chem. 1952, 24, 1253–1294. [Google Scholar] [CrossRef]
- De Jager, H.J.; Prinsloo, L.C. The dehydration of phosphates monitored by DSC/TGA and in situ Raman spectroscopy. Thermochim. Acta 2001, 376, 187–196. [Google Scholar] [CrossRef]
- Mohamadi, F.; Richards, N.G.J.; Guida, W.C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W.C. Macromodel—An integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J. Comput. Chem. 1990, 11, 440–467. [Google Scholar] [CrossRef]
- Mooney, R.C.L. X-Ray diffraction study of cerous phosphate and related crystals. I. Hexagonal modification. Acta Crystallogr. 1950, 3, 337–340. [Google Scholar] [CrossRef]
- Bowles, J.F.W.; Morgan, D.J. The composition of rhabdophane. Mineral. Mag. 1984, 48, 146–148. [Google Scholar] [CrossRef]
- Mooney, R.C.L. Crystal Structures of a Series of Rare Earth Phosphates. J. Chem. Phys. 1948, 16, 1003. [Google Scholar] [CrossRef]
- Rodríguez-Luque, M.P.; Hernández, J.C.; Yeste, M.P.; Bernal, S.; Cauqui, M.A.; Pintado, J.M.; Pérez-Omil, J.A.; Stéphan, O.; Calvino, J.J.; Trasobares, S. Preparation of Rhodium/CexPr1-xO2 Catalysts: A Nanostructural and Nanoanalytical Investigation of Surface Modifications by Transmission and Scanning-Transmission Electron Microscopy. J. Phys. Chem. C 2008, 112, 5900–5910. [Google Scholar] [CrossRef]
- Garvie, L.A.J.; Buseck, P.R. Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J. Phys. Chem. Solids 1999, 60, 1943–1947. [Google Scholar] [CrossRef]
- Luwang, M.N.; Ningthoujam, R.S.; Srivastava, J.S.K.; Vatsa, R.K. Effects of Ce3+ codoping and annealing on phase transformation and luminescence of Eu3+-doped YPO4 nanorods: D2O solvent effect. J. Am. Chem. Soc. 2010, 132, 2759–2768. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llusar, M.; Escuder, B.; López-Castro, J.D.D.; Trasobares, S.; Monrós, G. Transcription of Nanofibrous Cerium Phosphate Using a pH-Sensitive Lipodipeptide Hydrogel Template. Gels 2017, 3, 23. https://doi.org/10.3390/gels3020023
Llusar M, Escuder B, López-Castro JDD, Trasobares S, Monrós G. Transcription of Nanofibrous Cerium Phosphate Using a pH-Sensitive Lipodipeptide Hydrogel Template. Gels. 2017; 3(2):23. https://doi.org/10.3390/gels3020023
Chicago/Turabian StyleLlusar, Mario, Beatriu Escuder, Juan De Dios López-Castro, Susana Trasobares, and Guillermo Monrós. 2017. "Transcription of Nanofibrous Cerium Phosphate Using a pH-Sensitive Lipodipeptide Hydrogel Template" Gels 3, no. 2: 23. https://doi.org/10.3390/gels3020023
APA StyleLlusar, M., Escuder, B., López-Castro, J. D. D., Trasobares, S., & Monrós, G. (2017). Transcription of Nanofibrous Cerium Phosphate Using a pH-Sensitive Lipodipeptide Hydrogel Template. Gels, 3(2), 23. https://doi.org/10.3390/gels3020023