Advanced Hydrogel Systems for Local Anesthetic Delivery: Toward Prolonged and Targeted Pain Relief
Abstract
:1. Introduction
2. Historical Perspective
2.1. Early Use of Natural Local Anesthetics
2.2. Development of Synthetic Local Anesthetics
2.3. Evolution of Local Anesthetic Delivery Systems
2.4. Emergence of Hydrogels in Local Anesthetic Delivery
2.5. Toward the Integration of Multifunctional Systems
3. Properties of Local Anesthetics
3.1. Classification of Local Anesthetics
3.2. Molecular Structure and Mechanism of Action
3.3. Pharmacokinetics and Pharmacodynamics
3.4. Clinical Applications and Limitations
3.5. Emerging Trends in Local Anesthetic Development
4. Introduction to Hydrogels
4.1. Definition and Basic Characteristics
4.2. Classification of Hydrogels
4.3. Mechanisms of Drug Delivery
5. Hydrogels for Local Anesthetic Delivery
5.1. Hydrogels as Drug Carriers for Local Anesthetics
5.2. Preclinical Evidence: Bridging Concept and Practice
5.3. Early Clinical Findings and Applications
6. Challenges and Innovations in Hydrogel-Local Anesthetic Systems
6.1. Optimizing Drug Loading and Sustained Release
6.2. Biocompatibility and Safety Concerns
6.3. Mechanical Stability in Dynamic Environments
6.4. 3D-Printed and Customized Hydrogel Systems
6.5. Translational and Manufacturing Challenges
6.6. Sustainability and Ethical Considerations
6.7. Interdisciplinary Collaboration and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LA | Local anesthetic |
LAST | Local anesthetic systemic toxicity |
ECM | Extracellular matrix |
PNIPAM | Poly(N-isopropylacrylamide) |
LCST | Lower critical solution temperature |
PNDJ | Poly(N-isopropylacrylamide-co-dimethylbutyrolactone acrylamide-co-Jeffamine M-1000 acrylamide) |
PDA | Polydopamine |
NRS | Numerical rating scale |
AI | Artificial intelligence |
OEGMA | Oligo(ethylene glycol) methacrylate |
HEMA | 2-hydroxyethyl methacrylate |
References
- Chen, Q.; Chen, E.; Qian, X. A Narrative Review on Perioperative Pain Management Strategies in Enhanced Recovery Pathways—The Past, Present and Future. J. Clin. Med. 2021, 10, 2568. [Google Scholar] [CrossRef]
- Small, C.; Laycock, H. Acute postoperative pain management. Br. J. Surg. 2020, 107, e70–e80. [Google Scholar] [CrossRef] [PubMed]
- Aboushaar, N.; Serrano, N. The mutually reinforcing dynamics between pain and stress: Mechanisms, impacts and management strategies. Front. Pain Res. 2024, 5, 1445280. [Google Scholar] [CrossRef] [PubMed]
- Vinyes, D.; Muñoz-Sellart, M.; Fischer, L. Therapeutic Use of Low-Dose Local Anesthetics in Pain, Inflammation, and Other Clinical Conditions: A Systematic Scoping Review. J. Clin. Med. 2023, 12, 7221. [Google Scholar] [CrossRef]
- Getachew, M.; Tesfaye, H.; Yihunie, W.; Ayenew, T.; Alemu, S.; Dagnew, E.M.; Biyazin, Y.; Abebe, D.; Degefu, N.; Abebaw, A. Sustained release local anesthetics for pain management: Relevance and formulation approaches. Front. Pain Res. 2024, 5, 1383461. [Google Scholar] [CrossRef]
- Nestor, C.C.; Ng, C.; Sepulveda, P.; Irwin, M.G. Pharmacological and clinical implications of local anaesthetic mixtures: A narrative review. Anaesthesia 2022, 77, 339–350. [Google Scholar] [CrossRef]
- Ilfeld, B.M. Continuous Peripheral Nerve Blocks: An Update of the Published Evidence and Comparison With Novel, Alternative Analgesic Modalities. Anesth. Analg. 2017, 124, 308–335. [Google Scholar] [CrossRef]
- Macfarlane, A.J.R.; Gitman, M.; Bornstein, K.J.; El-Boghdadly, K.; Weinberg, G. Updates in our understanding of local anaesthetic systemic toxicity: A narrative review. Anaesthesia 2021, 76, 27–39. [Google Scholar] [CrossRef] [PubMed]
- On’Gele, M.O.; Weintraub, S.; Qi, V.; Kim, J. Local Anesthetics, Local Anesthetic Systemic Toxicity (LAST), and Liposomal Bupivacaine. Anesth. Clin 2024, 42, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Owens, G.E.; Kohane, D.S. Materials for Controlled Release of Local Anesthetics. ChemMedChem 2023, 18, e202300009. [Google Scholar] [CrossRef]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef]
- Lambrechts, M.; O’Brien, M.J.; Savoie, F.H.; You, Z. Liposomal extended-release bupivacaine for postsurgical analgesia. Patient Prefer. Adherence 2013, 7, 885–890. [Google Scholar] [CrossRef]
- Beach, M.A.; Nayanathara, U.; Gao, Y.; Zhang, C.; Xiong, Y.; Wang, Y.; Such, G.K. Polymeric Nanoparticles for Drug Delivery. Chem. Rev. 2024, 124, 5505–5616. [Google Scholar] [CrossRef] [PubMed]
- Hameed, H.; Faheem, S.; Paiva-Santos, A.C.; Sarwar, H.S.; Jamshaid, M. A Comprehensive Review of Hydrogel-Based Drug Delivery Systems: Classification, Properties, Recent Trends, and Applications. AAPS PharmSciTech 2024, 25, 64. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Chen, K. Advances in Hydrogel-Based Drug Delivery Systems. Gels 2024, 10, 262. [Google Scholar] [CrossRef]
- Musuc, A.M.; Mititelu, M.; Chelu, M. Hydrogel for Sustained Delivery of Therapeutic Agents. Gels 2024, 10, 717. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Gao, J. The engineering and application of extracellular matrix hydrogels: A review. Biomater. Sci. 2023, 11, 3784–3799. [Google Scholar] [CrossRef]
- Zhou, H.; Zhu, Y.; Yang, B.; Huo, Y.; Yin, Y.; Jiang, X.; Ji, W. Stimuli-responsive peptide hydrogels for biomedical applications. J. Mater. Chem. B 2024, 12, 1748–1774. [Google Scholar] [CrossRef]
- Visai, L.; Zorzetto, L.; Brambilla, P.; Bloise, N.; De Gregori, M.; Cobianchi, L.; Allegri, M.; Petrini, P.; Marcello, E.; Peloso, A. From micro- to nanostructured implantable device for local anesthetic delivery. Int. J. Nanomed. 2016, 2016, 2695–2709. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; He, Y.; Liu, Z.; Ma, X.; Sun, F.; Pei, L.; Ma, C.; Liu, H.; Ji, T.; Huang, Y. Construction of meloxicam and bupivacaine co-delivery nanosystem based on the pathophysiological environment of surgical injuries for enhanced postoperative analgesia. Nano Res. 2023, 16, 13301–13308. [Google Scholar] [CrossRef]
- Yu, Y.-M.; Long, Y.-Z.; Zhu, Z.-Q. Chitosan, a Natural Polymer, is an Excellent Sustained-Release Carrier for Amide Local Anesthetics. J. Pain Res. 2024, 17, 3539–3551. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, W.; Ning, C.; Li, M.; Zhao, G.; Jiang, W.; Ding, J.; Chen, X. Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia. Biomaterials 2018, 181, 378–391. [Google Scholar] [CrossRef]
- Narayanaswamy, R.; Torchilin, V.P. Hydrogels and Their Applications in Targeted Drug Delivery. Molecules 2019, 24, 603. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, J.; González, A. History of the development and evolution of local anesthesia since the coca leaf. Anesthesiology 2003, 98, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Koller, C. The Sub-conjunctival application of Cocaine in Eye Operations. Trans. Am. Ophthalmol. Soc. 1892, 6, 421–424. [Google Scholar] [PubMed]
- Warner, E.A. Cocaine abuse. Ann. Intern. Med. 1993, 119, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, J.B.; Wildsmith, J.A.W. Developments in local anaesthetic drugs. Br. J. Anaesth. 2001, 87, 27–35. [Google Scholar] [CrossRef]
- Tobe, M.; Suto, T.; Saito, S. The history and progress of local anesthesia: Multiple approaches to elongate the action. J. Anesth. 2018, 32, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, M. History of anaesthesia: Early forms of local anaesthesia. Eur. J. Anaesthesiol. 2014, 31, 1–12. [Google Scholar] [CrossRef]
- Drasner, K. The Development of Local Anesthetics. In The Wondrous Story of Anesthesia; Eger, I., II, Saidman, L.J., Westhorpe, R.N., Eds.; Springer: New York, NY, USA, 2014; pp. 693–702. [Google Scholar]
- Butterworth, J.F.t.; Strichartz, G.R. Molecular mechanisms of local anesthesia: A review. Anesthesiology 1990, 72, 711–734. [Google Scholar] [CrossRef]
- Ruetsch, Y.A.; Böni, T.; Borgeat, A. From cocaine to ropivacaine: The history of local anesthetic drugs. Curr. Top Med. Chem. 2001, 1, 175–182. [Google Scholar] [CrossRef]
- Albrecht, E.; Chin, K.J. Advances in regional anaesthesia and acute pain management: A narrative review. Anaesthesia 2020, 75 (Suppl. S1), e101–e110. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.M. Continuous spinal anesthesia. Am. J. Ther. 2009, 16, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Toledano, R.D.; Tsen, L.C. Epidural catheter design: History, innovations, and clinical implications. Anesthesiology 2014, 121, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Jeng, C.L.; Torrillo, T.M.; Rosenblatt, M.A. Complications of peripheral nerve blocks. Br. J. Anaesth. 2010, 105 (Suppl. S1), i97–i107. [Google Scholar] [CrossRef]
- Ilfeld, B.M.; Eisenach, J.C.; Gabriel, R.A. Clinical Effectiveness of Liposomal Bupivacaine Administered by Infiltration or Peripheral Nerve Block to Treat Postoperative Pain. Anesthesiology 2021, 134, 283–344. [Google Scholar] [CrossRef]
- Hamilton, T.W.; Athanassoglou, V.; Mellon, S.; Strickland, L.H.; Trivella, M.; Murray, D.; Pandit, H.G. Liposomal bupivacaine infiltration at the surgical site for the management of postoperative pain. Cochrane. Database. Syst. Rev. 2017, 2, Cd011419. [Google Scholar] [CrossRef]
- Aggarwal, N. Local anesthetics systemic toxicity association with exparel (bupivacaine liposome)- a pharmacovigilance evaluation. Expert. Opin. Drug Saf. 2018, 17, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, X.; Liu, H.; Li, S.; An, Z.; Feng, Z. Construction of bupivacaine-loaded gelatin-based hydrogel delivery system for sciatic nerve block in mice. J. Biomed. Mater. Res. A 2024, 112, 1975–1984. [Google Scholar] [CrossRef] [PubMed]
- Supachawaroj, N.; Limsitthichaikoon, S. Lidocaine HCl-Loaded Polyelectrolyte Complex -Poloxamer Thermoresponsive Hydrogel: In Vitro- In Vivo Anesthetic Evaluations for Tooth Socket Wound Delivery. AAPS PharmSciTech 2024, 25, 182. [Google Scholar] [CrossRef]
- Tang, C.; Miller, A.F.; Saiani, A. Peptide hydrogels as mucoadhesives for local drug delivery. Int. J. Pharm. 2014, 465, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Huang, J.; Yang, Q.; Li, T.; Liu, J.; Qian, Z. Gold nanorods-based thermosensitive hydrogel produces selective long-lasting regional anesthesia triggered by photothermal activation of Transient Receptor Potential Vanilloid Type-1 channels. Colloids Surf. B Biointerfaces 2018, 171, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Kurian, A.G.; Singh, R.K.; Sagar, V.; Lee, J.-H.; Kim, H.-W. Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration. Nano Micro. Lett. 2024, 16, 110. [Google Scholar] [CrossRef]
- Wójcik-Pastuszka, D.; Frąk, A.; Musiał, W. Influence of the Acceptor Fluid on the Bupivacaine Release from the Prospective Intra-Articular Methylcellulose Hydrogel. Pharmaceutics 2024, 16, 867. [Google Scholar] [CrossRef]
- Ma, X.; Sekhar, K.P.C.; Zhang, P.; Cui, J. Advances in stimuli-responsive injectable hydrogels for biomedical applications. Biomater. Sci. 2024, 12, 5468–5480. [Google Scholar] [CrossRef]
- Martins, C.F.; García-Astrain, C.; Conde, J.; Liz-Marzán, L.M. Nanocomposite hydrogel microneedles: A theranostic toolbox for personalized medicine. Drug Deliv. Transl. Res. 2024, 14, 2262–2275. [Google Scholar] [CrossRef]
- Taylor, A.; McLeod, G. Basic pharmacology of local anaesthetics. BJA Educ. 2020, 20, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Golembiewski, J. Local anesthetics. J. Perianesth. Nurs. 2013, 28, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Ring, M.E. The History of Local Anesthesia. J. Calif. Dent. Assoc. 2007, 35, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.A.; Hersh, E.V. Local anesthetics: Pharmacology and toxicity. Dent. Clin. N. Am. 2010, 54, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Bourne, E.; Wright, C.; Royse, C. A review of local anesthetic cardiotoxicity and treatment with lipid emulsion. Local Reg. Anesth. 2010, 2010, 11–19. [Google Scholar] [CrossRef]
- Casati, A.; Santorsola, R.; Cerchierini, E.; Moizo, E. Ropivacaine. Minerva. Anestesiol. 2001, 67, 15–19. [Google Scholar] [PubMed]
- Becker, D.E.; Reed, K.L. Local Anesthetics: Review of Pharmacological Considerations. Anesth. Prog. 2012, 59, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, E.; Goharian, S.; Katz, Y. Adverse reactions triggered by dental local anesthetics: A clinical survey. Anesth. Prog. 2000, 47, 134–138. [Google Scholar]
- Deleon, A.M.; Wong, C.A. Levobupivacaine versus bupivacaine: Is there as winner? Minerva. Anestesiol. 2010, 76, 979–981. [Google Scholar] [PubMed]
- Desai, N.; Kirkham, K.R.; Albrecht, E. Local anaesthetic adjuncts for peripheral regional anaesthesia: A narrative review. Anaesthesia 2021, 76 (Suppl. S1), 100–109. [Google Scholar] [CrossRef] [PubMed]
- Lirk, P.; Hollmann, M.W.; Strichartz, G. The Science of Local Anesthesia: Basic Research, Clinical Application, and Future Directions. Anesth. Analg. 2018, 126, 1381–1392. [Google Scholar] [CrossRef]
- Maqusood, S.; Madavi, S.; Bele, A.; Dash, S.; Bawiskar, D. Pharmacological Insights of Ropivacaine and Clinical Applications: A Narrative Review. Cureus 2024, 16, e67565. [Google Scholar] [CrossRef]
- Hoegberg, L.C.; Bania, T.C.; Lavergne, V.; Bailey, B.; Turgeon, A.F.; Thomas, S.H.; Morris, M.; Miller-Nesbitt, A.; Mégarbane, B.; Magder, S.; et al. Systematic review of the effect of intravenous lipid emulsion therapy for local anesthetic toxicity. Clin. Toxicol. 2016, 54, 167–193. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, P.H.; Veering, B.T.; Urmey, W.F. Maximum recommended doses of local anesthetics: A multifactorial concept. Reg. Anesth. Pain Med. 2004, 29, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Xia, X.; Shorty, T.; Li, T.; Stevens, A.O.; Zhao, C.; He, Y. Molecular Dynamics Insights into Peptide-Based Tetrodotoxin Delivery Nanostructures. Molecules 2024, 30, 61. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Peng, F.; Kang, Y.; Gong, D.; Fan, J.; Zhang, W.; Qiu, F. High-Loading Self-Assembling Peptide Nanoparticles as a Lipid-Free Carrier for Hydrophobic General Anesthetics. Int. J. Nanomed. 2021, 16, 5317–5331. [Google Scholar] [CrossRef]
- King, C.H.; Beutler, S.S.; Kaye, A.D.; Urman, R.D. Pharmacologic Properties of Novel Local Anesthetic Agents in Anesthesia Practice. Anesth. Clin. 2017, 35, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, Y.; Deng, X.; Torre, M.; Zhang, Z.; Li, X.; Zhang, W.; Cullion, K.; Kohane, D.S.; Weldon, C.B. An aptamer-based depot system for sustained release of small molecule therapeutics. Nat. Commun. 2023, 14, 2444. [Google Scholar] [CrossRef] [PubMed]
- Priya, A.S.; Premanand, R.; Ragupathi, I.; Bhaviripudi, V.R.; Aepuru, R.; Kannan, K.; Shanmugaraj, K. Comprehensive Review of Hydrogel Synthesis, Characterization, and Emerging Applications. J. Compos. Sci. 2024, 8, 457. [Google Scholar] [CrossRef]
- Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther. 2021, 6, 426. [Google Scholar] [CrossRef]
- Kaith, B.S.; Singh, A.; Sharma, A.K.; Sud, D. Hydrogels: Synthesis, Classification, Properties and Potential Applications—A Brief Review. J. Polym. Environ. 2021, 29, 3827–3841. [Google Scholar] [CrossRef]
- Tan, X.; Zhou, Y.; Qin, Y.; Wu, L.; Yang, R.; Bao, X.; Jiang, R.; Sun, X.; Ying, X.; Ben, Z.; et al. Self-Healing Hydrogel Resulting from the Noncovalent Interaction between Ropivacaine and Low-Molecular-Weight Gelator Sodium Deoxycholate Achieves Stable and Endurable Local Analgesia in Vivo. ACS Appl. Mater. Interfaces 2024, 16, 45969–45988. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhu, S.; Zhang, D.; Zhou, C.; Yang, Z.; Wang, C.; Liu, X.; Zhang, J. Long-lasting postoperative analgesia with local anesthetic-loaded hydrogels prevent tumor recurrence via enhancing CD8(+)T cell infiltration. J. Nanobiotechnol. 2023, 21, 50. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, D.; Shin, D.; Sung, T.; Rhee, S.; Kim, M.; Nam, C.; Lee, I.; Son, W.G. Effect of temperature-responsive hydrogel on femoral and sciatic nerve blocks using bupivacaine in Beagle dogs. Vet. Med. Sci. 2023, 9, 91–97. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Y.; Chen, Y.; Fan, H.; Zhang, J.; Li, J.; Lin, W.; Yi, G.; Feng, X. Adhesive polydopamine-based photothermal hybrid hydrogel for on-demand lidocaine delivery, effective anti-bacteria, and prolonged local long-lasting analgesia. Int. J. Biol. Macromol. 2024, 259, 129266. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.; Xue, Y.; Jin, J.; Xu, Y.; Zeng, W.; Liu, J.; Xie, J. Injectable Hydrogel Delivery System with High Drug Loading for Prolonging Local Anesthesia. Adv. Sci. 2024, 11, e2309482. [Google Scholar] [CrossRef] [PubMed]
- Overstreet, D.J.; Zdrale, G.; McLaren, A.C. Extended Release of Bupivacaine from Temperature-Responsive PNDJ Hydrogels Improves Postoperative Weight-Bearing in Rabbits Following Knee Surgery. Pharmaceuticals 2024, 17, 879. [Google Scholar] [CrossRef]
- Qing, X.; Dou, R.; Wang, P.; Zhou, M.; Cao, C.; Zhang, H.; Qiu, G.; Yang, Z.; Zhang, J.; Liu, H.; et al. Ropivacaine-loaded hydrogels for prolonged relief of chemotherapy-induced peripheral neuropathic pain and potentiated chemotherapy. J. Nanobiotechnol. 2023, 21, 462. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7, 182. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhou, Y.; Zhang, J.; Liang, H.; Chen, X.; Tan, H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023, 15, 2514. [Google Scholar] [CrossRef]
- Van Sprang, J.F.; Smits, I.P.M.; Nooten, J.C.H.; Fransen, P.-P.K.H.; Söntjens, S.H.M.; Van Houtem, M.H.C.J.; Janssen, H.M.; Rutten, M.G.T.A.; Schotman, M.J.G.; Dankers, P.Y.W. From natural to synthetic hydrogels: How much biochemical complexity is required for mechanotransduction? J. Mater. Chem. B 2025, 13, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Lin, Q.; Yu, H.; Shao, L.; Cui, X.; Pang, Q.; Zhu, Y.; Hou, R. Construction methods and biomedical applications of PVA-based hydrogels. Front. Chem. 2024, 12, 1376799. [Google Scholar] [CrossRef]
- Sepulveda, A.F.; Kumpgdee-Vollrath, M.; Franco, M.; Yokaichiya, F.; de Araujo, D.R. Supramolecular structure organization and rheological properties modulate the performance of hyaluronic acid-loaded thermosensitive hydrogels as drug-delivery systems. J. Colloid Interface Sci. 2023, 630, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Islam, M.S.; Bakker, A.; Li, Z.; Ajam, A.; Kruzic, J.J.; Kilian, K.A. Improving the bioactivity and mechanical properties of poly(ethylene glycol)-based hydrogels through a supramolecular support network. J. Mater. Chem. B 2025, 13, 1286–1295. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Du, C.; Huang, W.; Lei, Y. Injectable smart stimuli-responsive hydrogels: Pioneering advancements in biomedical applications. Biomater. Sci. 2024, 12, 8–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, W.; Li, Y.; Ma, X.; Xie, Y.; Zhou, G.; Liu, S. Dual-Temperature/pH-Sensitive Hydrogels with Excellent Strength and Toughness Crosslinked Using Three Crosslinking Methods. Gels 2024, 10, 480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, B.M. Current Advances in Stimuli-Responsive Hydrogels as Smart Drug Delivery Carriers. Gels 2023, 9, 838. [Google Scholar] [CrossRef] [PubMed]
- Morozova, S.M.; Korzhikova-Vlakh, E.G. Fibrillar Hydrogel Based on Cellulose Nanocrystals Crosslinked via Diels-Alder Reaction: Preparation and pH-Sensitive Release of Benzocaine. Pharmaceuticals 2023, 15, 4689. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.H.; Lee, C.H.; Hsu, Y.H.; Chou, Y.C.; Hong, B.K.; Huang, C.T.; Liu, S.J. Novel CO(2)-encapsulated Pluronic F127 hydrogel for the treatment of Achilles tendon injury. Sci. Rep. 2023, 13, 21895. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Aizik, G.; Ostertag-Hill, C.A.; Kohane, D.S. A hybrid nanoparticle-protein hydrogel system for prolonged local anesthesia. Biomaterials 2024, 306, 122494. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.K.; Jeong, H.; Lee, W.Y.; Yun, S.H.; Cho, Y.B.; Huh, J.W.; Park, Y.A.; Sim, W.S.; Kim, H.C. Efficacy of a local anesthetic gel infusion kit for pain relief after minimally invasive colorectal surgery: An open-label, randomized clinical trial. Sci. Rep. 2022, 12, 17429. [Google Scholar] [CrossRef] [PubMed]
- Croitoru, C.; Roata, I.C.; Pascu, A.; Stanciu, E.M. Diffusion and Controlled Release in Physically Crosslinked Poly (Vinyl Alcohol)/Iota-Carrageenan Hydrogel Blends. Polymers 2020, 12, 1544. [Google Scholar] [CrossRef]
- Tran Vo, T.M.; Nakajima, K.; Potiyaraj, P.; Kobayashi, T. In situ sono-rheometric assessment of procaine-loaded calcium pectinate hydrogel for enhanced drug releasing under ultrasound stimulation. Int. J. Biol. Macromol. 2024, 262, 130164. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, S.; Zhao, M.; Zhou, M.; Zhu, X.; Qing, X.; Yang, Z.; Wei, P.; Zhang, G.; He, W.; et al. Analgesic and potentiated photothermal therapy with ropivacaine-loaded hydrogels. Theranostics 2023, 13, 2226–2240. [Google Scholar] [CrossRef]
- Pan, J.; Liao, H.; Gong, G.; He, Y.; Wang, Q.; Qin, L.; Zhang, Y.; Ejima, H.; Tardy, B.L.; Richardson, J.J.; et al. Supramolecular nanoarchitectonics of phenolic-based nanofiller for controlled diffusion of versatile drugs in hydrogels. J. Control. Release 2023, 360, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Chen, J.; Wang, X.; Wang, Q.; Zhao, L.; Zhu, Y.; Yan, J.; Zheng, Y. Paravertebrally-Injected Multifunctional Hydrogel for Sustained Anti-Inflammation and Pain Relief in Lumbar Disc Herniation. Adv. Health Mater. 2024, 13, e2401227. [Google Scholar] [CrossRef] [PubMed]
- Tanga, S.; Aucamp, M.; Ramburrun, P. Injectable Thermoresponsive Hydrogels for Cancer Therapy: Challenges and Prospects. Gels 2023, 9, 418. [Google Scholar] [CrossRef]
- Yun, C.W.; Kim, K.H.; Lee, W.; Kim, S.H. Comparative Analysis of Temperature-Responsive Hydrogel (PF 72) for Postoperative Pain After Bimaxillary Surgery: A Retro-spective Study. Aesthetic Plast. Surg. 2024, 48, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Manghnani, P.N.; Nelson, A.Z.; Wong, K.; Lee, Y.W.; Khan, S.A.; Doyle, P.S. From burst to controlled release: Using hydrogel crosslinking chemistry to tune release of micro-crystalline active pharmaceutical ingredients. RSC Pharm. 2025, 2, 94–101. [Google Scholar] [CrossRef]
- Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.; Selvanathan, V.; Sonsudin, F.; Abouloula, C. pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers 2017, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Lavrentev, F.V.; Shilovskikh, V.V.; Alabusheva, V.S.; Yurova, V.Y.; Nikitina, A.A.; Ulasevich, S.A.; Skorb, E.V. Diffusion-Limited Processes in Hydrogels with Chosen Applications from Drug Delivery to Electronic Components. Molecules 2023, 28, 5931. [Google Scholar] [CrossRef]
- Amiri, N.; Ghaffari, S.; Hassanpour, I.; Chae, T.; Jalili, R.; Kilani, R.T.; Ko, F.; Ghahary, A.; Lange, D. Antibacterial Thermosensitive Silver–Hydrogel Nanocomposite Improves Wound Healing. Gels 2023, 9, 542. [Google Scholar] [CrossRef]
- Ma, H.; Pan, Z.; Lai, B.; Zan, C.; Liu, H. Recent Research Advances in Nano-Based Drug Delivery Systems for Local Anesthetics. Drug Des. Dev. Ther. 2023, 17, 2639–2655. [Google Scholar] [CrossRef] [PubMed]
- Fomina, Y.S.; Semkina, A.S.; Zagoskin, Y.D.; Aleksanyan, M.M.; Chvalun, S.N.; Grigoriev, T.E. Biocompatible Hydrogels Based on Biodegradable Polyesters and Their Copolymers. Colloid J. 2023, 85, 795–816. [Google Scholar] [CrossRef]
- Gergen, A.K.; Madsen, H.J.; Rocker, A.J.; White, A.M.; Jones, K.; Merrick, D.T.; Park, D.; Rove, J.Y. Making a Painless Drain: Proof of Concept. Semin. Thorac. Cardiovasc. Surg. 2024, 36, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Hoare, T.; Young, S.; Lawlor, M.W.; Kohane, D.S. Thermoresponsive nanogels for prolonged duration local anesthesia. Acta Biomater. 2012, 8, 3596–3605. [Google Scholar] [CrossRef] [PubMed]
- Amorim, J.; Liao, K.; Mandal, A.; Costa, A.F.S.; Roumeli, E.; Sarubbo, L.A. Impact of Carbon Source on Bacterial Cellulose Network Architecture and Prolonged Lidocaine Release. Polymers 2024, 16, 3021. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Xin, L.; Sun, P.; Li, H.; Liu, C.; Fang, L. Temperature-sensitive multifunctional intelligent responsive hydrogel based on carboxymethyl agarose and N-isopropylacrylamide: Controlled drug release and accelerated wound healing. Carbohydr. Polym. 2023, 322, 121327. [Google Scholar] [CrossRef]
- Guo, W.; Cao, D.; Rao, W.; Sun, T.; Wei, Y.; Wang, Y.; Yu, L.; Ding, J. Achieving Long-Acting Local Analgesia Using an Intelligent Hydrogel Encapsulated with Drug and pH Regulator. ACS Appl. Mater. Interfaces 2023, 15, 42113–42129. [Google Scholar] [CrossRef]
- Patel, P.; Mandal, A.; Gote, V.; Pal, D.; Mitra, A.K. Thermosensitive hydrogel-based drug delivery system for sustained drug release. J. Polym. Res. 2019, 26, 131. [Google Scholar] [CrossRef]
- Choi, B.M.; Hwang, C.S.; Yoon, Y.S.; Park, I.J.; Yoo, M.W.; Kim, B.S. Novel temperature-responsive hydrogel injected to the incision site for postoperative pain relief in laparoscopic abdominal surgery: A single-blind, randomized, pivotal clinical trial. Surg. Endosc. 2022, 36, 5794–5802. [Google Scholar] [CrossRef]
- Jeon, J.H.; Seong, Y.W.; Han, J.E.; Cho, S.; Kim, J.H.; Jheon, S.; Kim, K. Randomized Trial of Poloxamer 407-Based Ropivacaine Hydrogel After Thoracoscopic Pulmonary Resection. Ann. Thorac. Surg. 2022, 114, 1189–1196. [Google Scholar] [CrossRef]
- Amorim, K.S.; Franz-Montan, M.; Groppo, F.C.; Muniz, B.V.; Araújo, J.S.M.; Santana, J.V.F.; Dantas, A.; de Paula, E.; Souza, L.M.A. Palatal needle-free anesthesia for upper molars extraction. A randomized clinical trial. J. Craniomaxillofac. Surg. 2020, 48, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Greuber, E.; Vought, K.; Patel, K.; Suzuki, H.; Usuda, K.; Shiramizu, A.; Koplowitz, L.P.; Koplowitz, B.; Maibach, H.I.; Lissin, D. Biorelevant In Vitro Skin Permeation Testing and In Vivo Pharmacokinetic Characterization of Lidocaine from a Nonaqueous Drug-in-Matrix Topical System. AAPS PharmSciTech 2021, 22, 215. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, Z.; Xiao, Y.; Zhang, S.; Wang, J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 2019, 7, 843–855. [Google Scholar] [CrossRef] [PubMed]
- Valentino, A.; Yazdanpanah, S.; Conte, R.; Calarco, A.; Peluso, G. Smart Nanocomposite Hydrogels as Next-Generation Therapeutic and Diagnostic Solutions. Gels 2024, 10, 689. [Google Scholar] [CrossRef] [PubMed]
- Hussain AL-Mayahy, M.; Imad Hameed, H. Hydrogels and Nanogels as a Promising Carrier for Drug Delivery. Hydrogels and Nanogels—Applications in Medicine. IntechOpen. 2023. Available online: https://doi.org/10.5772/intechopen.1002417 (accessed on 8 January 2025).
- Negut, I.; Bita, B. Exploring the Potential of Artificial Intelligence for Hydrogel Development—A Short Review. Gels 2023, 9, 845. [Google Scholar] [CrossRef] [PubMed]
- Sheth, S.; Barnard, E.; Hyatt, B.; Rathinam, M.; Zustiak, S.P. Predicting Drug Release From Degradable Hydrogels Using Fluorescence Correlation Spectroscopy and Mathematical Modeling. Front. Bioeng. Biotechnol. 2019, 7, 410. [Google Scholar] [CrossRef]
- Bediaga-Bañeres, H.; Moreno-Benítez, I.; Arrasate, S.; Pérez-Álvarez, L.; Halder, A.K.; Cordeiro, M.N.D.S.; González-Díaz, H.; Vilas-Vilela, J.L. Artificial Intelligence-Driven Modeling for Hydrogel Three-Dimensional Printing: Computational and Experimental Cases of Study. Polymers 2025, 17, 121. [Google Scholar] [CrossRef]
- Tian, B.; Liu, J. Smart stimuli-responsive chitosan hydrogel for drug delivery: A review. Int J Biol Macromol 2023, 235, 123902. [Google Scholar] [CrossRef]
- Zinkovska, N.; Smilek, J.; Pekar, M. Gradient Hydrogels—The State of the Art in Preparation Methods. Polymers 2020, 12, 966. [Google Scholar] [CrossRef]
- Heffernan, J.M.; McLaren, A.C.; Glass, C.M.; Overstreet, D.J. Extended Release of Bupivacaine from Temperature-responsive Hydrogels Provides Multi-day Analgesia for Postoperative Pain. Pain Med. 2023, 24, 113–121. [Google Scholar] [CrossRef]
- Shymborska, Y.; Stetsyshyn, Y.; Awsiuk, K.; Raczkowska, J.; Bernasik, A.; Janiszewska, N.; Da Bczyński, P.; Kostruba, A.; Budkowski, A. Temperature- and pH-Responsive Schizophrenic Copolymer Brush Coatings with Enhanced Temperature Response in Pure Water. ACS Appl. Mater. Interfaces 2023, 15, 8676–8690. [Google Scholar] [CrossRef] [PubMed]
- Tymetska, S.; Shymborska, Y.; Stetsyshyn, Y.; Budkowski, A.; Bernasik, A.; Awsiuk, K.; Donchak, V.; Raczkowska, J. Thermoresponsive Smart Copolymer Coatings Based on P(NIPAM-co-HEMA) and P(OEGMA-co-HEMA) Brushes for Regenerative Medicine. ACS Biomater. Sci. Eng. 2023, 9, 6256–6272. [Google Scholar] [CrossRef]
- Peng, F.; Liu, J.; Zhang, Y.; Fan, J.; Gong, D.; He, L.; Zhang, W.; Qiu, F. Designer self-assembling peptide nanofibers induce biomineralization of lidocaine for slow-release and prolonged analgesia. Acta Biomater. 2022, 146, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Yan, Y.; Zhuang, P.; Liu, X.; Tian, K.; Huang, W.; Li, C. Synthesis of nanocapsules blended polymeric hydrogel loaded with bupivacaine drug delivery system for local anesthetics and pain management. Drug Deliv. 2022, 29, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Zafar, S.; Hanif, M.; Azeem, M.; Mahmood, K.; Gondal, S.A. Role of crosslinkers for synthesizing biocompatible, biodegradable and mechanically strong hydrogels with desired release profile. Polym. Bull. 2022, 79, 9199–9219. [Google Scholar] [CrossRef]
- Ramot, Y.; Haim-Zada, M.; Domb, A.J.; Nyska, A. Biocompatibility and safety of PLA and its copolymers. Adv. Drug Deliv. Rev. 2016, 107, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, H.; Wang, C.; Xing, Y.; Liu, S.; Feng, L.; Zhang, X.; Chen, J. Advances in Smart-Response Hydrogels for Skin Wound Repair. Polymers 2024, 16, 2818. [Google Scholar] [CrossRef]
- Satchanska, G.; Davidova, S.; Petrov, P.D. Natural and Synthetic Polymers for Biomedical and Environmental Applications. Polymers 2024, 16, 1159. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.; Ali, M.N.; Barakullah, A.; Gulzar, A.; Arshad, M.; Fatima, S.; Asad, M. Synthetic polymeric biomaterials for wound healing: A review. Prog. Biomater. 2018, 7, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hu, Y.; Ju, Y.; Yang, P.; Shen, N.; Yang, A.; Wu, R.; Fang, B.; Liu, L. Immunomodulatory hydrogels for tissue repair and regeneration. APL Mater. 2024, 12, 0228692. [Google Scholar] [CrossRef]
- Grindy, S.; Gil, D.; Suhardi, J.; Fan, Y.; Moore, K.; Hugard, S.; Leape, C.; Randolph, M.; Asik, M.D.; Muratoglu, O.; et al. Hydrogel device for analgesic drugs with in-situ loading and polymerization. J. Control. Release 2023, 361, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, A.; Muñana-González, S.; Lanceros-Mendez, S.; Ruiz-Rubio, L.; Alvarez, L.P.; Vilas-Vilela, J.L. Biodegradable Natural Hydrogels for Tissue Engineering, Controlled Release, and Soil Remediation. Polymers 2024, 16, 2599. [Google Scholar] [CrossRef]
- Xu, L.; Qiu, L.; Sheng, Y.; Sun, Y.; Deng, L.; Li, X.; Bradley, M.; Zhang, R. Biodegradable pH-responsive hydrogels for controlled dual-drug release. J. Mater. Chem. B 2018, 6, 510–517. [Google Scholar] [CrossRef]
- Chelu, M.; Magdalena Musuc, A. Biomaterials-Based Hydrogels for Therapeutic Applications. Biomaterials in Microencapsulation. IntechOpen. 2024. Available online: https://doi.org/10.5772/intechopen.1004826 (accessed on 8 January 2025).
- Sobczak, M. Enzyme-Responsive Hydrogels as Potential Drug Delivery Systems—State of Knowledge and Future Prospects. Int. J. Mol. Sci. 2022, 23, 4421. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, X.; Ma, X.; Wang, W.; Yan, F.; Zhao, X.; Chu, X.; Xu, W.; Sun, C. A review of the properties and applications of bioadhesive hydrogels. Polym. Chem. 2021, 12, 3721–3739. [Google Scholar] [CrossRef]
- Karami, P.; Martin, R.; Laurent, A.; Nam, H.Y.; Philippe, V.; Applegate, L.A.; Pioletti, D.P. An Adhesive Hydrogel Technology for Enhanced Cartilage Repair: A Preliminary Proof of Concept. Gels 2024, 10, 657. [Google Scholar] [CrossRef] [PubMed]
- Rumon, M.M.H.; Rahman, M.S.; Akib, A.A.; Sohag, M.S.; Rakib, M.R.A.; Khan, M.A.R.; Yesmin, F.; Shakil, M.S.; Rahman Khan, M.M. Progress in hydrogel toughening: Addressing structural and crosslinking challenges for biomedical applications. Discov. Mater. 2025, 5, 5. [Google Scholar] [CrossRef]
- Baishya, G.; Parasar, B.; Limboo, M.; Kumar, R.; Dutta, A.; Hussain, A.; Phukan, M.M.; Saikia, D. Advancements in nanocomposite hydrogels: A comprehensive review of biomedical applications. Discov. Mater. 2024, 4, 40. [Google Scholar] [CrossRef]
- Luu, C.H.; Nguyen, G.; Le, T.T.; Nguyen, T.N.; Giang Phan, V.H.; Murugesan, M.; Mathiyalagan, R.; Jing, L.; Janarthanan, G.; Yang, D.C.; et al. Graphene Oxide-Reinforced Alginate Hydrogel for Controlled Release of Local Anesthetics: Synthesis, Characterization, and Release Studies. Gels 2022, 8, 246. [Google Scholar] [CrossRef]
- Al Homsi, R.; Eltahir, S.; Jagal, J.; Ali Abdelkareem, M.; Ghoneim, M.M.; Rawas-Qalaji, M.M.; Greish, K.; Haider, M. Thermosensitive injectable graphene oxide/chitosan-based nanocomposite hydrogels for controlling the in vivo release of bupivacaine hydrochloride. Int. J. Pharm. 2022, 621, 121786. [Google Scholar] [CrossRef]
- Li, W.; Zhang, G.; Wei, X. Lidocaine-loaded reduced graphene oxide hydrogel for prolongation of effects of local anesthesia: In vitro and in vivo analyses. J. Biomater. Appl. 2021, 35, 1034–1042. [Google Scholar] [CrossRef]
- Rumon, M.M.H.; Sarkar, S.D.; Uddin, M.M.; Alam, M.M.; Karobi, S.N.; Ayfar, A.; Azam, M.S.; Roy, C.K. Graphene oxide based crosslinker for simultaneous enhancement of mechanical toughness and self-healing capability of conventional hydrogels. RSC Adv. 2022, 12, 7453–7463. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Yang, H.; Liu, K.; Miao, R.; Peng, H.; Fang, Y. Dynamic covalent bond-based hydrogels with superior compressive strength, exceptional slice-resistance and self-healing properties. Soft Matter 2018, 14, 7950–7953. [Google Scholar] [CrossRef]
- Sahajpal, K.; Shekhar, S.; Kumar, A.; Sharma, B.; Meena, M.K.; Bhagi, A.K.; Sharma, S. Dynamic protein and polypeptide hydrogels based on Schiff base co-assembly for biomedicine. J. Mater. Chem. B 2022, 10, 3173–3198. [Google Scholar] [CrossRef] [PubMed]
- Zandi, N.; Sani, E.S.; Mostafavi, E.; Ibrahim, D.M.; Saleh, B.; Shokrgozar, M.A.; Tamjid, E.; Weiss, P.S.; Simchi, A.; Annabi, N. Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications. Biomaterials 2021, 267, 120476. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Wang, L.L.; Chung, J.J.; Kim, Y.H.; Atluri, P.; Burdick, J.A. Methods To Assess Shear-Thinning Hydrogels for Application As Injectable Biomaterials. ACS Biomater. Sci. Eng. 2017, 3, 3146–3160. [Google Scholar] [CrossRef]
- Cui, H.; Cui, B.; Chen, H.; Geng, X.; Geng, X.; Li, Z.; Cao, S.; Shen, J.; Li, J. A chitosan-based self-healing hydrogel for accelerating infected wound healing. Biomater. Sci. 2023, 11, 4226–4237. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lu, J.; Ji, T.; Xue, Y.; Zhao, L.; Zhao, K.; Jia, B.; Wang, B.; Wang, J.; Zhang, S.; et al. Self-Healing Hydrogel Bioelectronics. Adv. Mater. 2024, 36, 2306350. [Google Scholar] [CrossRef] [PubMed]
- Borges, R.; Kai, K.C.; Lima, C.A.; Zezell, D.M.; de Araujo, D.R.; Marchi, J. Bioactive glass/poloxamer 407 hydrogel composite as a drug delivery system: The interplay between glass dissolution and drug release kinetics. Colloids Surf. B Biointerfaces 2021, 206, 111934. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhang, M.; Chong, C.-M.; Lin, D.; Chen, S.; Zhen, Y.; Ding, H.; Zhong, H.-J. Recent Advances in the 3D Printing of Conductive Hydrogels for Sensor Applications: A Review. Polymers 2024, 16, 2131. [Google Scholar] [CrossRef]
- Omidian, H.; Mfoafo, K. Three-Dimensional Printing Strategies for Enhanced Hydrogel Applications. Gels 2024, 10, 220. [Google Scholar] [CrossRef]
- Agrawal, A.; Hussain, C.M. 3D-Printed Hydrogel for Diverse Applications: A Review. Gels 2023, 9, 960. [Google Scholar] [CrossRef] [PubMed]
- Uchida, D.T.; Bruschi, M.L. 3D Printing as a Technological Strategy for the Personalized Treatment of Wound Healing. AAPS PharmSciTech 2023, 24, 41. [Google Scholar] [CrossRef]
- Gopinathan, J.; Noh, I. Recent trends in bioinks for 3D printing. Biomater. Res. 2018, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.C.; McDermott, G.; Shields, F.; Alvites, R.; Lopes, B.; Sousa, P.; Moreira, A.; Coelho, A.; Santos, J.D.; Atayde, L.; et al. Innovative Ink-Based 3D Hydrogel Bioprinted Formulations for Tissue Engineering Applications. Gels 2024, 10, 831. [Google Scholar] [CrossRef]
- Wang, H.; Yu, H.; Zhou, X.; Zhang, J.; Zhou, H.; Hao, H.; Ding, L.; Li, H.; Gu, Y.; Ma, J.; et al. An Overview of Extracellular Matrix-Based Bioinks for 3D Bioprinting. Front. Bioeng. Biotechnol. 2022, 10, 905438. [Google Scholar] [CrossRef]
- Barcena, A.J.R.; Dhal, K.; Patel, P.; Ravi, P.; Kundu, S.; Tappa, K. Current Biomedical Applications of 3D-Printed Hydrogels. Gels 2023, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, E.; Herrada-Manchón, H. Editorial for the Special Issue “Hydrogels for 3D Printing”. Gels 2024, 10, 323. [Google Scholar] [CrossRef]
- Choonara, Y.E.; Du Toit, L.C.; Kumar, P.; Kondiah, P.P.D.; Pillay, V. 3D-printing and the effect on medical costs: A new era? Expert Rev. Pharmacoecon. Amp. Outcomes Res. 2016, 16, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Almawash, S.; Osman, S.K.; Mustafa, G.; El Hamd, M.A. Current and Future Prospective of Injectable Hydrogels—Design Challenges and Limitations. Pharmaceuticals 2022, 15, 371. [Google Scholar] [CrossRef]
- El Sayed, M.M. Production of Polymer Hydrogel Composites and Their Applications. J. Polym. Environ. 2023, 31, 2855–2879. [Google Scholar] [CrossRef]
- Guo, J.L.; Kim, Y.S.; Xie, V.Y.; Smith, B.T.; Watson, E.; Lam, J.; Pearce, H.A.; Engel, P.S.; Mikos, A.G. Modular, tissue-specific, and biodegradable hydrogel cross-linkers for tissue engineering. Sci. Adv. 2019, 5, eaaw7396. [Google Scholar] [CrossRef]
- Richbourg, N.; Wechsler, M.E.; Rodriguez-Cruz, J.J.; Peppas, N.A. Model-based modular hydrogel design. Nat. Rev. Bioeng. 2024, 2, 575–587. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic. Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.; Selvakumar, K.; Mohamed, J.M.M.; Ebrahim, D. A Review of Process Validation of Hydrogel Formulation. Int. J. Pharm. Phytopharm. Res. 2024, 14, 36–42. [Google Scholar] [CrossRef]
- Mohapatra, S.; Mirza, M.A.; Hilles, A.R.; Zakir, F.; Gomes, A.C.; Ansari, M.J.; Iqbal, Z.; Mahmood, S. Biomedical Application, Patent Repository, Clinical Trial and Regulatory Updates on Hydrogel: An Extensive Review. Gels 2021, 7, 207. [Google Scholar] [CrossRef] [PubMed]
- Bonsel, J.M.; Itiola, A.J.; Huberts, A.S.; Bonsel, G.J.; Penton, H. The use of patient-reported outcome measures to improve patient-related outcomes—A systematic review. Health Qual. Life Outcomes 2024, 22, 101. [Google Scholar] [CrossRef] [PubMed]
- Omidian, H.; Akhzarmehr, A.; Chowdhury, S.D. Advancements in Cellulose-Based Superabsorbent Hydrogels: Sustainable Solutions across Industries. Gels 2024, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Kerpel-Fronius, S.; Becker, S.; Barrett, J.; Brun, J.; Carlesi, R.; Chan, A.; Collia, L.F.; Dubois, D.J.; Kleist, P.; Koski, G.; et al. The Shared Ethical Responsibility of Medically and Non-medically Qualified Experts in Human Drug Development Teams. Front. Pharmacol. 2018, 9, 843. [Google Scholar] [CrossRef] [PubMed]
- Hey, S.P. Ethical Challenges in Biomarker-Driven Drug Development. Clin. Pharmacol. Ther. 2018, 103, 23–25. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Aldasoro, E.; O’Brien, Á.; Nolan, M.; McGovern, C.; Carroll, Á. Ethical values and principles to guide the fair allocation of resources in response to a pandemic: A rapid systematic review. BMC Med. Ethics 2022, 23, 70. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Ma, Y.; Uzzi, B.; Loscalzo, J. Importance of scientific collaboration in contemporary drug discovery and development: A detailed network analysis. BMC Biol. 2020, 18, 138. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Wang, C.-H. Multiphysics Simulation in Drug Development and Delivery. Pharm. Res. 2023, 40, 611–613. [Google Scholar] [CrossRef]
- Lyu, X.; Hu, Y.; Shi, S.; Wang, S.; Li, H.; Wang, Y.; Zhou, K. Hydrogel Bioelectronics for Health Monitoring. Biosensors 2023, 13, 815. [Google Scholar] [CrossRef]
- Quazi, M.Z.; Hwang, J.; Song, Y.; Park, N. Hydrogel-Based Biosensors for Effective Therapeutics. Gels 2023, 9, 545. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zeng, Q.; Zhang, Q.; Li, K.; Shi, X.; Liang, F.; Han, D. Temperature/near-infrared light-responsive conductive hydrogels for controlled drug release and real-time monitoring. Nanoscale 2020, 12, 8679–8686. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.T.; Wysoczynski, K.; Hadley, D.J.; Silva, E.A. Computational-Based Design of Hydrogels with Predictable Mesh Properties. ACS Biomater. Sci. Amp. Eng. 2020, 6, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Han, H.; Jang, J. Nanomaterials-incorporated hydrogels for 3D bioprinting technology. Nano Converg. 2023, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Santos, H.A.; Cui, W. Advances and challenges in hydrogel microspheres for biomedical applications. Biomater. Transl. 2024, 5, 203–204. [Google Scholar] [CrossRef] [PubMed]
- Auvinen, V.-V.; Laurén, P.; Shen, B.; Isokuortti, J.; Durandin, N.; Lajunen, T.; Linko, V.; Laaksonen, T. Nanoparticle release from anionic nanocellulose hydrogel matrix. Cellulose 2022, 29, 9707–9717. [Google Scholar] [CrossRef]
- Chakraborty, A.; Roy, A.; Ravi, S.P.; Paul, A. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: Concept, design, and recent advances. Biomater. Sci. 2021, 9, 6337–6354. [Google Scholar] [CrossRef]
Cocaine | Procaine | Tetracaine | Lidocaine | Prilocaine | Bupivacaine | Ropivacaine | |
---|---|---|---|---|---|---|---|
Year of Synthesis | 1860 (Isolation), 1884 (First anesthetic use) | 1905 | 1930 | 1943 | 1953 | 1957 | 1996 |
Chemical Structure | Natural alkaloid | Ester-based | Ester-based | Amide-based | Amide-based | Amide-based | Amide-based |
Duration of Action | Short | Short | Long | Intermediate | Intermediate | Long | Long |
Toxicity | High | Low | Moderate | Low | Low | Moderate (cardiotoxic) | Low |
Therapeutic Use Cases | Topical anesthesia | Minor procedures | Spinal and ophthalmic anesthesia | Versatile, regional | Regional anesthesia, dental procedures | Epidurals, prolonged | Epidurals, safer alternative to bupivacaine |
Key Limitations | Addictive, toxic | Short duration, slow onset | High systemic toxicity | Rare systemic toxicity | Risk of methemoglobinemia | High-dose cardiotoxicity | Requires higher doses for equivalent effect |
Delivery Method | Advantages | Limitations | Clinical Applications |
---|---|---|---|
Bolus Injection | Simple and quick to administer. | Short duration of action; requires frequent dosing, leading to potential cumulative toxicity. | Minor surgical procedures, dental anesthesia. |
Continuous Infusion Pumps | Provides steady analgesia; reduces the need for frequent dosing. | Requires specialized equipment and meticulous monitoring; risk of infection and systemic toxicity. | Postoperative pain management, labor analgesia (epidurals). |
Perineural Catheters | Delivers localized and sustained analgesia; reduces systemic drug exposure. | Risk of catheter dislodgement or infection; requires trained personnel for insertion and care. | Nerve blocks, postoperative pain control. |
Liposomal Formulations | Controlled drug release over extended periods (up to 72 h); minimizes dosing frequency. | High production costs; inconsistent release profiles; limited stability in some formulations. | Outpatient surgeries, long-term pain relief in postoperative settings. |
Hydrogel Systems | Controlled and sustained release; customizable for specific clinical needs; minimizes systemic toxicity. | High variability in formulation; challenges in scaling up for clinical use; requires further validation. | Emerging applications in postoperative and chronic pain management. |
Ester-Based LAs | Amide-Based LAs | Emerging Trends | |
---|---|---|---|
Examples | Procaine, Tetracaine | Lidocaine, Bupivacaine, Ropivacaine | Site-1 Sodium Channel Blockers, Peptide-Based Anesthetics, Injectable Hydrogels, Liposomal Bupivacaine |
Metabolism | Plasma cholinesterases | Liver (cytochrome P450 enzymes) | Mechanism-specific (e.g., peptide degradation or stimuli-responsive release systems) |
Duration of Action | Short | Moderate to long | Extended (e.g., liposomal formulations offer 72 h analgesia) |
Adverse Effects | Higher risk of hypersensitivity (PABA byproduct) | Lower hypersensitivity risk; potential cardiotoxicity | Reduced systemic toxicity; improved specificity and safety |
Clinical Utility | Limited to short-duration procedures | Versatile; suitable for a wide range of applications | Targeted, long-lasting analgesia; potential applications in personalized medicine |
Mechanism of Action | Sodium channel blockade (conventional) | Sodium channel blockade (conventional) | Novel mechanisms (e.g., site-specific sodium channel inhibition or bioengineered peptide selectivity) |
Advantages | Rapid metabolism reduces systemic accumulation | Lower hypersensitivity, stable pharmacokinetics | Prolonged action, site-specific delivery, reduced dosing frequency |
Limitations | Short duration; hypersensitivity; rapid hydrolysis | Potential for toxicity at high doses | High production cost, complexity of design, variable stability (e.g., hydrogels, liposomes) |
Release Mechanism | Principle | Advantages | Limitations |
---|---|---|---|
Diffusion-controlled | Drug diffuses passively through hydrogel | Simple to design, effective for small molecules | Limited for large or hydrophobic drugs |
Degradation-controlled | Matrix breakdown releases encapsulated drug | Tailorable release kinetics, site-specific | Requires precise control of degradation rate |
Stimuli-responsive | Triggered by pH, temperature, or enzymes | Enables precision medicine, on-demand release | Requires external triggers or complex design |
Hydrogel Mechanism (As Reported in Studies) | Primary Polymer Used in Study | Local Anesthetic Used in Study | Key Findings | Reference |
---|---|---|---|---|
Thermoresponsive Hydrogels | ||||
Thermosensitive, LCST-dependent phase transition | PNIPAM, LCST ~32 °C | Bupivacaine | Extended sensory blockade (~9 h) in sciatic nerve block model | [104] |
Amphiphilic thermosensitive gelation | Pluronic F127 (PEO-PPO-PEO triblock copolymer) | Bupivacaine | Extended sensory (8.0 ± 1.6 h) and motor blockade (9.3 ± 1.6 h) in canine model | [71] |
Amphiphilic thermoresponsive gelation | Poloxamer 407 (PEO-PPO-PEO triblock copolymer) | Lidocaine | Rapid onset; extended release; high mucoadhesion in wound healing models | [41] |
PNIPAM copolymer-based gelation | PNDJ | Bupivacaine | Sustained analgesia (96 h), systemic bupivacaine release (>7 d) in rabbit knee surgery model | [74] |
Stimuli-Responsive Hydrogels | ||||
pH-sensitive swelling and drug release | Methylcellulose (Cellulose-derived polymer) | Bupivacaine | pH-sensitive release, prolonged analgesia (45% release over 48 h at pH 6.5 vs. 22% at pH 7.4) | [45] |
Enzyme-triggered degradation | Polydopamine (Dopamine-derived polymer with enzyme-triggered degradation) | Lidocaine | Enzyme-responsive on-demand release, antibacterial activity, prolonged analgesic effects | [72] |
Supramolecular interactions for sustained release | Alginate-based with phenolic nanofillers | Lidocaine | 14-d sustained drug release via supramolecular interactions | [92] |
Controlled network modulation | Bacterial cellulose (Cellulose-derived hydrogel with tunable network architecture) | Lidocaine | Controlled lidocaine release over 14 d through network architecture modulation | [105] |
Multifunctional Hydrogels | ||||
Thermosensitive wound-healing system | Carboxymethyl agarose-NIPAM copolymer | Lidocaine | Accelerated wound healing (97% improvement) and controlled drug release | [106] |
Injectable dual-drug sequential release system | Biodegradable hydrogel with dexmedetomidine | Ropivacaine | Sequential drug release maintaining sensory (48 h) and motor blockade (36 h) | [73] |
Gas-encapsulated controlled release | Pluronic F127-based system | Bupivacaine | Continuous release over 14 d, improved post-surgical mobility and collagen deposition | [86] |
Immune-modulating hydrogel for tumor microenvironment | PLGA-based system with TLR7 agonist | Ropivacaine | Enhanced CD8+ T cell infiltration, reduced tumor recurrence, long-lasting analgesia | [70] |
Dual-drug delivery for chemotherapy and analgesia | Pluronic F127 loaded with cisplatin and ropivacaine | Ropivacaine | Prolonged CIPNP pain relief (>10 h), increased CD8+ T cell infiltration, enhanced MHC-I expression | [75] |
Hybrid & Self-Healing Hydrogels | ||||
Self-healing hydrogel system with prolonged stability | Sodium deoxycholate-based system | Ropivacaine | Peripheral nerve block > 1 wk, structural recovery after mechanical disruption | [69] |
pH-stabilizing hydrogel with controlled buffering | Calcium carbonate-bupivacaine system | Bupivacaine | Extended analgesic effects (44 h) by maintaining stable internal pH | [107] |
Hybrid mucoadhesive system | Poloxamer-hyaluronic acid system | Bupivacaine/Ropivacaine | Optimized viscosity and micellar interactions for controlled release | [80] |
Biodegradable nerve block hydrogel | Gelatin crosslinked with NHS-PEG-NHS | Bupivacaine | Porous structure for high drug loading, sustained release, reduced neurotoxicity | [40] |
Nanoparticle-loaded topical anesthesia | Lidocaine-nanoparticle system | Lidocaine | Sustained lidocaine release, improved pain tolerance in vivo | [103] |
Study Focus | Hydrogel Type | Procedure Type | Sample Size (n) | Key Findings | Reference |
---|---|---|---|---|---|
Thermoresponsive Hydrogels | |||||
Bimaxillary Surgery | PF72 | Orthognathic Surgery | 40 | Significant reduction in NRS pain scores at 24 h (6.4 → 4.0) and 72 h (3.4 → 2.6); reduced rescue analgesic use (p < 0.05) | [96] |
Laparoscopic Abdominal Surgery | PF72 | Stomach/Colorectal Surgery | 99 | Lower cumulative NRS pain scores (135.3 vs. 188.7 AUC); no adverse events (p < 0.001); reduced systemic exposure | [109] |
Minimally Invasive Colorectal Surgery | Poloxamer 407-Based Hydrogel | Laparoscopic Colorectal Surgery | 61 | Comparable analgesia to continuous infusion (p = 0.806); shorter hospital stay (7.2 ± 1.6 vs. 8.4 ± 2.8 d, p = 0.045) | [88] |
Thoracoscopic Pulmonary Resection | Poloxamer 407-Based Hydrogel | Thoracic Surgery | 89 | Comparable fentanyl consumption (p = 0.37); easier administration; reduced systemic toxicity risks | [110] |
Dental Socket Wound Delivery | Poloxamer-Polyelectrolyte Complex | Tooth Socket Wound Delivery | 30 | Rapid onset (46.5 ± 22.5 s); effective anesthesia for 202.5 ± 41.0 s; prolonged pain relief up to 48 h | [41] |
Standard Hydrogels | |||||
Dental Palatal Anesthesia | Liposomal Lidocaine-Prilocaine | Upper Molar Extractions | 40 | 100% success rate vs. 40% failure for non-liposomal; longer anesthesia duration (26.8 ± 7.5 vs. 16.8 ± 4.8 min, p < 0.0001) | [111] |
Topical Hydrogel Delivery Systems | |||||
Topical Dermatological Application | Nonaqueous Drug-in-Matrix System | Topical Pain Management | 15 | Enhanced skin permeation; sustained analgesia over 12 h; no skin irritation | [112] |
Challenge | Description | Proposed Innovations |
---|---|---|
Drug Loading and Sustained Release | Difficulty in achieving optimal drug encapsulation without burst release or systemic toxicity. | Advanced crosslinking (e.g., reversible bonds), stimuli-responsive systems, nanocarriers, AI-based modeling, rational design of anesthetic compounds optimized for hydrogel compatibility, and next-generation thermoresponsive copolymer systems (e.g., PNIPAM-OEGMA, PNIPAM-HEMA) for precise LCST modulation and controlled anesthetic release. |
Biocompatibility and Safety | Potential for cytotoxicity or inflammatory responses from synthetic materials and degradation products. | Use of natural polymers, bioinert surface coatings, immunomodulatory agents, and biodegradable hydrogels. |
Mechanical Stability | Premature hydrogel degradation in dynamic environments (e.g., joints, surgical sites). | Nanocomposites (e.g., graphene oxide), self-healing hydrogels, and externally activated systems (e.g., magnetic nanoparticles). |
Customization and 3D Printing | Challenges in creating patient-specific designs with consistent quality. | Computational modeling for optimization, bioinks for regenerative applications, and multi-material printing techniques. |
Manufacturing and Scalability | High production costs, sterility issues, and lengthy regulatory approval processes. | Modular systems, continuous flow synthesis, open-access hydrogel libraries, and streamlined regulatory pathways. |
Sustainability and Ethics | Environmental impact of petrochemical-derived polymers and equitable access for underserved populations. | Development of eco-friendly polymers, subsidies to reduce costs, and inclusion of diverse patient populations in clinical trials. |
Interdisciplinary Collaboration | Need for integrated approaches across materials science, pharmacology, and medicine to accelerate innovation and implementation. | Partnerships between academia, industry, and regulators; integration of smart technologies (e.g., biosensors, AI). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.-O.; Kim, M.; Kim, S.; Lee, K.K.; Choi, H. Advanced Hydrogel Systems for Local Anesthetic Delivery: Toward Prolonged and Targeted Pain Relief. Gels 2025, 11, 131. https://doi.org/10.3390/gels11020131
Jeong J-O, Kim M, Kim S, Lee KK, Choi H. Advanced Hydrogel Systems for Local Anesthetic Delivery: Toward Prolonged and Targeted Pain Relief. Gels. 2025; 11(2):131. https://doi.org/10.3390/gels11020131
Chicago/Turabian StyleJeong, Jin-Oh, Minjoo Kim, Seonwook Kim, Kyung Kwan Lee, and Hoon Choi. 2025. "Advanced Hydrogel Systems for Local Anesthetic Delivery: Toward Prolonged and Targeted Pain Relief" Gels 11, no. 2: 131. https://doi.org/10.3390/gels11020131
APA StyleJeong, J.-O., Kim, M., Kim, S., Lee, K. K., & Choi, H. (2025). Advanced Hydrogel Systems for Local Anesthetic Delivery: Toward Prolonged and Targeted Pain Relief. Gels, 11(2), 131. https://doi.org/10.3390/gels11020131