Development and Evaluation of the Acaricidal Activity of Xantan Gum-Based Hydrogel and Polymeric Nanoparticles Containing Achyrocline satureioides Extract
<p>Chromatogram obtained from <span class="html-italic">A. satureioides</span> (ASb) inflorescences. Analysis conditions: methanol (LC-MS grade) (MeOH): MilliQ water at 1% acetic acid with a gradient of 38:100% over 45 min, 100% MeOH over 10 min and 100:32% over 7 min and a flow of 0.5 mL/min.</p> "> Figure 2
<p>Quercetin, 3-O-methylquercetin, and kaempferol molecules found in the ethanolic extract of <span class="html-italic">A. satureioides</span> (ChemDraw Ultra 12.0).</p> "> Figure 3
<p>(<b>a</b>) Strength of bioadhesion of samples on bovine leather. (<b>b</b>) Bioadhesion work of the samples on the leather.</p> "> Figure 4
<p>Flow distance for hydrogel formulation containing extract (ASlh), blank (xanthan gum and poloxamer), and water in contact with the bovine leather.</p> "> Figure 5
<p>Test to determine the flow of formulations on bovine leather (Rafaela Fantatto).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Plant Extract via HPLC-MS
2.2. Mean Hydrodinamic Diameter and Polispersity Index of Nanoparticles
2.3. Development of Hydrogel-Based Ethanolic Extract of A. satureioides
Determination of the Bioadhesiveness of the Formulation
2.4. Determination of the Flow Speed of the Formulations
2.5. Mortality of R. microplus Larvae
3. Conclusions
4. Material and Methods
4.1. Plant Material
4.2. Production and Fractionation of Plant Extracts
4.3. Extract Analysis Using HPLC-MS
4.4. Development of Polycaprolactone (PCL) Nanoparticles
4.5. Mean Hydrodinamic Diameter (MHD) and Polidispersity Index (PI) of Nanoparticles
4.6. Production of Ethanolic Extract of A. satureioides Loaded-Hydrogel (ASlh)
4.7. Determination of the Bioadhesiveness of the Loaded-Hydrogel
4.8. Determination of the Flow Rate of the Loaded-Hydrogel
4.9. Mortality of Larvae in Patch Test on Impregnated Paper
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calvano, M.P.C.A.; Brumatti, R.C.; Barros, J.C.; Garcia, M.V.; Martins, K.R.; Andreotti, R. Bioeconomic simulation of Rhipicephalus microplus infestation in different beef cattle production systems in the Brazilian Cerrado. Agric. Syst. 2021, 194, 103247. [Google Scholar] [CrossRef]
- Rodriguez-Vivas, R.I.; Jonsson, N.N.; Bhushan, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol. Res. 2018, 117, 3–29. [Google Scholar] [CrossRef] [PubMed]
- Chagas, A.C.S.; Domingues, L.F.; Fantatto, R.R.; Giglioti, R.; Oliveira, M.C.S.; Oliveira, D.H.; Mano, R.A.; Jacob, R.G. In vitro and in vivo acaricide action of juvenoid analogs produced from the chemical modification of Cymbopogon spp. and Corymbia citriodora essential oil on the cattle tick Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2014, 205, 277–284. [Google Scholar] [CrossRef]
- Sousa, A.; Castro, G.S.; Tavares, C.; Vale, T.L.; Costa-Júnior, L.; Soares, A. In Vitro Assessment of the Acaricidal Activity of a Carvacrol Shampoo on Tick Larvae. Exp. Parasitol. 2022, 242, 108364. [Google Scholar] [CrossRef] [PubMed]
- Camargo, B.A.F.; Silva, D.E.S.; Silva, A.N.; Campos, D.L.; Ribeiro, T.R.M.; Mieli, M.J.; Zanatta, M.B.T.; Silva, P.B.; Pavan, F.R.; Moreira, C.G.; et al. A new silver (I) coordination compound loaded into polymeric nanoparticles as a strategy to improve in vitro anti-Helicobacter pylori activity. Mol. Pharm. 2020, 17, 2287–2298. [Google Scholar] [CrossRef]
- Kah, M.; Hofmann, T. Nanopesticide Research: Current Trends and Future Priorities. Environ. Int. 2014, 63, 224–235. [Google Scholar] [CrossRef]
- Greatti, V.R.; Oda, F.; Sorrechia, R.; Kapp, B.R.; Seraphim, C.; Weckwerth, A.C.V.B.; Chorilli, M.; Silva, P.B.; Eloy, J.; Kogan, M.; et al. Poly-ε-Caprolactone Nanoparticles Loaded With 4-Nerolidylcatechol (4-NC) for Growth Inhibition of Microsporum canis. Antibiotics 2020, 9, 894. [Google Scholar] [CrossRef]
- Schaffazick, S.R.; Guterres, S.S.; Freitas, L.D.L.; Pohlmann, A.R. Physicochemical characterization and stability of the polymeric nanoparticle systems for drug administration. Quim. Nova. 2003, 26, 726–737. [Google Scholar] [CrossRef]
- Ajazuddin; Saraf, S. Applications of Novel Drug Delivery System for Herbal Formulations. Fitoterapia 2010, 81, 680–689. [Google Scholar] [CrossRef]
- Peppas, N.A. (Ed.) Preface, in Hydrogels in Medicine and Pharmacy: Fundamentals; CRC Press: Boca Raton, FL, USA, 1986; Volume 1. [Google Scholar]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002, 54, 3–12. [Google Scholar] [CrossRef]
- Ng, J.Y.; ObuobI, S.; Chua, M.L.; Zhang, C.; Hong, S.; Kumar, Y.; Gokhale, R.; Rachel, P.L. Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine—A review. Carbohydr. Polym. 2020, 241, 116345. [Google Scholar] [CrossRef] [PubMed]
- De Souza, K.C.B.; Schapoval, E.E.S.; Bassani, V.L. LC determination of flavonoids: Separation of quercetin, luteolin and 3-O-methylquercetin in Achyrocline satureioides preparations. J. Pharm. Biomed. Anal. 2002, 28, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Fantatto, R.R.; Chagas, A.C.d.S.; Gainza, Y.A.; Politi, F.A.S.; Mesquita, L.M.d.S.; Vilegas, W.; Bizzo, H.R.; Montanari Junior, Í.; Pietro, R.C.L.R. Acaricidal and anthelmintic action of ethanolic extract and essential oil of Achyrocline satureioides. Exp. Parasitol. 2022, 236–237, 108252. [Google Scholar] [CrossRef]
- Retta, D.; Dellacassa, E.; Villamil, J.; Suárez, S.A.; Bandoni, A.L. Marcela, a promising medicinal and aromatic plant from Latin America: A review. Ind. Crop. Prod. 2012, 38, 27–38. [Google Scholar] [CrossRef]
- Sabini, M.C.; Cariddi, L.; Escobar, F.; Mañas, F.; Comini, L.; Reinoso, E.; Sutil, S.; Acosta, A.; Montoya, S.N.N.; Contigiani, M.; et al. Evaluation of the Cytotoxicity, Genotoxicity and Apoptotic Induction of an Aqueous Extract of Achyrocline satureioides (Lam.) DC. Food Chem. Toxicol. 2013, 60, 463–470. [Google Scholar] [CrossRef]
- Carini, J.P.; Klamt, F.; Bassani, V. Flavonoids from Achyrocline satureioides: Promising Biomolecules for Anticancer Therapy. RSC Adv. 2014, 4, 3131–3144. [Google Scholar] [CrossRef]
- Eloff, J.N. It is possible to use herbarium specimens to screen for antibacterial components in some plants. J. Ethnopharmacol. 1999, 67, 355–360. [Google Scholar] [CrossRef]
- Cerqueira, A.P.M.; Santana, I.B.; Araújo, J.S.C.; Lima, H.G.; Batatinha, M.J.M.; Branco, A.; Santos Junior, M.C.; Botura, M.B. Homology modeling, docking, molecular dynamics and in vitro studies to identify Rhipicephalus microplus acetylcholinesterase inhibitors. J. Biomol. Struct. Dyn. 2022, 40, 6787–6797. [Google Scholar] [CrossRef]
- Koo, O.M.; Rubinstein, I.; Onyuksel, H. Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomedicine 2005, 1, 193–212. [Google Scholar] [CrossRef]
- Porto, L.S.; Silva, D.N.; de Oliveira, A.E.F.; Pereira, A.C.; Borges, K.B. Carbon nanomaterials: Synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest. Rev. Anal. Chem. 2020, 38, 20190017. [Google Scholar] [CrossRef]
- Mazia, R.S.; de Araújo Pereira, R.R.; de Francisco, L.M.B.; Natali, M.R.M.; Dias Filho, B.P.; Nakamura, C.V.; Bruschi, M.L.; Ueda-Nakamura, T. Formulation and Evaluation of a Mucoadhesive Thermoresponsive System Containing Brazilian Green Propolis for the Treatment of Lesions Caused by Herpes Simplex Type I. J. Pharm. Sci. 2016, 105, 113–121. [Google Scholar] [CrossRef]
- Wadher, K.; Kakde, R.; Umekar, M. Formulation and Evaluation of a Sustained-Release Tablets of Metformin Hydrochloride Using Hydrophilic Synthetic and Hydrophobic Natural Polymers. Indian J. Pharm. Sci. 2011, 73, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Cortes, H.; Caballero-Florán, I.H.; Mendoza-Muñoz, N.; Escutia-Guadarrama, L.; Figueroa-González, G.; Reyes-Hernández, O.D.; González-Del Carmen, M.; Varela-Cardoso, M.; González-Torres, M.; Florán, B.; et al. Xanthan gum in drug release. Cell. Mol. Biol. 2020, 66, 199–207. [Google Scholar] [CrossRef]
- Palaniraj, A.; Jayaraman, V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng. 2011, 106, 1–12. [Google Scholar] [CrossRef]
- Zia, K.; Tabasum, S.; Khan, M.F.; Akram, N.; Akhter, N.; Noreen, A.; Zuber, M. Recent Trends on Gellan Gum Blends with Natural and Synthetic Polymers: A Review. Int. J. Biol. Macromol. 2017, 109, 1068–1087. [Google Scholar] [CrossRef] [PubMed]
- Mughal, M.A.; Iqbal, Z.; Neau, S.H. Guar Gum, Xanthan Gum, and HPMC Can Define Release Mechanisms and Sustain Release of Propranolol Hydrochloride. AAPS PharmSciTech 2010, 12, 77–87. [Google Scholar] [CrossRef]
- Shalviri, A.; Liu, Q.; Abdekhodaie, M.; Wu, X. Novel Modified starch–xanthan Gum Hydrogels for Controlled Drug Delivery: Synthesis and Characterization. Carbohydr. Polym. 2010, 79, 898–907. [Google Scholar] [CrossRef]
- Sujja-areevath, J.; Munday, D.L.; Cox, P.; Khan, K.A. Relationship Between Swelling, Erosion and Drug Release in Hydrophillic Natural Gum Mini-Matrix Formulations. Eur. J. Pharm. Sci. 1998, 6, 207–217. [Google Scholar] [CrossRef]
- Talukdar, M.M.; Plaizier-Vercammen, J. Evaluation of Xanthan Cum as a Hydrophilic Matrix for Controlled-Release Dosage Form Preparations. Drug Dev. Ind. Pharm. 1993, 19, 1037–1046. [Google Scholar] [CrossRef]
- Verhoeven, E.; Vervaet, C.; Remon, J. Xanthan Gum to Tailor Drug Release of Sustained-Release Ethylcellulose Mini-Matrices Prepared via Hot-Melt Extrusion: In Vitro and In Vivo Evaluation. Eur. J. Pharm. Biopharm. 2006, 63, 320–330. [Google Scholar] [CrossRef]
- Sabry, H.S.; Al-Shohani, A.D.H.; Mahmood, S.Z. Formulation and Evaluation of Levofloxacin and Betamethasone Ophthalmic Emulgel. J. Pharm. Bioallied. Sci. 2021, 13, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Zhu, Y.; Zhuang, Y.; Tan, K.B.; Chen, J. Effects of Grape Seed Extract on the Properties of Pullulan Polysaccharide Xanthan Gum Active Films for Apple Preservation. Int. J. Biol. Macromol. 2023, 241, 124617. [Google Scholar] [CrossRef]
- Aayush, K.; Sharma, K.; Singh, G.P.; Chiu, I.; Chavan, P.; Shandilya, M.; Roy, S.; Ye, H.; Sharma, S.; Yang, T. Development and characterization of edible and active coating based on xanthan gum nanoemulsion incorporating betel leaf extract for fresh produce preservation. Int. J. Biol. Macromol. 2024, 270 Pt 2, 132220. [Google Scholar] [CrossRef] [PubMed]
- Zorzi, G.; Carvalho, E.; von Poser, G.V.; Teixeira, H. On the Use of Nanotechnology-Based Strategies for Association of Complex Matrices from Plant Extracts. Rev. Bras. Farmacogn. 2015, 25, 426–436. [Google Scholar] [CrossRef]
- FAO Plant Protection Bulletin. Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides. Tentative method for larvae of cattle ticks, Boophilus spp. FAO Method No. 7. FAO Plant Prot. Bull. 1971, 19, 15–18. [Google Scholar]
- Fantatto, R.R.; Gainza, Y.A.; Figueiredo, A.; Sorrechia, R.; Chagas, A.; Pietro, R.C.L.R. The Association of Extracts of Achyrocline satureioides and the Fungus Beauveria bassiana Against the Tick Rhipicephalus microplus. Exp. Appl. Acarol. 2022, 87, 351–363. [Google Scholar] [CrossRef]
- García-Ochoa, F.; Santos, V.E.; Casas, J.A.; Gómez, E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 2000, 18, 549–579. [Google Scholar] [CrossRef]
- Kennedy, J.F.; Bradshaw, I.J. Production, properties and applications of xanthan. Prog. Ind. Microbiol. 1984, 19, 319–371. [Google Scholar]
- Hinton, H. The Structure of the Spiracles of the Cattle Tick, Boophilus microplus. Aust. J. Zool. 1967, 15, 941–945. [Google Scholar] [CrossRef]
- Carvalho, F.C.; Calixto, G.; Hatakeyama, I.N.; Luz, G.M.; Gremião, M.P.D.; Chorilli, M. Rheological, mechanical, and bioadhesive behavior of hydrogels to optimize skin delivery systems. Drug Dev. Ind. Pharm. 2012, 39, 1750–1757. [Google Scholar] [CrossRef]
Achyrocline satureioides (AS) | |||||
---|---|---|---|---|---|
Retention Time | m/z | [M]+ | Possible Compound | ||
% Peak | |||||
2.84 | 207 193 179 165 | 7.21 | |||
3.17 | 104 137 | 1.44 | |||
3.47 | 205 183 118 153 | 14.51 | |||
7.13 | 449 471 | 448 | [M + H]+ | Derivative of kaempferol | 3.85 |
8.62 | 449 471 | 448 | [M + H]+ | Derivative of kaempferol | 1.44 |
14.49 | 479 501 | 478 | [M + H]+ | Phyllirin | 0.91 |
17.00 | 287 309 | 486 | [M + H]+ | 5.28 | |
17.32 | 465 487 | 464 | [M + H]+ | Isoquercetin | 4.22 |
18.26 | 449 471 | 448 | [M + H]+ | 1.31 | |
19.22 | 479 501 | 478 | [M + H]+ | 1.87 | |
20.06 | 465 487 | 464 | [M + H]+ | Derivative of isoquercetin | 1.29 |
20.60 | 449 471 | 448 | [M + H]+ | 4.41 | |
21.72 | 479 501 | 478 | [M + H]+ | 2.01 | |
22.70 | 303 325 | 302 | [M + H]+ | Quercetin | 6.44 |
24.31 | 287 309 | 286 | [M + H]+ | 3.24 | |
24.93 | 317 339 | 316 | [M + H]+ | 3-O-methylquercetin | 31.28 |
28.82 | 287 309 301 | 286 | [M + H]+ | 4,2′,4′-trihydroxy−6′-methoxychalcone | 4.03 |
31.70 | 617 639 | 616 | [M + H]+ | 1.17 | |
32.46 | 315 337 | 314 | [M + H]+ | 2.92 | |
43.76 | 425 403 453 | 402 | [M + Na]+ | ||
45.02 | 467 445 320 | 444 | [M + Na]+ | ||
45.28 | 439 417 | 416 | [M + Na]+ | ||
48.16 | 437 459 | 436 | [M + H]+ | 1.18 |
Sample | Mean Hydrodinamic Diameter | PDI |
---|---|---|
Blank | 189.31 ± 6.55 | 0.13 ± 0.04 |
AScn | 192.33 ± 4.35 | 0.044 ± 0.023 |
Concentration (mg/mL) | % Mortality |
---|---|
20 | 4.38 ± 7.1 a |
Negative Control (water) | 0 ± 0 b |
Concentration (mg/mL) | % Mortality |
---|---|
Loaded-Hydrogel ASlh | |
20 | 91.48 ± 14.7 a |
10 | 71.48 ± 2.1 b |
5 | 11.84 ± 8.5 d |
2.5 | 19.04 ± 2.7 c |
Negative Control | 0.50 ± 8.9 f |
Control Pol 8 | 20.89 ± 4.4 c |
Control xanthan gum 0.25 | 4.42 ± 3.9 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fantatto, R.R.; Gomes, A.R.; Constantini, J.V.C.; Rodero, C.F.; Chorilli, M.; Chagas, A.C.d.S.; Melero, A.; Pietro, R.C.L.R. Development and Evaluation of the Acaricidal Activity of Xantan Gum-Based Hydrogel and Polymeric Nanoparticles Containing Achyrocline satureioides Extract. Gels 2024, 10, 658. https://doi.org/10.3390/gels10100658
Fantatto RR, Gomes AR, Constantini JVC, Rodero CF, Chorilli M, Chagas ACdS, Melero A, Pietro RCLR. Development and Evaluation of the Acaricidal Activity of Xantan Gum-Based Hydrogel and Polymeric Nanoparticles Containing Achyrocline satureioides Extract. Gels. 2024; 10(10):658. https://doi.org/10.3390/gels10100658
Chicago/Turabian StyleFantatto, Rafaela Regina, Annelize Rodrigues Gomes, João Vitor Carvalho Constantini, Camila Fernanda Rodero, Marlus Chorilli, Ana Carolina de Souza Chagas, Ana Melero, and Rosemeire Cristina Linhari Rodrigues Pietro. 2024. "Development and Evaluation of the Acaricidal Activity of Xantan Gum-Based Hydrogel and Polymeric Nanoparticles Containing Achyrocline satureioides Extract" Gels 10, no. 10: 658. https://doi.org/10.3390/gels10100658
APA StyleFantatto, R. R., Gomes, A. R., Constantini, J. V. C., Rodero, C. F., Chorilli, M., Chagas, A. C. d. S., Melero, A., & Pietro, R. C. L. R. (2024). Development and Evaluation of the Acaricidal Activity of Xantan Gum-Based Hydrogel and Polymeric Nanoparticles Containing Achyrocline satureioides Extract. Gels, 10(10), 658. https://doi.org/10.3390/gels10100658