Anti-Biofouling Polyzwitterion–Poly(amidoxime) Composite Hydrogel for Highly Enhanced Uranium Extraction from Seawater
<p>(<b>a</b>) The FT-IR spectra of the ZW-PAO hydrogel, PZW hydrogel, PAO, and PAN; (<b>b</b>) the EDS mappings of the ZW-PAO hydrogel and PAM-PAO hydrogel.</p> "> Figure 2
<p>(<b>a</b>) The photos of the switching of the ZW-PAO hydrogel and PAM-PAO hydrogel in seawater and pure water; (<b>b</b>) swelling ratio of the ZW-PAO hydrogel in pure water and seawater water.</p> "> Figure 3
<p>The characterization of the ZW-PAO hydrogel before and after U-extraction: (<b>a</b>) the XPS spectra; (<b>b</b>) the SEM and EDS mapping images.</p> "> Figure 4
<p>The U-adsorption kinetics of the ZW-PAO hydrogel and the pseudo-second-order in 2, 4, 8, and 16 ppm U-added (<b>a</b>,<b>b</b>) pure water and (<b>c</b>,<b>d</b>) seawater. All the solutions were adjusted to pH = 6 prior to U-adsorption.</p> "> Figure 5
<p>(<b>a</b>) U-extraction capacity as a function of pH in pure water containing 8 ppm U; (<b>b</b>) selective adsorption of metal ions by the ZW-PAO hydrogel.</p> "> Figure 6
<p>(<b>a</b>) U-adsorbing–desorbing process, (<b>b</b>) U-desorption kinetic curve and (<b>c</b>) 5 adsorbing–desorbing cycles of the ZW-PAO hydrogel.</p> "> Figure 7
<p>(<b>a</b>–<b>c</b>) The confocal laser microscopy of different ZW-PAO and PAM-PAO hydrogels; (<b>d</b>) the antibacterial rates of the ZW-PAO hydrogel against three types of bacteria; (<b>e</b>) the enhanced U-adsorption capacity of the ZW-PAO hydrogel by the improved anti-biofouling in seawater.</p> "> Figure 8
<p>(<b>a</b>) Comparison of real seawater adsorption kinetics between ZW-PAO and PAM-PAO hydrogels; (<b>b</b>) comparison of uranium extraction rate between ZW-PAO hydrogel and existing amidoxime-group adsorbents [<a href="#B20-gels-10-00603" class="html-bibr">20</a>,<a href="#B21-gels-10-00603" class="html-bibr">21</a>,<a href="#B39-gels-10-00603" class="html-bibr">39</a>,<a href="#B40-gels-10-00603" class="html-bibr">40</a>,<a href="#B41-gels-10-00603" class="html-bibr">41</a>,<a href="#B42-gels-10-00603" class="html-bibr">42</a>,<a href="#B43-gels-10-00603" class="html-bibr">43</a>,<a href="#B44-gels-10-00603" class="html-bibr">44</a>,<a href="#B45-gels-10-00603" class="html-bibr">45</a>,<a href="#B46-gels-10-00603" class="html-bibr">46</a>,<a href="#B47-gels-10-00603" class="html-bibr">47</a>,<a href="#B48-gels-10-00603" class="html-bibr">48</a>,<a href="#B49-gels-10-00603" class="html-bibr">49</a>,<a href="#B50-gels-10-00603" class="html-bibr">50</a>,<a href="#B51-gels-10-00603" class="html-bibr">51</a>,<a href="#B52-gels-10-00603" class="html-bibr">52</a>].</p> "> Scheme 1
<p>The schematic process of (<b>a</b>) the preparation of the ZW-PAO hydrogel and (<b>b</b>) selective U-adsorption by the ZW-PAO hydrogel.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of ZW-PAO Hydrogel
2.2. Swelling Performance of ZW-PAO Hydrogel
2.3. Qualitative U-Adsorption Performance of the ZW-PAO Hydrogel
2.4. Adsorption Kinetics of U-Adsorption Properties of ZW-PAO Hydrogel
2.5. pH Dependency of U-Adsorbing Property and Ion Selectivity
2.6. U-Adsorption–Desorption Recyclability of ZW-PAO Hydrogel
2.7. Anti-Biofouling Properties of ZW-PAO Hydrogel
2.8. U-Extracting Ability of the ZW-PAO Hydrogel in Real Seawater
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Characterization
4.3. Experimental Methods
4.3.1. Preparation of PAO
4.3.2. Preparation of ZW-PAO Hydrogel
4.3.3. Adsorption Performance of ZW-PAO Hydrogel
4.3.4. Ion-Selective Adsorption Performance of ZW-PAO Hydrogel
4.3.5. U-Adsorption–Desorption Cyclic Test
4.3.6. The Anti-Bioadhesion Properties of Hydrogel Adsorbents
4.3.7. U-Adsorbing Capacity of ZW-PAO Hydrogel in Real Seawater
4.3.8. Preparation of Different Concentrations of Uranium Solution
4.3.9. Uranium Adsorption Performance Test
4.3.10. Calculation Method of Adsorption Kinetics/Thermodynamics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaltsoyannis, N.; Liddle, S.T. Catalyst: Nuclear power in the 21st century. Chem 2016, 1, 659–662. [Google Scholar] [CrossRef]
- Dungan, K.; Butler, G.; Livens, F.R.; Warren, L.M. Uranium from seawater–Infinite resource or improbable aspiration? Prog. Nucl. Energy 2017, 99, 81–85. [Google Scholar] [CrossRef]
- Liu, S.B.; Wang, Y.Z.; Tang, Y.F.; Fu, X.Z.; Luo, J.L. Emerging Nanomaterials toward Uranium Extraction from Seawater: Recent Advances and Perspectives. Small 2024, 2311130. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhun, B.; Wang, X.; Liao, P.P.; Wang, G.H.; Wang, L.Z.; Guo, Y.D.; Zhang, W.M. Highly Efficient Interception and Precipitation of Uranium(VI) from Aqueous Solution by Iron-Electrocoagulation Combined with Cooperative Chelation by Organic Ligands. Environ. Sci. Technol. 2017, 51, 14368–14378. [Google Scholar] [CrossRef]
- Hernández, J.; Ruiz, D. Removal of chloride ions from a copper leaching solution, using electrodialysis, to improve the uranium extraction through ion-exchange. J. Hazard. Mater. 2021, 420, 126582. [Google Scholar] [CrossRef]
- Chu, J.; Huang, Q.G.; Dong, Y.H.; Yao, Z.E.; Wang, J.R.; Qin, Z.; Ning, Z.G.; Xie, J.J.; Tian, W.; Yao, H.J.; et al. Enrichment of uranium in seawater by glycine cross-linked graphene oxide membrane. Chem. Eng. J. 2022, 444, 136602. [Google Scholar] [CrossRef]
- Wang, J.J.; Wang, Y.; Wang, W.; Ding, Z.; Geng, R.Y.; Li, P.; Pan, D.Q.; Liang, J.J.; Qin, H.B.; Fan, Q.H. Tunable mesoporous g-C3N4 nanosheets as a metal-free catalyst for enhanced visible-light-driven photocatalytic reduction of U (VI). Chem. Eng. J. 2020, 383, 123193. [Google Scholar] [CrossRef]
- Abney, C.W.; Mayes, R.T.; Saito, T.; Dai, S. Materials for the recovery of uranium from seawater. Chem. Rev. 2017, 117, 13935–14013. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, Y.H.; Liu, X.L.; Li, Y.; Wang, J.Y.; Chen, Z.S.; Yang, H.; Hu, B.; Shen, C.; Tang, Z.W.; et al. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord. Chem. Rev. 2023, 483, 215097. [Google Scholar] [CrossRef]
- Endrizzi, F.; Rao, L.F. Chemical speciation of uranium (VI) in marine environments: Complexation of calcium and magnesium ions with [(UO2) (CO3)3]4− and the effect on the extraction of uranium from seawater. Chem.-Eur. J. 2014, 20, 14499–14506. [Google Scholar] [CrossRef]
- Maity, S.; Sahu, S.K.; Pandit, G.G. Standardization of solvent extraction procedure for determination of uranium in seawater. J. Radioanal. Nucl. Chem. 2015, 303, 33–37. [Google Scholar] [CrossRef]
- Ma, D.S.; Xu, X.; Li, Z.W.; Peng, H.; Cai, D.; Wang, D.; Yue, Q. Nanoemulsion assembly toward vaterite mesoporous CaCO3 for high-efficient uranium extraction from seawater. J. Hazard. Mater. 2022, 432, 128695. [Google Scholar] [CrossRef] [PubMed]
- Hu, E.M.; Chen, Q.; Gao, Q.; Fan, X.F.; Luo, X.J.; Wei, Y.; Wu, G.; Deng, H.B.; Xu, S.C.; Wang, P.; et al. Cyano-Functionalized Graphitic Carbon Nitride with Adsorption and Photoreduction Isosite Achieving Efficient Uranium Extraction from Seawater. Adv. Funct. Mater. 2024, 34, 2312215. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bryantsev, V.S.; Brown, S.; Johnson, J.C.; Grant, C.D.; Mayes, R.T.; Hay, B.P.; Dai, S.; Saito, T. Synthesis of naphthalimidedioxime ligand-containing fibers for uranium adsorption from seawater. Ind. Eng. Chem. Res. 2016, 55, 4161–4169. [Google Scholar] [CrossRef]
- He, J.R.; Sun, F.L.; Han, F.H.; Gu, J.J.; Ou, M.R.; Xu, W.K.; Xu, X.P. Preparation of a novel polyacrylic acid and chitosan interpenetrating network hydrogel for removal of U (VI) from aqueous solutions. RSC Adv. 2018, 8, 12684–12691. [Google Scholar] [CrossRef]
- He, J.; Jin, J.; Wang, Z.Z.; Yin, H.W.; Wei, C.C.; Xu, X.P. Encapsulating nanosilica into polyacrylic acid and chitosan inter-penetrating network hydrogel for preconcentration of uranium from aqueous solutions. J. Radioanal. Nucl. Chem. 2018, 317, 1299–1309. [Google Scholar] [CrossRef]
- Song, Y.C.; Tan, H.H.; Qin, S.L.; Liu, Z.; Liu, C.T.; Shen, C.Y.; Yang, P.P.; Li, S.W. Assembly of a core-shell MOF with stability into Polyacrylamide hydrogel for boosting extraction of uranium from seawater. Nano Res. 2024, 17, 3398–3406. [Google Scholar] [CrossRef]
- Ye, H.; Liu, C.; Wu, M.B.; Ma, L.L.; Liu, S.C.; Zhong, Y.; Yao, J.M. Amyloid-like assembly converting commercial proteins to water-insoluble adsorbents with ultrahigh adsorption capacity and excellent antifouling property for uranium extraction. J. Mater. Chem. A 2022, 10, 2987–2994. [Google Scholar] [CrossRef]
- Tang, N.; Liang, J.; Niu, C.G.; Wang, H.; Luo, Y.; Xing, W.L.; Ye, S.J.; Liang, C.; Guo, H.; Guo, J.Y.; et al. Amidoxime-based materials for uranium recovery and removal. J. Mater. Chem. A 2020, 8, 7588–7625. [Google Scholar] [CrossRef]
- Li, Z.; Yu, Z.Q.; Wu, Y.D.; Wu, X.L.; Wan, Y.; Yuan, Y.H.; Wang, N. Self-sterilizing diblock polycation-enhanced polyami-doxime shape-stable blow-spun nanofibers for high-performance uranium capture from seawater. Chem. Eng. J. 2020, 390, 124648. [Google Scholar] [CrossRef]
- Shi, S.; Qian, Y.X.; Mei, P.P.; Yuan, Y.H.; Jia, N.; Dong, M.Y.; Fan, J.C.; Guo, Z.H.; Wang, N. Robust flexible poly (amidoxime) porous network membranes for highly efficient uranium extraction from seawater. Nano Energy 2020, 71, 104629. [Google Scholar] [CrossRef]
- Hao, M.J.; Xie, Y.H.; Liu, X.L.; Chen, Z.S.; Yang, H.; Waterhouse, G.; Ma, S.Q.; Wang, X.K. Modulating uranium extraction performance of multivariate covalent organic frameworks through donor–acceptor linkers and amidoxime nanotraps. JACS Au 2023, 3, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tuo, K.; Fan, C.B.; Liu, G.; Pu, S.Z.; Li, Z.J. Hierarchical porous amidoximated metal–organic framework for highly efficient uranium extraction. Small 2024, 20, 2306545. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.X.; Gao, J.X.; Wang, D.; Yuan, Y.H.; Wen, J.; Yan, B.J.; Zhao, S.L.; Zhao, X.M.; Sun, Y.; Wang, X.L.; et al. Sunlight polymerization of poly(amidoxime) hydrogel membrane for enhanced uranium extraction from seawater. Adv. Sci. 2019, 6, 1900085. [Google Scholar] [CrossRef]
- Sahu, B.; Pattnayak, B.; Mohapatra, S. Halfa grass assembled double-layered hydrogel evaporator for sunlight-driven steam generation and selective uranium extraction. Desalination 2024, 581, 117611. [Google Scholar] [CrossRef]
- Park, J.Y.; Gill, G.; Strivens, J.E.; Kuo, L.J.; Jeters, R.T.; Avila, A.; Wood, J.R.; Schlafer, N.J.; Janke, C.J.; Miller, E.; et al. Effect of biofouling on the performance of amidoxime-based polymeric uranium adsorbents. Ind. Eng. Chem. Res. 2016, 55, 4328–4338. [Google Scholar] [CrossRef]
- Li, S.; Feng, K.; Li, J.Y.; Li, Y.; Li, Z.T.; Yu, L.M.; Xu, X.T. Marine antifouling strategies: Emerging opportunities for seawater resource utilization. Chem. Eng. J. 2024, 149859. [Google Scholar] [CrossRef]
- Li, H.; He, N.N.; Cheng, C.; Dong, H.; Wen, J.; Wang, X.L. Antimicrobial polymer contained adsorbent: A promising candidate with remarkable anti-biofouling ability and durability for enhanced uranium extraction from seawater. Chem. Eng. J. 2020, 388, 124273. [Google Scholar] [CrossRef]
- Li, L.; Li, H.; Lin, M.Z.; Hu, S.; Wen, J. Zwitterionic functionalized chitosan with dual-antifouling for selective uranium ex-traction. Sep. Purif. Technol. 2024, 354, 128913. [Google Scholar] [CrossRef]
- Jiao, G.J.; Ma, J.L.; Zhang, J.Q.; Li, Y.C.; Liu, K.N.; Sun, R.C. Porous and biofouling-resistant amidoxime-based hybrid hydrogel with excellent interfacial compatibility for high-performance recovery of uranium from seawater. Sep. Purif. Technol. 2022, 287, 120571. [Google Scholar] [CrossRef]
- Li, H.; Sun, J.; Qin, S.L.; Song, Y.C.; Liu, Z.; Yang, P.P.; Li, S.W.; Liu, C.T.; Shen, C.Y. Zwitterion functionalized graphene oxide/polyacrylamide/polyacrylic acid hydrogels with photothermal conversion and antibacterial properties for highly efficient uranium extraction from seawater. Adv. Funct. Mater. 2023, 33, 2301773. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, L.X.; Xiao, S.W.; Yang, Y.; Chen, F.; Fan, P.; Zhao, Z.P.; Zhong, M.Q.; Yang, J.T. Bacteria killing and release of salt-responsive, regenerative, double-layered polyzwitterionic brushes. Chem. Eng. J. 2018, 333, 1–10. [Google Scholar] [CrossRef]
- Georgiev, G.S.; Kamenska, E.B.; Vassileva, E.D.; Kamenova, I.P.; Georgieva, V.T.; Iliev, S.B.; Ivanov, I.A. Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules 2006, 7, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Bao, H.; Lin, X.; Lin, J.; Zhang, L.; Huang, Y.; Wang, J.Q. Differential interplay between Ce and U on local structures of U1-xCexO2 solid solutions probed by X-ray absorption spectroscopy. J. Nucl. Mater 2019, 515, 238–244. [Google Scholar] [CrossRef]
- Wang, W.G.; Zhang, S.L.; Lu, J. Infrared spectral characteristics of some common uranium minerals. Chin. J. Geol. 1981, 16, 235–246. [Google Scholar]
- Qiu, L.F.; Ou, G.X.; Zhang, M.; Li, Q.; Wu, D.; Shang, C.J. Micro-area analysis of uranium minerals by Micro FT-IR spectrometry. Acta Mineral Sin. 2016, 36, 43–47. [Google Scholar]
- Wang, J.W.; Sun, Y.; Zhao, X.M.; Chen, L.; Peng, S.Y.; Ma, C.; Duan, G.G.; Liu, Z.Z.; Wang, H.; Yuan, Y.H.; et al. A poly (amidoxime)-modified MOF macroporous membrane for high-efficient uranium extraction from seawater. e-Polymers 2022, 22, 399–410. [Google Scholar] [CrossRef]
- Ivanov, A.S.; Leggett, C.J.; Parker, B.F.; Zhang, Z.; Arnold, J.; Dai, S.; Abney, C.W.; Bryantsev, V.S.; Rao, L. Origin of the unusually strong and selective binding of vanadium by polyamidoximes in seawater. Nat. Commun. 2017, 8, 1560. [Google Scholar] [CrossRef]
- Bai, Z.Y.; Liu, Q.; Zhang, H.S.; Yu, J.; Chen, R.R.; Liu, J.Y.; Song, D.L.; Li, R.M.; Wang, J. Anti-biofouling and water—Stable balanced charged metal organic framework-based polyelectrolyte hydrogels for extracting uranium from seawater. ACS Appl. Mater. Interfaces 2020, 12, 18012–18022. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Ma, J.L.; Jiao, G.J.; Liu, K.N.; Cui, R.; Zhai, S.R.; Sun, R.C. Methyl 4-hydroxybenzoate nanospheres anchored on poly (amidoxime)/polyvinyl alcohol hydrogel network with excellent antibacterial activity for efficient uranium extraction from seawater. Desalination 2023, 548, 116243. [Google Scholar] [CrossRef]
- Yan, B.J.; Ma, C.X.; Gao, J.X.; Yuan, Y.H.; Wang, N. Anion-crosslinked supramolecular hydrogel for ultrahigh and fast ura-nium recovery from seawater. Adv. Mater. 2020, 32, 1906615. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.R.; Cui, W.R.; Niu, C.P.; Yi, S.M.; Liang, R.P.; Qi, J.X.; Chen, X.J.; Jiang, W.; Zhang, L.; Qiu, J.D. rGO-based covalent organic framework hydrogel for synergistically enhance uranium capture capacity through photothermal desalination. Chem. Eng. J. 2022, 428, 131178. [Google Scholar] [CrossRef]
- Liu, T.; Zhao, J.T.; Qiao, Q.T.; Zhang, R.Q.; Wei, T.; Liang, Y.X.; Yuan, Y.H.; Wang, N. Engineering shrinkage resistance of nano-structured hydrogels in seawater for fast uranium capture. Chem. Eng. J. 2024, 496, 153832. [Google Scholar] [CrossRef]
- Liu, R.R.; Wen, S.X.; Sun, Y.; Yan, B.J.; Wang, J.W.; Chen, L.; Peng, S.Y.; Ma, C.; Cao, X.Y.; Ma, C.X.; et al. A nanoclay enhanced Amidoxime-Functionalized Double-Network hydrogel for fast and massive uranium recovery from seawater. Chem. Eng. J. 2021, 422, 130060. [Google Scholar] [CrossRef]
- Song, Y.C.; Ma, X.; Tan, H.H.; Liu, Z.; Liu, C.T.; Shen, C.Y.; Yang, P.P.; Li, S.W. Hollow Zn/Co zeolitic imidazolate framework-implanted composite hydrogel for highly efficient uranium extraction from seawater. Nano Res. 2023, 16, 10451–10461. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, R.R.; Wen, S.X.; Wang, J.W.; Chen, L.; Yan, B.J.; Peng, S.Y.; Ma, C.; Cao, X.Y.; Ma, C.X.; et al. Antibi-ofouling ultrathin poly(amidoxime) membrane for enhanced U(VI) recovery from wastewater and seawater. ACS Appl. Mater. Interfaces 2021, 13, 21272–21285. [Google Scholar] [CrossRef]
- Yang, L.S.; Xiao, H.Y.; Zhao, X.L.; Kong, X.Y.; Liu, P.; Xin, W.W.; Fu, L.; Jiang, L.; Wen, L.P.; Qian, Y.C. Bioinspired hier-archical porous membrane for efficient uranium extraction from seawater. Nat. Sustain. 2022, 5, 71–80. [Google Scholar] [CrossRef]
- Yu, R.; Lu, Y.R.; Zhang, X.S.; Chen, W.; Chen, X.; Li, L.B. Amidoxime-modified ultrathin polyethylene fibrous membrane for uranium extraction from seawater. Desalination 2022, 539, 115965. [Google Scholar] [CrossRef]
- Yuan, Y.H.; Zhao, S.L.; Wen, J.; Wang, D.; Guo, X.W.; Xu, L.L.; Wang, X.L.; Wang, N. Rational design of porous nanofiber adsorbent by blow-spinning with ultrahigh uranium recovery capacity from seawater. Adv. Funct. Mater. 2019, 29, 1805380. [Google Scholar] [CrossRef]
- Xu, X.; Xu, L.; Ao, J.X.; Liang, Y.L.; Li, C.; Wang, Y.J.; Huang, C.; Ye, F.; Li, Q.N.; Guo, X.J.; et al. Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly (amidoxime) fiber. J. Mater. Chem. A 2020, 8, 22032–22044. [Google Scholar] [CrossRef]
- Pu, Y.D.; Qiang, T.T.; Ren, L.F. Waste feather fiber based high extraction capacity bio-adsorbent for sustainable uranium extraction from seawater. Int. J. Biol. Macromol. 2022, 206, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Y.; Liu, J.Y.; Chen, S.S.; Song, Y.; Liu, Q.; Yu, J.; Chen, R.R.; Zhu, J.H.; Li, R.M.; Wang, J. A novel anti-biofouling collagen fiber grafted with hyperbranched polyethyleneimine/amidoxime for efficient uranium extraction from seawater. Desalination 2024, 586, 117894. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Sun, Y.; Sun, Y.; Wang, J.; Chen, L.; Feng, X.; Wang, J.; Wang, N.; Zhang, D.; Ma, C. Anti-Biofouling Polyzwitterion–Poly(amidoxime) Composite Hydrogel for Highly Enhanced Uranium Extraction from Seawater. Gels 2024, 10, 603. https://doi.org/10.3390/gels10090603
Yang L, Sun Y, Sun Y, Wang J, Chen L, Feng X, Wang J, Wang N, Zhang D, Ma C. Anti-Biofouling Polyzwitterion–Poly(amidoxime) Composite Hydrogel for Highly Enhanced Uranium Extraction from Seawater. Gels. 2024; 10(9):603. https://doi.org/10.3390/gels10090603
Chicago/Turabian StyleYang, Lang, Ye Sun, Yue Sun, Jiawen Wang, Lin Chen, Xueliang Feng, Jinggang Wang, Ning Wang, Dong Zhang, and Chunxin Ma. 2024. "Anti-Biofouling Polyzwitterion–Poly(amidoxime) Composite Hydrogel for Highly Enhanced Uranium Extraction from Seawater" Gels 10, no. 9: 603. https://doi.org/10.3390/gels10090603
APA StyleYang, L., Sun, Y., Sun, Y., Wang, J., Chen, L., Feng, X., Wang, J., Wang, N., Zhang, D., & Ma, C. (2024). Anti-Biofouling Polyzwitterion–Poly(amidoxime) Composite Hydrogel for Highly Enhanced Uranium Extraction from Seawater. Gels, 10(9), 603. https://doi.org/10.3390/gels10090603