pH-Responsive Cellulose/Silk/Fe3O4 Hydrogel Microbeads Designed for Biomedical Applications
<p>Optical microscopic images of cellulose/silk/Fe<sub>3</sub>O<sub>4</sub> hydrogel microbeads prepared using TBAH (<b>a</b>) and TBPH (<b>b</b>). The contents of cellulose, silk, and Fe<sub>3</sub>O<sub>4</sub> in the microbead-preparing solution were 4, 1, and 0.5%, respectively. Hydrogel microbeads were stained with Congo red.</p> "> Figure 2
<p>FE-SEM images of cellulose-based microbeads: (<b>a</b>,<b>b</b>) cellulose/Fe<sub>3</sub>O<sub>4</sub> microbeads prepared using TBAH; (<b>c</b>,<b>d</b>) cellulose/silk/Fe<sub>3</sub>O<sub>4</sub> microbeads prepared using TBAH; (<b>e</b>,<b>f</b>) cellulose/Fe<sub>3</sub>O<sub>4</sub> microbeads prepared using TBPH; (<b>g</b>,<b>h</b>) cellulose/silk/Fe<sub>3</sub>O<sub>4</sub> microbeads prepared using TBPH. The contents of cellulose, silk, and Fe<sub>3</sub>O<sub>4</sub> in the microbead-preparing solution were 4, 1, and 0.5%, respectively.</p> "> Figure 3
<p>Swelling volumes (<b>a</b>) and swelling ratios (<b>b</b>) of cellulose-based hydrogel microbeads with same dry weight. The contents of cellulose, silk, and Fe<sub>3</sub>O<sub>4</sub> in the microbead-preparing solution were 4, 1, and 0.5%, respectively.</p> "> Figure 4
<p>Size distribution of cellulose/silk/Fe<sub>3</sub>O<sub>4</sub> hydrogel microbeads with various silk contents (●: 0%; ○: 0.25%; ▼: 0.5%; ∆: 1%; ■: 1.5%; and □: 2%) prepared using TBAH (<b>a</b>) and TBPH (<b>b</b>).</p> "> Figure 5
<p>Protein contents in cellulose/silk/Fe<sub>3</sub>O<sub>4</sub> hydrogel microbeads prepared with various silk contents. TBPH was used as the cellulose-dissolving solvent.</p> "> Figure 6
<p>The effect of silk content in cellulose/silk/Fe<sub>3</sub>O<sub>4</sub> hydrogel microbeads on the adsorption capacity for CV at pH 7. Black bars (TBAH) and gray bars (TBPH) represent the solvent used to prepare the microbeads. The initial concentration of CV for adsorption was 700 µg/mL. One-way analysis of variance (ANOVA) for silk content using Tukey’s test (<span class="html-italic">p</span> < 0.05); inset letters suggest the group classified from Tukey’s test. The subscripts (1, 2) are in the same group for the ANOVA test. The same letter indicates that there is no significant difference between the data. Asterisks (*) indicate statistical significance by <span class="html-italic">t</span>-test analysis of variance for the solvent (<span class="html-italic">p</span> < 0.05). N.S: not significant.</p> "> Figure 7
<p>Effect of contact time (<b>a</b>) and pseudo-second-order model fitting (<b>b</b>) for BSA adsorption on cellulose/silk/Fe<sub>3</sub>O<sub>4</sub> hydrogel microbeads. Filled and blanked symbols represent the cellulose/Fe<sub>3</sub>O<sub>4</sub> microbeads prepared with and without silk, respectively. Circle symbols (TBAH) and triangle symbols (TBPH) represent the solvent used to prepare the microbeads. The initial concentrations of BSA were 100 and 500 µg/mL for microbeads without and with silk, respectively.</p> "> Figure 8
<p>Effect of BSA concentration (<b>a</b>) and Langmuir model fitting as the best-fitted isotherm model (<b>b</b>) for BSA adsorption on cellulose/silk/Fe<sub>3</sub>O<sub>4</sub> hydrogel microbeads. Filled and blanked symbols represent cellulose/Fe<sub>3</sub>O<sub>4</sub> microbeads prepared with and without silk, respectively. Circle symbols (TBAH) and triangle symbols (TBPH) represent the solvents used to prepare the microbeads.</p> "> Figure 9
<p>Cumulative release profiles of BSA from cellulose/silk/Fe<sub>3</sub>O<sub>4</sub> microbeads at pH 2.2 and pH 7.4. Circle symbols (TBAH) and triangle symbols (TBPH) represent the solvents used to prepare the microbeads. Solid lines and dotted lines represent pH 2.2 and pH 7.4, respectively.</p> "> Figure 10
<p>Effects of regenerated cellulose and cellulose/silk film on HaCaT cell viability. Cell viability was determined using an NR assay. One-way analysis of variance with Tukey’s test (<span class="html-italic">p</span> < 0.05); N.S: not significant.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Cellulose/Fe3O4 Hydrogel Microbeads with Various Cellulose Solvents
2.2. Preparation of Cellulose/Silk/Fe3O4 Hydrogel Microbeads
2.3. Characteristics of Cellulose/Silk/Fe3O4 Hydrogel Microbeads with Various Silk Contents
2.4. Kinetic Study of BSA Adsorption on Cellulose/Silk/Fe3O4 Hydrogel Microbeads
2.5. Isotherm Study of BSA Adsorption on Cellulose/Silk/Fe3O4 Hydrogel Microbeads
2.6. Release Profiles of BSA Adsorbed on Cellulose/Silk/Fe3O4 Microbeads
2.7. Cytotoxicity of Cellulose and Cellulose/Silk Composites
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Silk-Degumming Process
4.3. Preparation of Cellulose/Fe3O4 Hydrogel Microbeads
4.4. Preparation of Cellulose/Silk/Fe3O4 Hydrogel Microbeads
4.5. Characterization of Cellulose/Fe3O4-Based Hydrogel Microbeads
4.6. Dye Adsorption on Cellulose/Silk/Fe3O4 Hydrogel Microbeads
4.7. Protein Adsorption and Release Study on Cellulose/Silk/Fe3O4 Hydrogel Microbeads
4.8. Cytotoxicity of Regenerated Cellulose and Cellulose/Silk Film
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kabir, S.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.R.; Ali, A.; Islam, M.N. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Prog. Biomater. 2018, 7, 153–174. [Google Scholar] [CrossRef]
- Mredha, M.T.I.; Pathak, S.K.; Tran, V.T.; Cui, J.; Jeon, I. Hydrogels with superior mechanical properties from the synergistic effect in hydrophobic–hydrophilic copolymers. Chem. Eng. J. 2019, 362, 325–338. [Google Scholar] [CrossRef]
- Mogoşanu, G.D.; Grumezescu, A.M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 2014, 463, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Patel, D.; Hickson, B.; DesRochers, J.; Hu, X. Recent progress in biopolymer-based hydrogel materials for biomedical applications. Int. J. Mol. Sci. 2022, 23, 1415. [Google Scholar] [CrossRef]
- Li, C.; Wu, J.; Shi, H.; Xia, Z.; Sahoo, J.K.; Yeo, J.; Kaplan, D.L. Fiber-based biopolymer processing as a route toward sustainability. Adv. Mater. 2022, 34, 2105196. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Yano, H. Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 2012, 19, 1907–1912. [Google Scholar] [CrossRef]
- Jo, S.; Park, S.; Oh, Y.; Hong, J.; Kim, H.J.; Kim, K.J.; Oh, K.K.; Lee, S.H. Development of cellulose hydrogel microspheres for lipase immobilization. Biotechnol. Bioprocess Eng. 2019, 24, 145–154. [Google Scholar] [CrossRef]
- Deligkaris, K.; Tadele, T.S.; Olthuis, W.; van den Berg, A. Hydrogel-based devices for biomedical applications. Sens. Actuators B Chem. 2010, 147, 765–774. [Google Scholar] [CrossRef]
- Catoira, M.C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med. 2019, 30, 115. [Google Scholar] [CrossRef]
- Chirani, N.; Yahia, L.H.; Gritsch, L.; Motta, F.L.; Chirani, S.; Farè, S. History and applications of hydrogels. J. Biomed. Sci. 2015, 4, 1–23. [Google Scholar]
- Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016, 53, 169–206. [Google Scholar] [CrossRef]
- Nguyen, M.N.; Kragl, U.; Michalik, D.; Ludwig, R.; Hollmann, D. The effect of additives on the viscosity and dissolution of cellulose in tetrabutylphosphonium hydroxide. ChemSusChem 2019, 12, 3458–3462. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, Y.; Chen, Q.; Yu, Z.; Wang, C.; Jin, S.; Ding, Y.; Wu, G. Dissolution of cellulose with ionic liquids and its application: A mini-review. Green Chem. 2006, 8, 325–327. [Google Scholar] [CrossRef]
- Park, S.; Oh, Y.; Yun, J.; Yoo, E.; Jung, D.; Oh, K.K.; Lee, S.H. Cellulose/biopolymer/Fe3O4 hydrogel microbeads for dye and protein adsorption. Cellulose 2020, 27, 2757–2773. [Google Scholar] [CrossRef]
- Gericke, M.; Trygg, J.; Fardim, P. Functional cellulose beads: Preparation, characterization, and applications. Chem. Rev. 2013, 113, 4812–4836. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, L. Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. J. Chromatogr. A 2010, 1217, 5922–5929. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Lu, X.; Wang, Z.; Lu, Q.; Lin, G.; Huang, B.; Lu, B. In situ polymerization approach to cellulose–polyacrylamide interpenetrating network hydrogel with high strength and pH-responsive properties. Cellulose 2019, 26, 1825–1839. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Li, B.; Liu, C.; Jiang, Y.; Yu, G.; Mu, X. Biocompatible magnetic cellulose–chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization. J. Mater. Chem. 2012, 22, 15085–15091. [Google Scholar] [CrossRef]
- Peng, S.; Meng, H.; Ouyang, Y.; Chang, J. Nanoporous magnetic cellulose–chitosan composite microspheres: Preparation, characterization, and application for Cu(II) adsorption. Ind. Eng. Chem. Res. 2014, 53, 2106–2113. [Google Scholar] [CrossRef]
- Weon, S.H.; Han, J.; Choi, Y.; Park, S.; Lee, S.H. Development of blended biopolymer-based photocatalytic hydrogel beads for adsorption and photodegradation of dyes. Gels 2023, 9, 630. [Google Scholar] [CrossRef]
- Chang, C.; He, M.; Zhou, J.; Zhang, L. Swelling behaviors of pH-and salt-responsive cellulose-based hydrogels. Macromolecules 2011, 44, 1642–1648. [Google Scholar] [CrossRef]
- Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 2008, 33, 1088–1118. [Google Scholar] [CrossRef]
- Langer, R.; Peppas, N.A. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 2003, 49, 2990–3006. [Google Scholar] [CrossRef]
- Rezaei, F.; Damoogh, S.; Reis, R.L.; Kundu, S.C.; Mottaghitalab, F.; Farokhi, M. Dual drug delivery system based on pH-sensitive silk fibroin/alginate nanoparticles entrapped in PNIPAM hydrogel for treating severe infected burn wound. Biofabrication 2020, 13, 015005. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xiong, Y.; Yu, S.; Liu, S.; Liu, F.; Xie, C. Facile preparation for robust and freestanding silk fibroin films in a 1-butyl-3-methyl imidazolium acetate ionic liquid system. J. Appl. Polym. Sci. 2015, 132, 42822. [Google Scholar] [CrossRef]
- Chen, Z.J.; Zhang, Y.; Zheng, L.; Zhang, H.; Shi, H.H.; Zhang, X.C.; Liu, B. Mineralized self-assembled silk fibroin/cellulose interpenetrating network aerogel for bone tissue engineering. Biomater. Adv. 2022, 134, 112549. [Google Scholar] [CrossRef]
- Sunasee, R.; Hemraz, U.D.; Ckless, K. Cellulose nanocrystals: A versatile nanoplatform for emerging biomedical applications. Expert Opin. Drug Deliv. 2016, 13, 1243–1256. [Google Scholar] [CrossRef] [PubMed]
- Lukova, P.; Katsarov, P.; Pilicheva, B. Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems. Polymers 2023, 15, 3615. [Google Scholar] [CrossRef]
- Gore, P.M.; Naebe, M.; Wang, X.; Kandasubramanian, B. Progress in silk materials for integrated water treatments: Fabrication, modification and applications. Chem. Eng. J. 2019, 374, 437–470. [Google Scholar] [CrossRef]
- Rastogi, S.; Kandasubramanian, B. Progressive trends in heavy metal ions and dyes adsorption using silk fibroin composites. Environ. Sci. Pollut. Res. 2020, 27, 210–237. [Google Scholar] [CrossRef]
- Gupta, S.; Nighojkar, A.; Mayilswamy, N.; Kandasubramanian, B. Recent trends in the application of silk-based composites for remediation of toxic contaminants from wastewater. J. Polym. Environ. 2023, 31, 2243–2272. [Google Scholar] [CrossRef]
- Love, S.A.; Popov, E.; Rybacki, K.; Hu, X.; Salas-de la Cruz, D. Facile treatment to fine-tune cellulose crystals in cellulose-silk biocomposites through hydrogen peroxide. Int. J. Biol. Macromol. 2020, 147, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Huang, H. Preparation and characterization of cellulose composite hydrogels from tea residue and carbohydrate additives. Carbohydr. Polym. 2016, 147, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Li, T.; Zhang, R.; Wu, Q.; Chen, T.; Sun, P.; Ramamoorthy, A. Conformations and intermolecular interactions in cellulose/silk fibroin blend films: A solid-state NMR perspective. J. Phys. Chem. B 2017, 121, 6108–6116. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Oh, Y.; Yun, J.; Yoo, E.; Jung, D.; Park, K.S.; Oh, K.K.; Lee, S.H. Characterization of blended cellulose/biopolymer films prepared using ionic liquid. Cellulose 2020, 27, 5101–5119. [Google Scholar] [CrossRef]
- Shefa, A.A.; Amirian, J.; Kang, H.J.; Bae, S.H.; Jung, H.I.; Choi, H.J.; Lee, S.Y.; Lee, B.T. In vitro and in vivo evaluation of effectiveness of a novel TEMPO-oxidized cellulose nanofiber-silk fibroin scaffold in wound healing. Carbohydr. Polym. 2017, 177, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Freddi, G.; Romanò, M.; Massafra, M.R.; Tsukada, M. Silk fibroin/cellulose blend films: Preparation, structure, and physical properties. J. Appl. Polym. Sci. 1995, 56, 1537–1545. [Google Scholar] [CrossRef]
- Shang, S.; Zhu, L.; Fan, J. Physical properties of silk fibroin/cellulose blend films regenerated from the hydrophilic ionic liquid. Carbohydr. Polym. 2011, 86, 462–468. [Google Scholar] [CrossRef]
- Chang, C.; Zhang, L. Cellulose-based hydrogels: Present status and application prospects. Carbohydr. Polym. 2011, 84, 40–53. [Google Scholar] [CrossRef]
- Chen, J.; Feng, J.; Yan, W. Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for Methylene Blue. J. Colloid Interface Sci. 2016, 475, 26–35. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Bazmizeynabad, F.; Seyyedi, B. kappa-Carrageenan beads as new adsorbent to remove crystal violet dye from water: Adsorption kinetics and isotherm. Desalination Water Treat. 2015, 53, 2529–2539. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Li, S.; Du, K. Fabrication and characterization of porous cellulose beads with high strength and specific surface area via preliminary chemical cross-linking reaction for protein separation. Biochem. Eng. J. 2020, 153, 107412. [Google Scholar] [CrossRef]
- Zhao, L.; Li, S.; Liang, C.; Qiao, L.; Du, K. High-strength and low-crystallinity cellulose/agarose composite microspheres: Fabrication, characterization and protein adsorption. Biochem. Eng. J. 2021, 166, 107826. [Google Scholar] [CrossRef]
- Qiao, L.; Lei, S.; Du, K. High-surface-area interconnected macroporous nanofibrous cellulose microspheres: A versatile platform for large capacity and high-throughput protein separation. Cellulose 2021, 28, 2125–2136. [Google Scholar] [CrossRef]
- Kim, J.W.; Hwang, I.J. Separation of valuables from spent selective catalytic reduction catalyst leaching solution by fabricated anion extraction resins. J. Environ. Chem. Eng. 2018, 6, 1100–1108. [Google Scholar] [CrossRef]
- García-Zubiri, I.X.; González-Gaitano, G.; Isasi, J.R. Sorption models in cyclodextrin polymers: Langmuir, Freundlich, and a dual-mode approach. J. Colloid Interface Sci. 2009, 337, 11–18. [Google Scholar] [CrossRef]
- Ghosal, P.S.; Gupta, A.K. Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J. Mol. Liq. 2017, 225, 137–146. [Google Scholar] [CrossRef]
- Gianak, O.; Pavlidou, E.; Sarafidis, C.; Karageorgiou, V.; Deliyanni, E. Silk fibroin nanoparticles for drug delivery: Effect of bovine serum albumin and magnetic nanoparticles addition on drug encapsulation and release. Separation 2018, 5, 25. [Google Scholar] [CrossRef]
- El-Sherbiny, I.M.; Salama, A.; Sarhan, A.A. Ionotropically cross-linked pH-sensitive IPN hydrogel matrices as potential carriers for intestine-specific oral delivery of protein drugs. Drug Dev. Ind. Pharm. 2011, 37, 121–130. [Google Scholar] [CrossRef]
- Cao, T.T.; Zhang, Y.Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater. Sci. Eng. C 2016, 61, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.L.; Miao, J.C.; Sheng, W.H.; Xie, Y.F.; Huang, Q.; Shan, Y.B.; Yang, J.C. Cytocompatibility of regenerated silk fibroin film: A medical biomaterial applicable to wound healing. J. Zhejiang Univ. Sci. B 2010, 11, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Acharya, C.; Ghosh, S.K.; Kundu, S.C. Silk fibroin protein from mulberry and non-mulberry silkworms: Cytotoxicity, biocompatibility and kinetics of L929 murine fibroblast adhesion. J. Mater. Sci. Mater. Med. 2008, 19, 2827–2836. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Hirani, A.A.; Colacino, K.R.; Lee, Y.W.; Roman, M. Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life 2012, 2, 1241006. [Google Scholar] [CrossRef]
- Paramo, L.; Jiménez-Chávez, A.; Medina-Ramirez, I.E.; Böhnel, H.N.; Escobar-Alarcón, L.; Esquivel, K. Biocompatibility Evaluation of TiO2, Fe3O4, and TiO2/Fe3O4 Nanomaterials: Insights into Potential Toxic Effects in Erythrocytes and HepG2 Cells. Nanomaterials 2023, 13, 2824. [Google Scholar] [CrossRef]
- Wei, Y.; Yin, G.; Ma, C.; Huang, Z.; Chen, X.; Liao, X.; Yao, Y.; Yin, H. Synthesis and cellular compatibility of biomineralized Fe3O4 nanoparticles in tumor cells targeting peptides. Colloids Surf. B Biointerfaces 2013, 107, 180–188. [Google Scholar] [CrossRef]
Dissolution Conditions | Average Diameter of Cellulose/Fe3O4 Microbeads (µm) | ||
---|---|---|---|
Solvent | Temperature (°C) | Time (min) | |
[Emim][Ac] | 100 | 120 | 48.8 |
LiBr (60%) | 100 | 60 | 140.3 |
ZnCl2 (68%) | 80 | 60 | 58.3 |
TBAH (40%) | RT * | 90 | 14.6 |
TBPH (40%) | RT | 90 | 17.5 |
NaOH/thiourea (9.3%/7.4%) | 4 | 20 | 80.7 |
Solvent | Silk Content (%) | Pseudo-Second-Order Model | qe, exp. (mg/g) | ||
---|---|---|---|---|---|
k2 (×10−3 g/mg·h) | qe, cal. (mg/g) | R2 | |||
TBAH | 0 | 9.46 | 201.8 | 0.999 | 184.0 |
1 | 25.33 | 524.8 | 0.999 | 507.6 | |
TBPH | 0 | 8.11 | 225.9 | 0.996 | 207.9 |
1 | 9.82 | 611.4 | 0.997 | 569.7 |
Solvent | Silk Content (%) | Langmuir Model | qe, exp. (mg/g) | ||
---|---|---|---|---|---|
b (×10−3 L/mg) | qm (mg/g) | R2 | |||
TBAH | 0 | 12.65 | 220.4 | 0.973 | 185.4 |
1 | 1.34 | 1378.0 | 0.993 | 1095.2 | |
TBPH | 0 | 14.88 | 228.5 | 0.985 | 194.3 |
1 | 0.59 | 3142.0 | 0.996 | 1643.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weon, S.H.; Na, Y.; Han, J.; Lee, J.W.; Kim, H.J.; Park, S.; Lee, S.H. pH-Responsive Cellulose/Silk/Fe3O4 Hydrogel Microbeads Designed for Biomedical Applications. Gels 2024, 10, 200. https://doi.org/10.3390/gels10030200
Weon SH, Na Y, Han J, Lee JW, Kim HJ, Park S, Lee SH. pH-Responsive Cellulose/Silk/Fe3O4 Hydrogel Microbeads Designed for Biomedical Applications. Gels. 2024; 10(3):200. https://doi.org/10.3390/gels10030200
Chicago/Turabian StyleWeon, Seung Hyeon, Yuhyeon Na, Jiwoo Han, Jeong Woo Lee, Hyung Joo Kim, Saerom Park, and Sang Hyun Lee. 2024. "pH-Responsive Cellulose/Silk/Fe3O4 Hydrogel Microbeads Designed for Biomedical Applications" Gels 10, no. 3: 200. https://doi.org/10.3390/gels10030200
APA StyleWeon, S. H., Na, Y., Han, J., Lee, J. W., Kim, H. J., Park, S., & Lee, S. H. (2024). pH-Responsive Cellulose/Silk/Fe3O4 Hydrogel Microbeads Designed for Biomedical Applications. Gels, 10(3), 200. https://doi.org/10.3390/gels10030200