Bimetallic Organic Gel for Effective Methyl Orange Dye Adsorption
"> Figure 1
<p>SEM images of MOG-Fe (<b>A</b>,<b>B</b>), MOG-Al (<b>C</b>,<b>D</b>), MOG-Fe/Al (<b>E</b>,<b>F</b>).</p> "> Figure 2
<p>The high-resolution survey (<b>A</b>), Fe 2p spectrum (<b>B</b>), Al 2p spectrum (<b>C</b>), C 1s spectrum (<b>D</b>), and O 1s spectrum (<b>E</b>) of MOG-Fe/Al.</p> "> Figure 3
<p>XRD spectra (<b>A</b>), FT-IR spectra (<b>B</b>), and BET results (<b>C</b>) of the three MOGs and pore size distribution of MOG-Fe/Al (<b>D</b>).</p> "> Figure 4
<p>Effect of the metal source on the adsorption properties, Adsorption capacity (<b>A</b>) (Inset: picture of the MOG-Fe/Al adsorption system before and after adsorption; <span class="html-italic">C</span><sub>0</sub>: 100 mg/L; adsorbent: 0.5 g/L; pH: deregulation; T: 298 K) and Adsorption efficiency (<b>B</b>).</p> "> Figure 5
<p>Effect of pH on the adsorption properties (<b>A</b>); effect of contact time (<b>B</b>) (<span class="html-italic">C</span><sub>0</sub>: 100 mg/L; MOG-Fe/Al: 0.5 g/L; pH: deregulation; T: 298 K).</p> "> Figure 6
<p>Kinetic fitting curves for MO by MOG-Fe/Al: pseudo-first-order (<b>A</b>), pseudo-second-order (<b>B</b>) (<span class="html-italic">C</span><sub>0</sub>: 100 mg/L; MOG-Fe/Al: 0.5 g/L; pH: deregulation; T: 298 K).</p> "> Figure 7
<p>Effect of initial MO concentration on adsorption (<b>A</b>) and the Langmuir (<b>B</b>), Freundlich (<b>C</b>), and Temkin isotherms (<b>D</b>) (MOG-Fe/Al: 0.5 g/L; pH: deregulation; T: 298 K).</p> "> Figure 8
<p>Effect of temperature on MO removal (<b>A</b>); Van’t Hoff plot for MO adsorption on MOG-Fe/Al (<b>B</b>) (<span class="html-italic">C</span><sub>0</sub>: 100 mg/L; MOG-Fe/Al: 0.5 g/L; pH: deregulation).</p> "> Figure 9
<p>Seven consecutive recycling experiments for MO adsorption by MOG-Fe/Al (<b>A</b>); the FT-IR spectra of MOG-Fe/Al before and after regeneration (<b>B</b>); adsorption of multiple dyes, i.e., CV, MB, MO, RhB, and EY (<span class="html-italic">C</span><sub>0</sub> of dye: 20 mg/L; MOG-Fe/Al: 0.5 g/L; pH: deregulation) (<b>C</b>).</p> "> Scheme 1
<p>Schematic representation of the procedures for preparing MOGs.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of MOGs
2.2. Characteristics of the Samples
2.3. Adsorption Study of Adsorbents for MO
2.3.1. Effect of pH on MO Adsorption
2.3.2. Effect of Contact Time and Adsorption Kinetics
2.3.3. Effect of Initial Concentration and Adsorption Isotherm
2.3.4. Effect of Adsorption Temperature and Thermodynamics
2.4. Durability and Applicability of Adsorbent
2.5. Proposed Adsorption Mechanisms
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis of MOGs
4.3. Characterization of Adsorbent
4.4. Adsorption Experiments
4.5. Adsorption Isotherm
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jatoi, A.S.; Hashmi, Z.; Ahmed, J.; Mazari, S.A.; Mubarak, N.M.; Usto, M.A. Recent trend and evaluation of bio-assisted adsorbents for the removal of emerging pollutants and its adsorption mechanisms. Water Air Soil Poll 2023, 234, 406. [Google Scholar] [CrossRef]
- Hou, L.M.; Zhang, X.F.; Liu, H.W.; Zheng, H.; Niu, B.; Zheng, J.W.; Liu, S.H.; Fu, J.W. Rigid-flexible coupled polyphosphazene supported polyurethane foam for efficient and selective adsorption of anionic dyes from water. Colloid Surf. A 2023, 669, 131483. [Google Scholar] [CrossRef]
- Afroze, S.; Sen, T.K. A Review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Poll 2018, 229, 225. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Zhu, L.L.; Lu, W.H.; Li, X.F.; Sun, X.Q.; Lü, R.Y.; Ding, H.G. Evaluation of functional group content of N-methylimidazolium anion exchange resin on the adsorption of methyl orange and alizarin red. Chem. Eng. Res. Des. 2016, 111, 161–168. [Google Scholar] [CrossRef]
- Ramírez, C.; Saldaña, A.; Hernández, B.; Acero, R.; Guerra, R.; Garcia-Segura, S.; Brillas, E.; Peralta-Hernández, J.M. Electrochemical oxidation of methyl orange azo dye at pilot flow plant using BDD technology. J. Ind. Eng. Chem. 2013, 19, 571–579. [Google Scholar] [CrossRef]
- Das, P.P.; Sharma, M.; Purkait, M.K. Recent progress on electrocoagulation process for wastewater treatment: A review. Sep. Purif. Technol. 2022, 292, 121058. [Google Scholar] [CrossRef]
- Joseph, J.; Radhakrishnan, R.C.; Johnson, J.K.; Joy, S.P.; Thomas, J. Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Mater. Chem. Phys. 2020, 242, 122488. [Google Scholar] [CrossRef]
- Teng, J.H.; Shen, L.G.; He, Y.M.; Liao, B.Q.; Wu, G.S.; Lin, H.J. Novel insights into membrane fouling in a membrane bioreactor: Elucidating interfacial interactions with real membrane surface. Chemosphere 2018, 210, 769–778. [Google Scholar] [CrossRef]
- Varghese, A.G.; Paul, S.A.; Latha, M.S. Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environ. Chem. Lett. 2019, 17, 867–877. [Google Scholar] [CrossRef]
- Singh, S.; Perween, S.; Ranjan, A.; Singh, S.; Perween, S.; Ranjan, A. Dramatic enhancement in adsorption of Congo red dye in polymer-nanoparticle composite of polyaniline-zinc titanate. J. Environ. Chem. Eng. 2021, 9, 105149. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment-a critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Nguyen, L.M.; Nguyen, T.T.T.; Nguyen, N.H.; Nguyen, D.H.; Nguyen, D.T.C.; Tran, T.V. Green synthesis of ZnFe2O4@ZnO nanocomposites using Chrysanthemum spp. floral waste for photocatalytic dye degradation. J. Environ. Manag. 2023, 326, 116746. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Bogale, F.M. Biomass-based adsorbents for removal of dyes from wastewater: A review. Front. Environ. Sci. 2021, 9, 764958. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Simchi, A.; Far, H.S. Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: Synthesis, adsorption mechanism and kinetics studies. J. Ind. Eng. Chem. 2020, 81, 405–414. [Google Scholar] [CrossRef]
- Awad, A.M.; Shaikh, S.M.R.; Jalab, R.; Gulied, M.H.; Nasser, M.S.; Benamor, A.; Adham, S. Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Sep. Purif. Technol. 2019, 228, 115719. [Google Scholar] [CrossRef]
- Hou, J.; Sapnik, A.F.; Bennett, T.D. Metal-organic framework gels and monoliths. Chem. Sci. 2020, 11, 310–323. [Google Scholar] [CrossRef]
- Garai, A.; Goswami, A.; Biradha, K. In situ conversion of a MOG to a crystalline MOF: A case study on solvent-dependent gelation and crystallization. Chem. Commun. 2022, 58, 11414–11417. [Google Scholar] [CrossRef]
- Sutar, P.; Maji, T.K. Recent advances in coordination-driven polymeric gel materials: Design and applications. Dalton T. 2020, 49, 7658–7672. [Google Scholar] [CrossRef]
- Ma, S.; Xu, J.; Sohrabi, S.; Zhang, J.Y. Metal-organic gels and their derived materials for electrochemical applications. J. Mater. Chem. A 2023, 11, 11572–11606. [Google Scholar] [CrossRef]
- Sarkar, S.; Maji, P.K.; Negishi, Y.; Dutta, S.; Das, T.K.; Pan, R.; Sarkar, S. Cu(II)-based nanofibrous metallogel for phenoxazinone synthase-like activity. ACS Appl. Nano Mater. 2021, 4, 1455–1466. [Google Scholar] [CrossRef]
- Xu, M.Y.; Wang, T.X. Postsynthetic modification of mixed-ligand metal-organic gels for adsorbing nonpolar organic solvents. ChemistrySelect 2021, 6, 12351–12357. [Google Scholar] [CrossRef]
- Ding, Q.; Li, C.; Wang, H.J.; Xu, C.L.; Kuang, H. Electrochemical detection of heavy metal ions in water. Chem. Commun. 2021, 57, 7215–7231. [Google Scholar] [CrossRef]
- Asif, M.; Xia, W.; Nasir, M.; Wang, Q.F.; Zou, R.Q. Hierarchical heteroaggregation of binary metal-organic gels with tunable porosity and mixed valence metal sites for removal of dyes in water. Sci. Rep. 2015, 5, 10556. [Google Scholar]
- Li, Y.; Guo, M.X.; He, L.; Huang, C.Z.; Li, Y.F. Green one-pot synthesis of silver nanoparticles/metal-organic gels hybrid and its promising SERS application. ACS Sustain. Chem. Eng. 2019, 7, 5292–5299. [Google Scholar] [CrossRef]
- Xia, S.; Sun, J.M.; Sun, W.T. Bimetallic metal-organic gel for effective removal of chlortetracycline hydrochloride from aqueous solution: Adsorption isotherm, kinetic and mechanism studies. Colloid. Surface. A 2022, 649, 129403. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Z.; Li, S.W.; Shi, C.Y.; Xu, T.Y.; Huo, M.X.; Lin, Y.Z. Aluminum copper bimetallic metal organic gels/sodium alginate beads for efficient adsorption of ciprofloxacin and methylene blue: Adsorption isotherm, kinetic and mechanism studies. Process Saf. Environ. 2023, 176, 763–775. [Google Scholar] [CrossRef]
- Singh, H.; Raj, S.; Rathour, R.K.S.; Bhattacharya, J. Bimetallic Fe/Al-MOF for the adsorptive removal of multiple dyes: Optimization and modeling of batch and hybrid adsorbent-river sand column study and its application in textile industry wastewater. Environ. Sci. Pollut. R 2022, 29, 56249–56264. [Google Scholar] [CrossRef]
- Açıkyıldız, M.; Gürses, A.; Günes, K.; Sahin, E. Adsorption of textile dyes from aqueous solutions onto clay: Kinetic modelling and equilibrium isotherm analysis. Front. Chem. 2023, 11, 56457. [Google Scholar] [CrossRef]
- Godiya, C.B.; Cheng, X.; Li, D.E.; Chen, Z.; Lu, X.L. Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J. Hazard. Mater. 2019, 364, 28–38. [Google Scholar] [CrossRef]
- Cunha, R.V.; Morais, A.I.S.; Trigueiro, P.; de Souza, J.S.N.; Damacena, D.H.L.; Lima, L.C.B.; Bezerra, R.D.S.; Fonseca, M.G.; Filho, E.C.S.; Osajima, J.A. Organic–inorganic hybrid pigments based on bentonite: Strategies to stabilize the quinoidal base form of anthocyanin. Int. J. Mol. Sci. 2023, 24, 2417. [Google Scholar] [CrossRef]
- Suri, P.; Patel, S.A.; Chhabra, R.P. Falling ball method for determining zero shear and shear-dependent viscosity of polymeric systems: Solutions, melts, and composites. J. Vinyl Addit. Technol. 2023, 29, 670–684. [Google Scholar] [CrossRef]
- Sgreva, N.R.; Davaille, A.; Kumagai, I.; Kurita, K. Interaction between a falling sphere and the structure of a non-Newtonian yield-stress fluid. J. Non-Newton. Fluid 2020, 284, 104355. [Google Scholar] [CrossRef]
- Zhang, L.J.; Xu, J.Q.; Shi, Z.; Xu, W.; Wang, T.G. Hydrothermal synthesis and characterization of the first oxalate–bta mixed-ligand three-dimensional frameworks: {[M2(µ8-bta)(µ2-C2O4)]·(H3O)2(H2O)2}n (M = CoII, FeII; bta = benzene-1,2,4,5-tetracarboxylate). Dalton Trans. 2003, 1148–1152. [Google Scholar] [CrossRef]
- Akbari, M.; Mohammadnia, M.S.; Ghalkhani, M.; Mohammad, A.; Sohouli, E.; Rahimi-Nasrabadi, M.; Arbabi, M.; Banafshe, H.R.; Sobhani-Nasab, A. Development of an electrochemical fentanyl nanosensor based on MWCNT-HA/Cu-H3BTC nanocomposite. J. Ind. Eng. Chem. 2022, 114, 418–426. [Google Scholar] [CrossRef]
- Zare, E.N.; Motahari, A.; Sillanpää, M. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environ. Res. 2018, 162, 173–195. [Google Scholar] [CrossRef]
- Amari, A.; Alzahrani, F.M.; Katubi, K.M.; Alsaiari, N.S.; Tahoon, M.A.; Rebah, F.B. Clay-polymer nanocomposites: Preparations and utilization for pollutants removal. Materials 2021, 14, 1365. [Google Scholar] [CrossRef]
- Charmas, B.; Zięzio, M.; Jedynak, K. Assessment of the porous structure and surface chemistry of activated biocarbons used for methylene blue adsorption. Molecules 2023, 28, 4922. [Google Scholar] [CrossRef]
- Mennas, N.; Lahreche, S.; Chouli, F.; Sabantina, L.; Benyoucef, A. Adsorption of methylene blue dye by cetyltrimethylammonium bromide intercalated polyaniline-functionalized montmorillonite clay nanocomposite: Kinetics, isotherms, and mechanism study. Polymers 2023, 15, 3518. [Google Scholar] [CrossRef]
- Wang, M.; Day, S.; Wu, Z.; Wan, X.; Ye, X.; Cheng, B. A new type of porous Zn (II) metal-organic gel designed for effective adsorption to methyl orange dye. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127335. [Google Scholar] [CrossRef]
- Wang, L.; Ke, F.; Zhu, J. Metal–organic gel templated synthesis of magnetic porous carbon for highly efficient removal of organic dyes. Dalton Trans. 2016, 45, 4541–4547. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, X.; Wang, Y.; Shan, W.; Lou, Z.; Xiong, Y. A thiourea cross-linked three-dimensional graphene aerogel as a broad-spectrum adsorbent for dye and heavy metal ion removal. New J. Chem. 2020, 44, 16285–16293. [Google Scholar] [CrossRef]
Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|
k1 (min−1) | qe,1 (mg/g) | R2 | k2 (g/mg·min) | qe,2 (mg/g) | R2 |
–1.94 × 10−2 | 46.63 | 0.9581 | 8.5 × 10−4 | 157.73 | 0.9999 |
Langmuir | Freundlich | Temkin | ||||||
---|---|---|---|---|---|---|---|---|
Kl (L/mg) | qm (mg/g) | Rl2 | Kf (mg/g)/(mg/L)1/n) | n | Rf2 | Kt (L/g) | B (kJ/mol) | Rt2 |
0.00576 | 337.47 | 0.9950 | 13.80 | 1.92 | 0.9540 | 0.081 | 88.84 | 0.960 |
T/(K) | ΔGθ/(kJ/mol) | ΔHθ/(kJ/mol) | ΔSθ/(kJ/mol) |
---|---|---|---|
288 | −4.39 | −8.39 | −1.69 |
298 | −4.34 | ||
308 | −3.92 | ||
318 | −3.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Xu, X.; Yu, X.; Yu, S.; Wang, S.; Qu, X. Bimetallic Organic Gel for Effective Methyl Orange Dye Adsorption. Gels 2024, 10, 208. https://doi.org/10.3390/gels10030208
Jin H, Xu X, Yu X, Yu S, Wang S, Qu X. Bimetallic Organic Gel for Effective Methyl Orange Dye Adsorption. Gels. 2024; 10(3):208. https://doi.org/10.3390/gels10030208
Chicago/Turabian StyleJin, Hua, Xinyuan Xu, Xiaoyang Yu, Shihua Yu, Shanshan Wang, and Xiaoshu Qu. 2024. "Bimetallic Organic Gel for Effective Methyl Orange Dye Adsorption" Gels 10, no. 3: 208. https://doi.org/10.3390/gels10030208
APA StyleJin, H., Xu, X., Yu, X., Yu, S., Wang, S., & Qu, X. (2024). Bimetallic Organic Gel for Effective Methyl Orange Dye Adsorption. Gels, 10(3), 208. https://doi.org/10.3390/gels10030208