Synthesis and Properties of Polyvinylidene Fluoride-Hexafluoropropylene Copolymer/Li6PS5Cl Gel Composite Electrolyte for Lithium Solid-State Batteries
<p>(<b>a</b>,<b>d</b>) Macroscopic picture of PVdF-HFP/LiClO<sub>4</sub> gel electrolyte film. (<b>b</b>) Moreover, 10 μm SEM image of the surface morphology of PVdF-HFP/LiClO<sub>4</sub>. (<b>c</b>) Furthermore, 5 μm SEM image of the surface morphology of PVdF-HFP/LiClO<sub>4</sub>. (<b>e</b>) Moreover, 20 μm SEM image of the cross-section morphology of PVdF-HFP/LiClO<sub>4</sub>. (<b>f</b>) Furthermore, 10 μm SEM image of the cross-section morphology of PVdF-HFP/LiClO<sub>4</sub>. (<b>g</b>) Moreover, 50 μm SEM image and EDS mappings of PVdF-HFP/LiClO<sub>4</sub>.</p> "> Figure 2
<p>(<b>a</b>,<b>d</b>) Macroscopic picture of PVdF-HFP/LPSCl/LiClO<sub>4</sub> gel composite electrolyte film. (<b>b</b>) Moreover, 10 μm SEM images of the surface morphology of PVdF-HFP/LPSCl/LiClO<sub>4</sub> gel composite electrolyte film. (<b>c</b>) Furthermore, 5 μm SEM images of the surface morphology of PVdF-HFP/LPSCl/LiClO<sub>4</sub> gel composite electrolyte film. (<b>e</b>) Moreover, 20 μm SEM images of the cross-sectional morphology of PVdF-HFP/LPSCl/LiClO<sub>4</sub> gel composite electrolyte film. (<b>f</b>) Furthermore, 10 μm SEM images of the cross-sectional morphology of PVdF-HFP/LPSCl/LiClO<sub>4</sub> gel composite electrolyte film. (<b>g</b>) Moreover, 50 μm SEM image and EDS mappings of PVdF-HFP/LiClO<sub>4</sub>/LPSCl distributions in the SCE membrane.</p> "> Figure 3
<p>(<b>a</b>) Impedance values of the battery electrolyte corresponding to the addition of different proportions of LPSCl for PVdF-HFP/LPSCl/LiClO<sub>4</sub>. (<b>b</b>) Ionic conductivity of the gel composite electrolyte film corresponding to the addition of different proportions of LPSCl. (<b>c</b>) Lithium-ion transference number of PVdF-HFP/LiClO<sub>4</sub> gel composite electrolyte. (<b>d</b>) Lithium-ion transference number of PVdF-HFP/LPSCl/LiClO<sub>4</sub> gel composite electrolyte.</p> "> Figure 4
<p>(<b>a</b>) DTG results of PVdF-HFP/LiClO<sub>4</sub> gel electrolyte film and PVdF-HFP/LPSCl/LiClO4 gel composite electrolyte film; (<b>b</b>) thermogravimetric analysis curves of PVdF-HFP, PVdF-HFP/LiClO<sub>4</sub>, and PVdF-HFP/LPSCl/LiClO<sub>4</sub> gel composite electrolyte films; (<b>c</b>) X-ray diffraction (XRD) patterns of PVdF-HFP, PVdF-HFP/LiClO<sub>4</sub> gel electrolyte film, and PVdF-HFP/LPSCl/LiClO<sub>4</sub> gel composite electrolyte film; (<b>d</b>) Fourier-transform infrared (FTIR) spectral curves of PVdF-HFP, PVdF-HFP/LiClO<sub>4</sub> gel electrolyte film, and PVdF-HFP/LPSCl/LiClO<sub>4</sub> gel composite electrolyte film.</p> "> Figure 5
<p>(<b>a</b>) Comparative cycling performance graphs of PVdF-HFP/LiClO<sub>4</sub> and PVdF-HFP/LPSCl/LiClO<sub>4</sub> solid-state batteries at 0.1 C; (<b>b</b>) graphs of current cycling performance of PVdF-HFP/LPSCl/LiClO<sub>4</sub> solid-state batteries at 0.2 C; (<b>c</b>) graphs of PVdF-HFP/LiClO<sub>4</sub> and PVdF-HFP/LPSCl/LiClO<sub>4</sub> solid-state battery performance from 0.1 C to 5 C multiplication rate; (<b>d</b>) charge–discharge curve of PVdF-HFP/LPSCl/LiCLlO<sub>4</sub> solid-state battery at 0.2 C.</p> "> Figure 6
<p>(<b>a</b>) CV curve of PVdF-HFP/LiClO<sub>4</sub> solid-state battery; (<b>b</b>) CV curve of PVdF-HFP/LPSCl/LiClO<sub>4</sub> solid-state battery.</p> "> Figure 7
<p>Flowchart of gel composite electrolyte film preparation.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
- (1)
- The gel electrolyte films of 0% LPSCl and 1% LPSCl are both flexible, but the internal structure of the 1% LPSCl gel electrolyte film is more pyknotic, presenting a fibrous dense-type structure of the film to help lithium-ion transport. The ionic conductivity of the gel electrolyte film of 0% LPSCl is 6.55 × 10−4 S·cm−1, and the lithium-ion mobility number is 0.33; The ionic conductivity of the gel electrolyte film with 1% LPSCl reached 1.27 × 10−3 S·cm−1, and the lithium-ion transference number reached 0.63; Moreover, the gel electrolyte film with 1% LPSCl did not decompose until 395 °C, and it had extremely high thermal stability.
- (2)
- The gel electrolyte film with 1% LPSCl exhibited a higher rate performance compared to the gel electrolyte film with 0% LPSCl, which had a discharge specific capacity of 130 mAh·g−1 at 1 C and 54 mAh·g−1 at 5 C.
- (3)
- The 1% LPSCl gel electrolyte film has a more stable cycling performance than the 0% LPSCl gel electrolyte film. The 0% LPSCl gel electrolyte film is extremely unstable in cycling at 0.1 C, whereas the 1% LPSCl gel electrolyte film has a first-turn discharge specific capacity of 165 mAh·g−1 in cycling at 0.1 C and still has a 93% capacity retention rate in cycling after 100 turns. The 1% LPSCl gel electrolyte film has a first turn discharge capacity of 139 mAh·g−1 at 0.2 C and still has 80% capacity retention after 150 turns, which proves that the addition of LPSCl is more helpful for the future development of gel electrolytes and solid-state batteries. This experimental program provides new strategies and methods for the development of gel composite electrolytes and solid-state batteries with high ionic conductivity.
4. Materials and Methods
4.1. Materials
4.2. Preparation of Gel Composite Electrolytic Film
4.3. Preparation of Positive Electrodes
4.4. Composite Solid-State Battery Assembly
4.5. Characterization Measurements
4.6. Electrochemical Measurements
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Richards, W.D.; Ong, S.P.; Miara, L.J.; Kim, J.C.; Mo, Y.; Ceder, G. Design principles for solid-state lithium superionic conductors. Nat. Mater. 2015, 14, 1026–1031. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, Y.; Lotsch, B.; Hu, Y.-S.; Li, H.; Janek, J.; Nazar, L.F.; Nan, C.-W.; Maier, J.; Armand, M. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 2018, 11, 1945–1976. [Google Scholar] [CrossRef]
- Zhao, J.; Liang, Y.; Zhang, X.; Zhang, Z.; Wang, E.; He, S.; Wang, B.; Han, Z.; Lu, J.; Amine, K. In situ construction of uniform and robust cathode–electrolyte interphase for Li-rich layered oxides. Adv. Funct. Mater. 2021, 31, 2009192. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Li, H.; Wu, H.B. Recent Progress of Hybrid Solid-State Electrolytes for Lithium Batteries. Chem. A Eur. J. 2018, 24, 18293–18306. [Google Scholar] [CrossRef] [PubMed]
- Song, D.K.; Liao, J.L.; Huang, S.D. A rigid-flexible gel polymer electrolytes with long cycle life and dendrite-free in lithium metal batteries. J. Energy Storage 2024, 75, 109591. [Google Scholar] [CrossRef]
- Stephan, A.M. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 2006, 42, 21–42. [Google Scholar] [CrossRef]
- Li, Y.; Arnold, W.; Thapa, A.; Jasinski, J.B.; Sumanasekera, G.; Sunkara, M.; Druffel, T.; Wang, H. Stable and flexible sulfide composite electrolyte for high-performance solid-state lithium batteries. ACS Appl. Mater. Interfaces 2020, 12, 42653–42659. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, Z.; Wang, Y. Sr doped amorphous LLTO as solid electrolyte material. J. Electrochem. Soc. 2020, 167, 80516. [Google Scholar] [CrossRef]
- Mishra, G.K.; Gautam, M.; Bhawana, K.; Patro, M.; Singh, S.K.; Mitra, S. Controlling the Potential of Affordable Quasi-Solid Composite Gel Polymer Electrolytes for High-Voltage Lithium-Ion Batteries. Batter. Supercaps 2024, e202300607. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Li, J.; Li, Y.; Zhang, X.; Lai, K.; Zhang, S.; Zhao, G.; Ci, L. In situ formed interfacial layer for all-solid-state lithium batteries with sulfide electrolyte films. J. Power Sources 2023, 580, 233290. [Google Scholar] [CrossRef]
- Liang, S.; Shi, Y.; Ma, T.; Yan, W.; Qin, S.; Wang, Y. A Compact Gel Membrane Based on a Blend of PEO and PVDF for Dendrite-Free Lithium Metal Anodes. ChemElectroChem 2019, 6, 5413–5419. [Google Scholar] [CrossRef]
- Shi, J.; Yang, Y.; Shao, H. Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. J. Membr. Sci. 2018, 547, 1–10. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, N.; Cao, Q.; Wang, X.; Wang, Q.; Kuang, H. A novel electrospun PVDF/PMMA gel polymer electrolyte with in situ TiO2 for Li-ion batteries. Solid State Ion. 2013, 249–250, 93–97. [Google Scholar] [CrossRef]
- Ding, P.; Lin, Z.; Guo, X.; Wu, L.; Wang, Y.; Guo, H.; Li, L.; Yu, H. Polymer electrolytes and interfaces in solid-state lithium metal batteries. Mater. Today 2021, 51, 449–474. [Google Scholar] [CrossRef]
- Yang, T.; Wang, C.; Zhang, W.; Xia, Y.; Huang, H.; Gan, Y.; He, X.; Xia, X.; Tao, X.; Zhang, J. A critical review on composite solid electrolytes for lithium batteries: Design strategies and interface engineering. J. Energy Chem. 2023, 84, 189–209. [Google Scholar] [CrossRef]
- Zhang, L.; Zhuang, Q.; Zheng, R.; Wang, Z.; Sun, H.; Arandiyan, H.; Wang, Y.; Liu, Y.; Shao, Z. Recent advances of Li7La3Zr2O12-based solid-state lithium batteries towards high energy density. Energy Storage Mater. 2022, 49, 299–338. [Google Scholar] [CrossRef]
- Chen, C.; Wang, K.; He, H.; Hanc, E.; Kotobuki, M.; Lu, L. Processing and Properties of Garnet-Type Li7La3Zr2O12 Ceramic Electrolytes. Small 2023, 19, 2205550. [Google Scholar] [CrossRef]
- Han, F.; Yue, J.; Zhu, X.; Wang, C. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater. 2018, 8, 1703644. [Google Scholar] [CrossRef]
- Monchak, M.; Hupfer, T.; Senyshyn, A.; Boysen, H.; Chernyshov, D.; Hansen, T.; Schell, K.G.; Bucharsky, E.C.; Hoffmann, M.J.; Ehrenberg, H. Lithium diffusion pathway in Li1. 3Al0. 3Ti1. 7 (PO4) 3 (LATP) superionic conductor. Inorg. Chem. 2016, 55, 2941–2945. [Google Scholar] [CrossRef]
- Paik, B. Modifying specific Li-sites of LiNH2 by Na: Study of multication hydride Li3Na (NH2)4 in electrochemical applications. J. Phys. Chem. C 2017, 121, 23906–23910. [Google Scholar] [CrossRef]
- Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.K.; Wu, F.; Xiang, Y. A study on PVDF-HFP gel polymer electrolyte for lithium-ion batteries. IOP Conf. Ser. Mater. Sci. Eng. 2017, 213, 012–036. [Google Scholar] [CrossRef]
- Zegeye, T.A.; Su, W.-N.; Fenta, F.W.; Zeleke, T.S.; Jiang, S.-K.; Hwang, B.J. Ultrathin Li6. 75La3Zr1. 75Ta0. 25O12-based composite solid electrolytes laminated on anode and cathode surfaces for anode-free lithium metal batteries. ACS Appl. Energy Mater. 2020, 3, 11713–11723. [Google Scholar] [CrossRef]
- Fan, R.; Liu, C.; He, K.; Cheng, S.H.-S.; Chen, D.; Liao, C.; Li, R.K.; Tang, J.; Lu, Z. Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. ACS Appl. Mater. Interfaces 2020, 12, 7222–7231. [Google Scholar] [CrossRef] [PubMed]
- Nam, Y.J.; Cho, S.-J.; Oh, D.Y.; Lim, J.-M.; Kim, S.Y.; Song, J.H.; Lee, Y.-G.; Lee, S.-Y.; Jung, Y.S. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett. 2015, 15, 3317–3323. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Liang, J.; Yu, C.; Sun, Q.; Li, X.; Adair, K.; Wang, C.; Zhao, Y.; Zhang, S.; Li, W. A versatile Sn-substituted argyrodite sulfide electrolyte for all-solid-state Li metal batteries. Adv. Energy Mater. 2020, 10, 1903422. [Google Scholar] [CrossRef]
- Li, W.; Pang, Y.; Liu, J.; Liu, G.; Wang, Y. A PEO-based gel polymer electrolyte for lithium-ion batteries. RSC Adv. 2017, 7, 23494–23501. [Google Scholar] [CrossRef]
- Wang, D.; Cai, D.; Zhong, Y.; Jiang, Z.; Zhang, S. A Three-Dimensional Electrospun Li6. 4La3Zr1.4Ta0.6O12–Poly (Vinylidene Fluoride-Hexafluoropropylene) Gel Polymer Electrolyte for Rechargeable Solid-State Lithium-Ion Batteries. Front. Chem. 2021, 9, 751476. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Liu, S.; Xin, C.; Xue, C.; Richter, F.; Li, L.; Fan, L.; Lin, Y.; Shen, Y. High-conductivity free-standing Li6PS5Cl/poly (vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. J. Mater. 2020, 6, 70–76. [Google Scholar] [CrossRef]
- Liu, T.; Chang, Z.; Yin, Y.; Chen, K.; Zhang, Y.; Zhang, X. The PVDF-HFP gel polymer electrolyte for Li-O2 battery. Solid State Ion. 2018, 318, 88–94. [Google Scholar] [CrossRef]
- Luo, W.-B.; Chou, S.-L.; Wang, J.-Z.; Kang, Y.-M.; Zhai, Y.-C.; Liu, H.-K. A hybrid gel–solid-state polymer electrolyte for long-life lithium oxygen batteries. Chem. Commun. 2015, 51, 8269–8272. [Google Scholar] [CrossRef]
- An, Y.; Han, X.; Liu, Y.; Azhar, A.; Na, J.; Nanjundan, A.K.; Wang, S.; Yu, J.; Yamauchi, Y. Progress in Solid Polymer Electrolytes for Lithium-Ion Batteries and Beyond. Small 2022, 18, 2103617. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-Y.; Shen, Y.; Reddy, M.J.; Chu, P.P. Complexation of poly (vinylidene fluoride): LiPF6 solid polymer electrolyte with enhanced ion conduction in ‘wet’ form. J. Power Sources 2003, 123, 222–229. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Zhang, X.; Liu, T.; Lin, Y.-H.; Shen, Y.; Li, L.; Nan, C.-W. High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 42279–42285. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, N.; Sun, J.; Hsu, P.-C.; Li, Y.; Lee, H.-W.; Cui, Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 2015, 15, 2740–2745. [Google Scholar] [CrossRef]
- Cong, L.; Li, Y.; Lu, W.; Jie, J.; Liu, Y.; Sun, L.; Xie, H. Unlocking the Poly (vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composite solid-state Electrolytes for Dendrite-Free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant. J. Power Sources 2020, 446, 227365. [Google Scholar] [CrossRef]
- Homann, G.; Stolz, L.; Nair, J.; Laskovic, I.C.; Winter, M.; Kasnatscheew, J. Poly (ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: Evaluating the role of electrolyte oxidation in rapid cell failure. Sci. Rep. 2020, 10, 4390. [Google Scholar] [CrossRef]
- Zhu, Y.; Zuo, Y.; Jiao, X.; Manjunatha, R.; Ezeigwe, E.R.; Yan, W.; Zhang, J. Selective sulfur conversion with surface engineering of electrocatalysts in a lithium–sulfur battery. Carbon Energy 2023, 5, e249. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Shi, X.; Lan, L.; Qing, Y.; Zhang, B.; Fang, Z.; Wang, Y. Synthesis and Properties of Polyvinylidene Fluoride-Hexafluoropropylene Copolymer/Li6PS5Cl Gel Composite Electrolyte for Lithium Solid-State Batteries. Gels 2024, 10, 199. https://doi.org/10.3390/gels10030199
Liang X, Shi X, Lan L, Qing Y, Zhang B, Fang Z, Wang Y. Synthesis and Properties of Polyvinylidene Fluoride-Hexafluoropropylene Copolymer/Li6PS5Cl Gel Composite Electrolyte for Lithium Solid-State Batteries. Gels. 2024; 10(3):199. https://doi.org/10.3390/gels10030199
Chicago/Turabian StyleLiang, Xinghua, Xueli Shi, Lingxiao Lan, Yunmei Qing, Bing Zhang, Zhijie Fang, and Yujiang Wang. 2024. "Synthesis and Properties of Polyvinylidene Fluoride-Hexafluoropropylene Copolymer/Li6PS5Cl Gel Composite Electrolyte for Lithium Solid-State Batteries" Gels 10, no. 3: 199. https://doi.org/10.3390/gels10030199
APA StyleLiang, X., Shi, X., Lan, L., Qing, Y., Zhang, B., Fang, Z., & Wang, Y. (2024). Synthesis and Properties of Polyvinylidene Fluoride-Hexafluoropropylene Copolymer/Li6PS5Cl Gel Composite Electrolyte for Lithium Solid-State Batteries. Gels, 10(3), 199. https://doi.org/10.3390/gels10030199