Teaming up Radio and Sub-mm/FIR Observations to Probe Dusty Star-Forming Galaxies
<p>ATCA observing time estimated at 2.1 GHz requested to reach the values of flux density (displayed by the x-axis) over a given sky area (coloured scale). The estimate does not consider overhead time. For comparison, we also reported the time needed to perform a survey of 10,000 (black solid line), 1000 (black dashed line), or 100 (black dotted line) sources to observe 10,000, 1000, and 100 SFGs (green lines) or 100, 10, or 1 SFGs at redshift z > 3 (red lines). Three examples of surveys have been identified: (white square) a survey of 1 sqdeg down to a flux density limit of 0.0 mJy (at 5<span class="html-italic">σ</span> confidence level), (white star) a survey of 10 sqdeg down to a flux density limit of 0.05 mJy (5<span class="html-italic">σ</span>), and (white circle) a survey of 10 sqdeg down to a flux density limit of 0.25 mJy (5<span class="html-italic">σ</span>). No bias corrections have been introduced in the estimate of the source numbers.</p> "> Figure 2
<p>Number of sources expected with the ATCA at 2.1 GHz at the flux density (on the x-axis) in a given area (coloured scales) for the case of the total number of sources, the SFG only, and the DSFG at z > 3. The example cases are the same as in <a href="#galaxies-12-00014-f001" class="html-fig">Figure 1</a>. No bias corrections have been introduced in the estimate of the source numbers.</p> "> Figure 3
<p>MCMC simulation of the best (solid green line) and 1-sigma confidence intervals (green shaded area) of possible fitting SED solutions for a representative source in our sample in the log frequency range 9–15 Hz corresponding to wavelengths between 5.5 and 1.5 μm. The top left panel shows the situation without any ALMA observations. The top right and bottom left panels show the improvement in the SED definition (i.e., a thinner green region) obtained by adding only B1 or B6 ALMA, respectively, considering noise of 20 μJy and 40 μJy in B1 and B6, respectively, attainable in less than 10 min on source with the current ALMA array. Finally, the bottom right panel shows the case of the combination of existing ATCA and H-ATLAS data with ALMA B1 and B6 measurements with less than 10 min on source at each band. To demonstrate how the best-fitting solution varies, dashed lines show the best-fitting synchrotron (blue), free-free (red), and dust emission (yellow).</p> "> Figure 4
<p>(<b>Left panel</b>) Comparison of the 1<span class="html-italic">σ</span> confidence levels from global SED fitting in case of no ALMA data (green shaded area) and three cases of B1 observations: a non-detection (upper limit at 150 μJy in the example, orange), a detection at 3<span class="html-italic">σ</span> significance (150 ± 50 μJy, red), and a strong detection above 5<span class="html-italic">σ</span> significance (maroon) for the same source used as an example in <a href="#galaxies-12-00014-f003" class="html-fig">Figure 3</a>. As a reference, a 10 min observation in B1 with ALMA results in a noise level of ∼20 μJy. By using the same colour code, we also display how the best fitting for synchrotron (dotted lines), free-free (dashed lines), and dust (solid lines) emissions changes. We note that even non-detections provide precious indications, in particular for free-free and synchrotron components (as only the B1 is varying in this example), hence improving the global SED definition. (<b>Right panel</b>) The same as in the left panel, but varying the noise of the B6 detection: a 10 min observation in B6 with ALMA results in a noise level of ∼40 μJy.</p> "> Figure 5
<p>Distribution of the relative error in the parameter estimations for the synchrotron spectral index, redshift, and dust temperature without (green) and with (maroon) the estimated ALMA data for the 60 sources in our sample: the medians of the distributions (dashed lines) in all the cases are considerably lower if ALMA data are included in the SEDs. Clearly, in most cases, the synchrotron spectral index cannot be defined without an ALMA B1 point, giving an unrealistically narrow distribution, making any significance test unreliable.</p> ">
Abstract
:1. Introduction
- it is not affected by dust obscuration; therefore, it allows study of even the most obscured galaxies;
- it tracks both star formation (supernova explosions and HII regions) and AGN activity;
- it allows the construction of wide-field surveys, thanks to wider primary beams (with respect to those of sub-mm observatories) and the possibility of combining them in mosaic mode over large areas;
- it is possible to reach high resolution (down to sub-arcsec, e.g., [10]) thanks to interferometry.
2. Radio-to-FIR Observations of DSFGs
2.1. DSFG in Radio Observations
2.2. Cross-Matches of Radio and FIR Surveys
3. Radio-to-FIR SED Reconstruction
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | ATCA is a 6 × 22 m antennas array located in New South Wales (Australia) operating in continuum in 5 bands between 1.1 and 105 GHz with 2 × 2 GHz bandwidth, https://www.narrabri.atnf.csiro.au/observing/. URL accessed on 21 March 2024. |
2 | This should be compared to the FWHM of PACS observations 11.4 and 13.7 arcsec at 100 and 160 μm and those of the other SPIRE bands, namely 17.8 and 24.0 arcsec, respectively at 250 and 350 μm. |
References
- Smail, I.; Ivison, R.J.; Blain, A.W. A Deep Sub-millimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution. Astrophys. J. 1997, 490, L5–L8. [Google Scholar] [CrossRef]
- Hughes, D.H.; Dunlop, J.; Rowan-Robinson, M.; Serjeant, S.; Blain, A.; Mann, R.G.; Ivison, R.; Peacock, J.; Efstahiou, A.; Gear, W.; et al. A Submillimetre Survey of the Hubble Deep Field: Unveiling Dust-Enshrouded Star Formation in the Early Universe. arXiv 1998, arXiv:2211.00195. [Google Scholar] [CrossRef]
- Strandet, M.L.; Weiss, A.; Vieira, J.D.; de Breuck, C.; Aguirre, J.E.; Aravena, M.; Ashby, M.L.N.; Béthermin, M.; Bradford, C.M.; Carlstrom, J.E.; et al. The Redshift Distribution of Dusty Star-forming Galaxies from the SPT Survey. Astrophys. J. 2016, 822, 80. [Google Scholar] [CrossRef]
- Casey, C.M.; Scoville, N.Z.; Sanders, D.B.; Lee, N.; Cooray, A.; Finkelstein, S.L.; Capak, P.; Conley, A.; De Zotti, G.; Farrah, D.; et al. Are Dusty Galaxies Blue? Insights on UV Attenuation from Dust-selected Galaxies. Astrophys. J. 2014, 796, 95. [Google Scholar] [CrossRef]
- Wang, L.; Gao, F.; Duncan, K.J.; Williams, W.L.; Rowan-Robinson, M.; Sabater, J.; Shimwell, T.W.; Bonato, M.; Calistro-Rivera, G.; Chyży, K.T.; et al. A LOFAR-IRAS cross-match study: The far-infrared radio correlation and the 150 MHz luminosity as a star-formation rate tracer. Astron. Astrophys. 2019, 631, A109. [Google Scholar] [CrossRef]
- Madau, P.; Dickinson, M. Cosmic Star-Formation History. Annu. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef]
- Gruppioni, C.; Béthermin, M.; Loiacono, F.; Le Fèvre, O.; Capak, P.; Cassata, P.; Faisst, A.L.; Schaerer, D.; Silverman, J.; Yan, L.; et al. The ALPINE-ALMA [CII] survey. The nature, luminosity function, and star formation history of dusty galaxies up to z ≃ 6. Astron. Astrophys. 2020, 643, A8. [Google Scholar] [CrossRef]
- Hatziminaoglou, E.; Popping, G.; Zwaan, M. Exploring the High-Redshift Universe with ALMA. arXiv 2021, arXiv:2112.07452. [Google Scholar] [CrossRef]
- Lapi, A.; Pantoni, L.; Zanisi, L.; Shi, J.; Mancuso, C.; Massardi, M.; Shankar, F.; Bressan, A.; Danese, L. The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies. Astrophys. J. 2018, 857, 22. [Google Scholar] [CrossRef]
- Smolčić, V.; Novak, M.; Bondi, M.; Ciliegi, P.; Mooley, K.P.; Schinnerer, E.; Zamorani, G.; Navarrete, F.; Bourke, S.; Karim, A.; et al. The VLA-COSMOS 3 GHz Large Project: Continuum data and source catalog release. Astron. Astrophys. 2017, 602, A1. [Google Scholar] [CrossRef]
- Chapman, E.; Bonaldi, A.; Harker, G.; Jelic, V.; Abdalla, F.B.; Bernardi, G.; Bobin, J.; Dulwich, F.; Mort, B.; Santos, M.; et al. Cosmic Dawn and Epoch of Reionization Foreground Removal with the SKA. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array (AASKA14), Giardini Naxos, Italy, 9–13 June 2014; p. 5. [Google Scholar] [CrossRef]
- Butler, A.; Huynh, M.; Delhaize, J.; Smolčić, V.; Kapińska, A.; Milaković, D.; Novak, M.; Baran, N.; O’Brien, A.; Chiappetti, L.; et al. The XXL Survey. XVIII. ATCA 2.1 GHz radio source catalogue and source counts for the XXL-South field. Astron. Astrophys. 2018, 620, A3. [Google Scholar] [CrossRef]
- Prandoni, I.; Guglielmino, G.; Morganti, R.; Vaccari, M.; Maini, A.; Röttgering, H.J.A.; Jarvis, M.J.; Garrett, M.A. The Lockman Hole Project: New constraints on the sub-mJy source counts from a wide-area 1.4 GHz mosaic. Mon. Not. R. Astron. Soc. 2018, 481, 4548–4565. [Google Scholar] [CrossRef]
- Helou, G.; Soifer, B.T.; Rowan-Robinson, M. Thermal infrared and nonthermal radio: Remarkable correlation in disks of galaxies. Astrophys. J. 1985, 298, L7–L11. [Google Scholar] [CrossRef]
- Yun, M.S.; Reddy, N.A.; Condon, J.J. Radio Properties of Infrared-selected Galaxies in the IRAS 2 Jy Sample. Astrophys. J. 2001, 554, 803–822. [Google Scholar] [CrossRef]
- Jarvis, M.J.; Smith, D.J.B.; Bonfield, D.G.; Hardcastle, M.J.; Falder, J.T.; Stevens, J.A.; Ivison, R.J.; Auld, R.; Baes, M.; Baldry, I.K.; et al. Herschel-ATLAS: The far-infrared-radio correlation at z < 0.5. Mon. Not. R. Astron. Soc. 2010, 409, 92–101. [Google Scholar] [CrossRef]
- Smith, D.J.B.; Jarvis, M.J.; Hardcastle, M.J.; Vaccari, M.; Bourne, N.; Dunne, L.; Ibar, E.; Maddox, N.; Prescott, M.; Vlahakis, C.; et al. The temperature dependence of the far-infrared-radio correlation in the Herschel-ATLAS. Mon. Not. R. Astron. Soc. 2014, 445, 2232–2243. [Google Scholar] [CrossRef]
- Molnár, D.C.; Sargent, M.T.; Delhaize, J.; Delvecchio, I.; Smolčić, V.; Novak, M.; Schinnerer, E.; Zamorani, G.; Bondi, M.; Herrera-Ruiz, N.; et al. The infrared-radio correlation of spheroid- and disc-dominated star-forming galaxies to z ∼ 1.5 in the COSMOS field. Mon. Not. R. Astron. Soc. 2018, 475, 827–838. [Google Scholar] [CrossRef]
- Condon, J.J. Radio emission from normal galaxies. Annu. Rev. Astron. Astrophys. 1992, 30, 575–611. [Google Scholar] [CrossRef]
- Kennicutt, R.C.; Evans, N.J. Star Formation in the Milky Way and Nearby Galaxies. Annu. Rev. Astron. Astrophys. 2012, 50, 531–608. [Google Scholar] [CrossRef]
- Delhaize, J.; Smolčić, V.; Delvecchio, I.; Novak, M.; Sargent, M.; Baran, N.; Magnelli, B.; Zamorani, G.; Schinnerer, E.; Murphy, E.J.; et al. The VLA-COSMOS 3 GHz Large Project: The infrared-radio correlation of star-forming galaxies and AGN to z ≲ 6. Astron. Astrophys. 2017, 602, A4. [Google Scholar] [CrossRef]
- Novak, M.; Smolčić, V.; Delhaize, J.; Delvecchio, I.; Zamorani, G.; Baran, N.; Bondi, M.; Capak, P.; Carilli, C.L.; Ciliegi, P.; et al. The VLA-COSMOS 3 GHz Large Project: Cosmic star formation history since z ∼ 5. Astron. Astrophys. 2017, 602, A5. [Google Scholar] [CrossRef]
- Stacey, H.R.; McKean, J.P.; Robertson, N.C.; Ivison, R.J.; Isaak, K.G.; Schleicher, D.R.G.; van der Werf, P.P.; Baan, W.A.; Berciano Alba, A.; Garrett, M.A.; et al. Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies. Mon. Not. R. Astron. Soc. 2018, 476, 5075–5114. [Google Scholar] [CrossRef]
- Giulietti, M.; Massardi, M.; Lapi, A.; Bonato, M.; Enia, A.F.M.; Negrello, M.; D’Amato, Q.; Behiri, M.; De Zotti, G. The far-infrared/radio correlation for a sample of strongly lensed dusty star-forming galaxies detected by Herschel. Mon. Not. R. Astron. Soc. 2022, 511, 1408–1419. [Google Scholar] [CrossRef]
- Carpenter, J.; Brogan, C.; Iono, D.; Mroczkowski, T. The ALMA Wideband Sensitivity Upgrade. arXiv 2023, arXiv:2211.00195. [Google Scholar] [CrossRef]
- Murphy, E.J.; Chary, R.R.; Dickinson, M.; Pope, A.; Frayer, D.T.; Lin, L. An Accounting of the Dust-obscured Star Formation and Accretion Histories over the Last ∼11 Billion Years. Astrophys. J. 2011, 732, 126. [Google Scholar] [CrossRef]
- Alexander, D.M.; Hickox, R.C. What drives the growth of black holes? New Astron. Rev. 2012, 56, 93–121. [Google Scholar] [CrossRef]
- Mancuso, C.; Lapi, A.; Prandoni, I.; Obi, I.; Gonzalez-Nuevo, J.; Perrotta, F.; Bressan, A.; Celotti, A.; Danese, L. Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei. Astrophys. J. 2017, 842, 95. [Google Scholar] [CrossRef]
- Eales, S.; Dunne, L.; Clements, D.; Cooray, A.; De Zotti, G.; Dye, S.; Ivison, R.; Jarvis, M.; Lagache, G.; Maddox, S.; et al. The Herschel ATLAS. Publ. Astron. Soc. Pac. 2010, 122, 499. [Google Scholar] [CrossRef]
- Valiante, E.; Smith, M.W.L.; Eales, S.; Maddox, S.J.; Ibar, E.; Hopwood, R.; Dunne, L.; Cigan, P.J.; Dye, S.; Pascale, E.; et al. The Herschel-ATLAS data release 1—I. Maps, catalogues and number counts. Mon. Not. R. Astron. Soc. 2016, 462, 3146–3179. [Google Scholar] [CrossRef]
- Pearson, W.J.; Wang, L.; van der Tak, F.F.S.; Hurley, P.D.; Burgarella, D.; Oliver, S.J. De-blending deep Herschel surveys: A multi-wavelength approach. Astron. Astrophys. 2017, 603, A102. [Google Scholar] [CrossRef]
- Liu, D.; Daddi, E.; Dickinson, M.; Owen, F.; Pannella, M.; Sargent, M.; Béthermin, M.; Magdis, G.; Gao, Y.; Shu, X.; et al. “Super-deblended” Dust Emission in Galaxies. I. The GOODS-North Catalog and the Cosmic Star Formation Rate Density out to Redshift 6. Astrophys. J. 2018, 853, 172. [Google Scholar] [CrossRef]
- Jin, S.; Daddi, E.; Liu, D.; Smolčić, V.; Schinnerer, E.; Calabrò, A.; Gu, Q.; Delhaize, J.; Delvecchio, I.; Gao, Y.; et al. “Super-deblended” Dust Emission in Galaxies. II. Far-IR to (Sub)millimeter Photometry and High-redshift Galaxy Candidates in the Full COSMOS Field. Astrophys. J. 2018, 864, 56. [Google Scholar] [CrossRef]
- Vernstrom, T.; Scott, D.; Wall, J.V.; Condon, J.J.; Cotton, W.D.; Fomalont, E.B.; Kellermann, K.I.; Miller, N.; Perley, R.A. Deep 3 GHz number counts from a P(D) fluctuation analysis. Mon. Not. R. Astron. Soc. 2014, 440, 2791–2809. [Google Scholar] [CrossRef]
- Padovani, P.; Bonzini, M.; Kellermann, K.I.; Miller, N.; Mainieri, V.; Tozzi, P. Radio-faint AGN: A tale of two populations. Mon. Not. R. Astron. Soc. 2015, 452, 1263–1279. [Google Scholar] [CrossRef]
- Bonato, M.; Prandoni, I.; De Zotti, G.; Brienza, M.; Morganti, R.; Vaccari, M. New constraints on the 1.4 GHz source number counts and luminosity functions in the Lockman Hole field. Mon. Not. R. Astron. Soc. 2021, 500, 22–33. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Gürkan, G.; van Weeren, R.J.; Williams, W.L.; Best, P.N.; de Gasperin, F.; Rafferty, D.A.; Read, S.C.; Sabater, J.; Shimwell, T.W.; et al. LOFAR/H-ATLAS: A deep low-frequency survey of the Herschel-ATLAS North Galactic Pole field. Mon. Not. R. Astron. Soc. 2016, 462, 1910–1936. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behiri, M.; Giulietti, M.; Galluzzi, V.; Lapi, A.; Liuzzo, E.; Massardi, M. Teaming up Radio and Sub-mm/FIR Observations to Probe Dusty Star-Forming Galaxies. Galaxies 2024, 12, 14. https://doi.org/10.3390/galaxies12020014
Behiri M, Giulietti M, Galluzzi V, Lapi A, Liuzzo E, Massardi M. Teaming up Radio and Sub-mm/FIR Observations to Probe Dusty Star-Forming Galaxies. Galaxies. 2024; 12(2):14. https://doi.org/10.3390/galaxies12020014
Chicago/Turabian StyleBehiri, Meriem, Marika Giulietti, Vincenzo Galluzzi, Andrea Lapi, Elisabetta Liuzzo, and Marcella Massardi. 2024. "Teaming up Radio and Sub-mm/FIR Observations to Probe Dusty Star-Forming Galaxies" Galaxies 12, no. 2: 14. https://doi.org/10.3390/galaxies12020014
APA StyleBehiri, M., Giulietti, M., Galluzzi, V., Lapi, A., Liuzzo, E., & Massardi, M. (2024). Teaming up Radio and Sub-mm/FIR Observations to Probe Dusty Star-Forming Galaxies. Galaxies, 12(2), 14. https://doi.org/10.3390/galaxies12020014