Monte Carlo Simulation of Aromatic Molecule Adsorption on Multi-Walled Carbon Nanotube Surfaces Using Coefficient of Conformism of a Correlative Prediction (CCCP)
<p>Comparison of the models for split 2 obtained with different target functions: <span class="html-italic">TF</span><sub>0</sub>, <span class="html-italic">TF<sub>IIC</sub></span>, <span class="html-italic">TF<sub>CII</sub></span>, and <span class="html-italic">TF<sub>CCCP</sub></span>. The statistical status of the models in the experiment (abscissa)—calculated model (ordinate) coordinates is presented separately for (<b>i</b>) the active training set; (<b>ii</b>) the passive training set; (<b>iii</b>) the calibration set; and (<b>iv</b>) the validation set.</p> "> Figure 2
<p>Statistical parameters for the models obtained with different target functions: <span class="html-italic">TF<sub>0</sub></span> (1), <span class="html-italic">TF<sub>IIC</sub></span> (2), <span class="html-italic">TF<sub>CII</sub></span> (3), and <span class="html-italic">TF<sub>CCCP</sub></span> (4).</p> "> Figure 3
<p>Structures of outliers according to the statistical defects [<a href="#B20-carbon-11-00007" class="html-bibr">20</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Optimal SMILES-Based Descriptor
2.3. Monte Carlo Method
3. Results
3.1. Monte Carlo Optimization Without Considering Calibration Set Status
3.2. Monte Carlo Optimization Using TFIIC
3.3. Monte Carlo Optimization Using TFCII
3.4. Monte Carlo Optimization Using TFCCCP
3.5. Mechanistic Interpretation
3.6. Applicability Domain
3.7. Comparison with Models logK from the Literature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sadiq, S.; Khan, S.; Khan, I.; Khan, A.; Humayun, M.; Wu, P.; Usman, M.; Khan, A.; Alanazi, A.F.; Bououdina, M. A critical review on metal-organic frameworks (MOFs) based nanomaterials for biomedical applications: Designing, recent trends, challenges, and prospects. Heliyon 2024, 10, e25521. [Google Scholar] [CrossRef] [PubMed]
- Jafari, K.; Fatemi, M.H. Application of nano-quantitative structure–property relationship paradigm to develop predictive models for thermal conductivity of metal oxide-based ethylene glycol nanofluids. J. Therm. Anal. Calorim. 2020, 142, 1335–1344. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A.; Sindhu, J.; Lal, S. Quasi-SMILES as a basis for the development of QSPR models to predict the CO2 capture capacity of deep eutectic solvents using correlation intensity index and consensus modelling. Fuel 2023, 345, 128237. [Google Scholar] [CrossRef]
- Ahmadi, S.; Ketabi, S.; Qomi, M. CO2 uptake prediction of metal-organic frameworks using quasi-SMILES and Monte Carlo optimization. New J. Chem. 2022, 46, 8827–8837. [Google Scholar] [CrossRef]
- Jafari, K.; Fatemi, M.H. A new approach to model isobaric heat capacity and density of some nitride-based nanofluids using Monte Carlo method. Adv. Powder Technol. 2020, 31, 3018–3027. [Google Scholar] [CrossRef]
- Azimi, A.; Ahmadi, S.; Javan, M.J.; Rouhani, M.; Mirjafary, Z. QSAR models for the ozonation of diverse volatile organic compounds at different temperatures. RSC Adv. 2024, 14, 8041–8052. [Google Scholar] [CrossRef]
- Laudone, G.M.; Jones, K.L. A Grand Canonical Monte Carlo Simulation for the Evaluation of Pore Size Distribution of Nuclear-Grade Graphite from Kr Adsorption Isotherms. C-J. Carbon Res. 2023, 9, 86. [Google Scholar] [CrossRef]
- Dong, C. Effective Elastic Modulus of Wavy Single-Wall Carbon Nanotubes. C-J. Carbon Res. 2023, 9, 54. [Google Scholar] [CrossRef]
- Soave, R.; Cargnoni, F.; Trioni, M.I. Thermodynamic Stability and Electronic Properties of Graphene Nanoflakes. C-J. Carbon Res. 2024, 10, 5. [Google Scholar] [CrossRef]
- Gautam, S.; Cole, D. Ethane-CO2 Mixture Adsorption in Silicalite: Influence of Tortuosity and Connectivity of Pores on Selectivity. C-J. Carbon Res. 2023, 9, 116. [Google Scholar] [CrossRef]
- Hassanzadeh, Z.; Kompany-Zareh, M.; Ghavami, R.; Gholami, S.; Malek-Khatabi, A. Combining radial basis function neural network with genetic algorithm to QSPR modeling of adsorption on multi-walled carbon nanotubes surface. J. Mol. Struct. 2015, 1098, 191–198. [Google Scholar] [CrossRef]
- Xia, X.-R.; Monteiro-Riviere, N.A.; Riviere, J.E. An index for characterization of nanomaterials in biological systems. Nat. Nanotechnol. 2010, 5, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Toropov, A.A.; Toropova, A.P. The index of ideality of correlation: A criterion of predictive potential of QSPR/QSAR models? Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2017, 819, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Toropov, A.A.; Toropova, A.P. Correlation intensity index: Building up models for mutagenicity of silver nanoparticles. Sci. Total Environ. 2020, 737, 139720. [Google Scholar] [CrossRef]
- Toropova, A.P.; Toropov, A.A. The coefficient of conformism of a correlative prediction (CCCP): Building up reliable nano-QSPRs/QSARs for endpoints of nanoparticles in different experimental conditions encoded via quasi-SMILES. Sci. Total Environ. 2024, 927, 172119. [Google Scholar] [CrossRef]
- Weininger, D. SMILES, a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.K.; Ahmad, M.O.; Swamy, M.N.S. ASCII-character-encoding based PPG compression for tele-monitoring system. Biomed. Signal Process. Control 2017, 31, 470–482. [Google Scholar] [CrossRef]
- Lin, L.I.-K. Assay validation using the concordance correlation coefficient. Biometrics 1992, 48, 599–604. [Google Scholar] [CrossRef]
- Consonni, V.; Ballabio, D.; Todeschini, R. Comments on the definition of the Q2 parameter for QSAR validation. J. Chem. Inf. Model. 2009, 49, 1669–1678. [Google Scholar] [CrossRef]
- Toropova, A.P.; Toropov, A.A. Hybrid optimal descriptors as a tool to predict skin sensitization in accordance to OECD principles. Toxicol. Lett. 2017, 275, 57–66. [Google Scholar] [CrossRef]
- Wang, Q.; Apul, O.G.; Xuan, P.; Luoc, F.; Karanfil, T. Development of a 3D QSPR model for adsorption of aromatic compounds by carbon nanotubes: Comparison of multiple linear regression, artificial neural network and support vector machine. RSC Adv. 2013, 3, 23924–23934. [Google Scholar] [CrossRef]
- Toropov, A.A.; Toropova, A.P. The unreliability of the reliability criteria in the estimation of QSAR for skin sensitivity: A pun or a reliable law? Toxicol. Lett. 2021, 340, 133–140. [Google Scholar] [CrossRef]
n * | R2 | CCC | IIC | CII | Q2 | CCCP | RMSE | F | |
---|---|---|---|---|---|---|---|---|---|
A | 18 | 0.9696 | 0.9846 | 0.6266 | 0.9790 | 0.9632 | 0.9591 | 0.245 | 510 |
P | 17 | 0.9303 | 0.8920 | 0.2280 | 0.9384 | 0.9151 | 0.8044 | 0.625 | 200 |
C | 18 | 0.0805 | 0.1647 | 0.1036 | 0.7526 | 0 | −0.5554 | 1.29 | 1 |
V | 16 | 0.5055 | - | - | - | - | - | 1.00 | - |
A | 18 | 0.8026 | 0.8905 | 0.4480 | 0.8732 | 0.7530 | 0.5573 | 0.553 | 65 |
P | 16 | 0.8029 | 0.8670 | 0.6314 | 0.8477 | 0.7599 | 0.4188 | 0.803 | 57 |
C | 18 | 0.7991 | 0.8743 | 0.6235 | 0.8464 | 0.7460 | 0.0355 | 0.318 | 64 |
V | 17 | 0.4082 | - | - | - | - | - | 0.62 | - |
A | 17 | 0.7921 | 0.8840 | 0.7911 | 0.8387 | 0.7538 | −0.0397 | 0.702 | 57 |
P | 18 | 0.9667 | 0.2240 | 0.3461 | 0.9731 | 0.9595 | 0.9091 | 1.23 | 465 |
C | 16 | 0.1597 | 0.2261 | 0.1199 | 0.5083 | 0 | −0.7493 | 0.566 | 3 |
V | 18 | 0.7376 | - | - | - | - | - | 0.53 | - |
A | 18 | 0.8744 | 0.9330 | 0.9351 | 0.9163 | 0.8489 | 0.7761 | 0.429 | 111 |
P | 16 | 0.9539 | 0.8740 | 0.6130 | 0.9587 | 0.9430 | 0.7264 | 0.511 | 290 |
C | 18 | 0.2744 | 0.4070 | 0.3395 | 0.6712 | 0 | −0.0965 | 0.859 | 6 |
V | 17 | 0.6498 | - | - | - | - | - | 0.73 | - |
A | 18 | 0.9363 | 0.9671 | 0.7741 | 0.9517 | 0.9208 | 0.8812 | 0.331 | 235 |
P | 17 | 0.7197 | 0.5935 | 0.3515 | 0.7897 | 0.6671 | 0.2012 | 2.22 | 39 |
C | 18 | 0.4443 | 0.5533 | 0.4044 | 0.6672 | 0.1452 | −0.2561 | 0.956 | 13 |
V | 16 | 0.6514 | - | - | - | - | - | 0.71 | - |
n * | R2 | CCC | IIC | CII | Q2 | CCCP | RMSE | F | |
---|---|---|---|---|---|---|---|---|---|
A | 18 | 0.7928 | 0.8844 | 0.8904 | 0.8380 | 0.7509 | 0.5566 | 0.298 | 61 |
P | 17 | 0.9234 | 0.8023 | 0.4737 | 0.9359 | 0.9092 | 0.6593 | 0.650 | 181 |
C | 18 | 0.5022 | 0.6026 | 0.7085 | 0.6930 | 0.3673 | −0.4570 | 0.891 | 16 |
V | 16 | 0.0373 | - | - | - | - | - | 1.07 | - |
A | 18 | 0.5856 | 0.7387 | 0.7653 | 0.7861 | 0.4718 | 0.0819 | 0.822 | 23 |
P | 16 | 0.6605 | 0.6277 | 0.2436 | 0.7873 | 0.5807 | 0.3494 | 1.08 | 27 |
C | 18 | 0.7235 | 0.8090 | 0.8499 | 0.8490 | 0.5394 | 0.7073 | 0.433 | 42 |
V | 17 | 0.7629 | - | - | - | - | - | 0.67 | - |
A | 17 | 0.6099 | 0.7577 | 0.6942 | 0.7737 | 0.5289 | 0.3759 | 0.833 | 23 |
P | 18 | 0.8177 | 0.7779 | 0.7673 | 0.8835 | 0.7801 | 0.4544 | 0.681 | 72 |
C | 17 | 0.7959 | 0.8583 | 0.8901 | 0.8291 | 0.7384 | −0.2418 | 0.374 | 58 |
V | 17 | 0.7524 | - | - | - | - | - | 0.89 | - |
A | 18 | 0.7297 | 0.8437 | 0.5436 | 0.8128 | 0.6720 | 0.1829 | 0.681 | 43 |
P | 18 | 0.6606 | 0.7949 | 0.5372 | 0.7728 | 0.5816 | 0.2076 | 0.918 | 31 |
C | 16 | 0.7444 | 0.8432 | 0.8599 | 0.8272 | 0.6332 | 0.3673 | 0.380 | 41 |
V | 17 | 0.7503 | - | - | - | - | - | 0.34 | - |
A | 18 | 0.6722 | 0.8040 | 0.6559 | 0.7892 | 0.6091 | 0.2275 | 0.699 | 33 |
P | 17 | 0.7685 | 0.7756 | 0.6137 | 0.8239 | 0.7136 | 0.3726 | 0.748 | 50 |
C | 17 | 0.7881 | 0.8733 | 0.8871 | 0.8735 | 0.7416 | 0.7421 | 0.367 | 56 |
V | 17 | 0.5267 | - | - | - | - | - | 0.44 | - |
n * | R2 | CCC | IIC | CII | Q2 | CCCP | RMSE | F | |
---|---|---|---|---|---|---|---|---|---|
A | 17 | 0.8800 | 0.9362 | 0.6567 | 0.9063 | 0.8473 | 0.7954 | 0.339 | 110 |
P | 17 | 0.8480 | 0.5642 | 0.5567 | 0.8940 | 0.7680 | 0.7925 | 0.561 | 84 |
C | 18 | 0.3884 | 0.4909 | 0.3401 | 0.7357 | 0.2762 | 0.0219 | 1.59 | 10 |
V | 17 | 0.5362 | - | - | - | - | - | 1.32 | - |
A | 18 | 0.7863 | 0.8803 | 0.8867 | 0.8299 | 0.7503 | 0.1435 | 0.611 | 59 |
P | 16 | 0.7802 | 0.7517 | 0.5756 | 0.8234 | 0.7380 | −0.5862 | 1.09 | 53 |
C | 18 | 0.5537 | 0.7299 | 0.5065 | 0.8456 | 0.4091 | 0.6445 | 0.633 | 17 |
V | 17 | 0.8415 | - | - | - | - | - | 0.43 | - |
A | 17 | 0.8530 | 0.9207 | 0.8210 | 0.8682 | 0.8257 | −0.9189 | 0.393 | 87 |
P | 18 | 0.8523 | 0.7918 | 0.3440 | 0.8741 | 0.8298 | 0.5431 | 1.11 | 92 |
C | 17 | 0.8714 | 0.7608 | 0.4424 | 0.8984 | 0.8469 | 0.6512 | 0.547 | 102 |
V | 17 | 0.7516 | - | - | - | - | - | 0.81 | - |
A | 18 | 0.7263 | 0.8415 | 0.8522 | 0.8051 | 0.6724 | −0.2712 | 0.627 | 42 |
P | 16 | 0.8237 | 0.8691 | 0.5583 | 0.8598 | 0.7841 | 0.6580 | 0.556 | 65 |
C | 18 | 0.3674 | 0.4141 | 0.2882 | 0.8012 | 0.2145 | 0.1111 | 0.837 | 9 |
V | 17 | 0.4929 | - | - | - | - | - | 0.94 | - |
A | 18 | 0.9287 | 0.9630 | 0.9637 | 0.9439 | 0.9147 | 0.8443 | 0.350 | 208 |
P | 18 | 0.7132 | 0.5873 | 0.4697 | 0.7954 | 0.6608 | 0.2863 | 2.14 | 40 |
C | 16 | 0.8820 | 0.5160 | 0.8183 | 0.9037 | 0.8579 | 0.6819 | 1.49 | 105 |
V | 17 | 0.8069 | - | - | - | - | - | 2.08 | - |
n * | R2 | CCC | IIC | CII | Q2 | CCCP | RMSE | F | |
---|---|---|---|---|---|---|---|---|---|
A | 18 | 0.7775 | 0.8748 | 0.7054 | 0.8024 | 0.7430 | −0.4113 | 0.551 | 56 |
P | 18 | 0.6895 | 0.7424 | 0.7674 | 0.7852 | 0.6157 | −0.7758 | 0.790 | 36 |
C | 16 | 0.2700 | 0.5142 | 0.3941 | 0.5092 | −1.0093 | 1.1379 | 0.801 | 5 |
V | 17 | 0.8432 | - | - | - | - | - | 0.47 | - |
A | 18 | 0.7080 | 0.8291 | 0.8414 | 0.7762 | 0.6376 | −0.3017 | 0.566 | 39 |
P | 16 | 0.8308 | 0.8231 | 0.2762 | 0.8667 | 0.8015 | 0.2512 | 0.917 | 79 |
C | 18 | 0.7013 | 0.7369 | 0.1887 | 0.8478 | 0.5838 | 0.6864 | 0.400 | 33 |
V | 17 | 0.8696 | - | - | - | - | - | 0.46 | - |
A | 18 | 0.6995 | 0.8232 | 0.6691 | 0.7666 | 0.6472 | 0.1098 | 0.756 | 37 |
P | 18 | 0.9350 | 0.6279 | 0.1702 | 0.9526 | 0.9176 | 0.8963 | 0.785 | 230 |
C | 17 | 0.7652 | 0.7661 | 0.2206 | 0.8839 | 0.6057 | 0.9142 | 0.378 | 49 |
V | 16 | 0.8498 | - | - | - | - | - | 0.77 | - |
A | 18 | 0.7010 | 0.8242 | 0.5328 | 0.8040 | 0.6470 | 0.3868 | 0.766 | 38 |
P | 16 | 0.5630 | 0.6925 | 0.5178 | 0.7620 | 0.4662 | 0.0715 | 1.06 | 18 |
C | 17 | 0.7572 | 0.8614 | 0.7692 | 0.8895 | −0.0759 | 6.7240 | 0.266 | 47 |
V | 18 | 0.8668 | - | - | - | - | - | 0.34 | - |
A | 17 | 0.7624 | 0.8652 | 0.7761 | 0.8021 | 0.7254 | −0.1380 | 0.652 | 48 |
P | 18 | 0.7340 | 0.6887 | 0.7656 | 0.8275 | 0.6721 | 0.4612 | 1.36 | 44 |
C | 17 | 0.7127 | 0.7032 | 0.3162 | 0.8847 | 0.0267 | 2.0307 | 0.527 | 37 |
V | 17 | 0.8388 | - | - | - | - | - | 1.40 | - |
SAk | CW(SAk) * | NA | NP | NC | DEFECT of SAk |
---|---|---|---|---|---|
(...(....... | −0.4067 | 3 | 3 | 2 | 0.0104 |
(........... | 0.1922 | 17 | 18 | 14 | 0.0051 |
1...(....... | 0.1304 | 11 | 15 | 10 | 0.0123 |
1........... | −0.1853 | 18 | 18 | 16 | 0.0000 |
2........... | −0.2441 | 3 | 6 | 2 | 0.0379 |
=...(....... | −0.4736 | 12 | 12 | 10 | 0.0025 |
=........... | 0.0237 | 18 | 18 | 16 | 0.0000 |
=...1....... | −0.1245 | 18 | 15 | 16 | 0.0068 |
=...2....... | 0.0228 | 2 | 4 | 1 | 0.0456 |
C...(....... | 0.3560 | 17 | 18 | 14 | 0.0051 |
C........... | −0.4398 | 18 | 18 | 16 | 0.0000 |
C...1....... | −0.0480 | 18 | 18 | 16 | 0.0000 |
C...2....... | −0.1285 | 3 | 6 | 2 | 0.0379 |
C... = ....... | −0.4080 | 17 | 18 | 16 | 0.0022 |
C...C....... | 0.2619 | 18 | 16 | 16 | 0.0044 |
Cl..(....... | 0.2425 | 7 | 4 | 4 | 0.0222 |
Cl.......... | 0.2188 | 7 | 4 | 4 | 0.0222 |
N...(....... | −0.4308 | 3 | 4 | 1 | 0.0399 |
N........... | −0.1021 | 4 | 4 | 1 | 0.0355 |
N...1....... | −0.2286 | 2 | 0 | 1 | 0.0741 |
O...(....... | −0.1898 | 10 | 10 | 9 | 0.0005 |
O........... | −0.2509 | 10 | 14 | 11 | 0.0127 |
O... = ....... | 0.4619 | 6 | 6 | 3 | 0.0194 |
O...C....... | −0.1823 | 3 | 4 | 2 | 0.0216 |
[N+]........ | −0.1048 | 2 | 2 | 2 | 0.0046 |
[O−]........ | 0.4524 | 2 | 2 | 2 | 0.0046 |
SMILES Attributes | CWs * Run 1 | CWs Run 2 | CWs Run 3 | CWs Run 4 | CWs Run 5 | NA | NP | NC |
---|---|---|---|---|---|---|---|---|
1........... | 0.6723 | 1.0064 | 1.7081 | 0.8739 | 1.8681 | 18 | 18 | 16 |
=...1....... | 1.0086 | 0.5197 | 3.3561 | 2.1575 | 0.4241 | 18 | 15 | 16 |
C... = ....... | 0.6019 | 0.0956 | 0.3528 | 0.2506 | 0.2050 | 17 | 18 | 16 |
Cl..(....... | 0.2058 | 0.1434 | 1.2270 | 0.7832 | 0.3002 | 7 | 4 | 4 |
2........... | 1.0902 | 1.0887 | 1.3159 | 0.5377 | 0.4817 | 3 | 6 | 2 |
O...C....... | 0.3976 | 0.6187 | 0.7488 | 0.4841 | 0.4969 | 3 | 4 | 2 |
=...2....... | 1.0285 | 1.3549 | 2.4826 | 1.2312 | 0.9400 | 2 | 4 | 1 |
[N+]........ | 1.5490 | 1.7140 | 3.0811 | 0.7048 | 1.4949 | 2 | 2 | 2 |
[O−]........ | 0.9550 | 1.9835 | 2.2483 | 1.4910 | 1.8871 | 2 | 2 | 2 |
C...1....... | −1.5184 | −1.4368 | −2.8522 | −1.9809 | −1.1727 | 18 | 18 | 16 |
O........... | −0.1404 | −0.2616 | −0.2447 | −0.3083 | −0.4433 | 10 | 14 | 11 |
N........... | −0.3332 | −0.7337 | −1.2481 | −0.3569 | −0.5047 | 4 | 4 | 1 |
Split | Number of Active SMILES Attributes | Total Number of SMILES Attributes |
---|---|---|
1 | 30 | 53 |
2 | 28 | 50 |
3 | 31 | 54 |
4 | 34 | 51 |
5 | 28 | 53 |
n | R2 | Method | Reference |
---|---|---|---|
8 | 0.61 | Genetic algorithm | [11] |
8 | 0.92 | Radial basis function neural network | [11] |
30 | 0.83 | Support vector machines | [21] |
30 | 0.78 | Artificial Neural Networks | [21] |
30 | 0.51 | Multiple regression | [21] |
17 | 0.87 | Monte Carlo optimization | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toropova, A.P.; Toropov, A.A.; Roncaglioni, A.; Benfenati, E. Monte Carlo Simulation of Aromatic Molecule Adsorption on Multi-Walled Carbon Nanotube Surfaces Using Coefficient of Conformism of a Correlative Prediction (CCCP). C 2025, 11, 7. https://doi.org/10.3390/c11010007
Toropova AP, Toropov AA, Roncaglioni A, Benfenati E. Monte Carlo Simulation of Aromatic Molecule Adsorption on Multi-Walled Carbon Nanotube Surfaces Using Coefficient of Conformism of a Correlative Prediction (CCCP). C. 2025; 11(1):7. https://doi.org/10.3390/c11010007
Chicago/Turabian StyleToropova, Alla P., Andrey A. Toropov, Alessandra Roncaglioni, and Emilio Benfenati. 2025. "Monte Carlo Simulation of Aromatic Molecule Adsorption on Multi-Walled Carbon Nanotube Surfaces Using Coefficient of Conformism of a Correlative Prediction (CCCP)" C 11, no. 1: 7. https://doi.org/10.3390/c11010007
APA StyleToropova, A. P., Toropov, A. A., Roncaglioni, A., & Benfenati, E. (2025). Monte Carlo Simulation of Aromatic Molecule Adsorption on Multi-Walled Carbon Nanotube Surfaces Using Coefficient of Conformism of a Correlative Prediction (CCCP). C, 11(1), 7. https://doi.org/10.3390/c11010007