Interdisciplinary Perspectives on Agent-Based Modeling in the Architecture, Engineering, and Construction Industry: A Comprehensive Review
<p>Conceptual mind map for agent-based modeling (ABM) based on [<a href="#B15-buildings-14-03480" class="html-bibr">15</a>,<a href="#B16-buildings-14-03480" class="html-bibr">16</a>,<a href="#B17-buildings-14-03480" class="html-bibr">17</a>,<a href="#B18-buildings-14-03480" class="html-bibr">18</a>].</p> "> Figure 2
<p>Topics related to ABM from 1970 to 2024.</p> "> Figure 3
<p>Five-step methodological framework for a literature review on ABM in construction.</p> "> Figure 4
<p>Experts’ survey results.</p> "> Figure 5
<p>Heatmap visualizing the correlation analysis of ABM effectiveness ratings across various aspects as rated by the experts in the AEC industry.</p> "> Figure 6
<p>Publication trend over time from 1989 to 2024, revealing a significant increase in ABM research within the AEC field from 1989 to 2024. The surge in publications, especially the peak around 2023, is attributed to technological advancements such as improved computational power and the integration of digital tools like BIM and digital twins.</p> "> Figure 7
<p>Distribution of publications in the Top 10 academic journals by year range.</p> "> Figure 8
<p>The top 10 topics by count in our dataset.</p> "> Figure 9
<p>Distribution of journal articles published by country.</p> "> Figure 10
<p>Exploring the multifaceted role of agent-based modeling in enhancing construction management and safety.</p> "> Figure 11
<p>The interaction between market behavior, agent-based modeling (ABM), contextual experiments, and consumer behavior.</p> "> Figure 12
<p>Chronological Progression of Life Cycle Stages with ABM Outputs and Their Market Impacts.</p> "> Figure 13
<p>Conceptual framework for integrating machine learning (ML) with agent-based modeling (ABM)/multi-agent systems (MAS) to enhance decision-making processes at various levels.</p> "> Figure 14
<p>Components and flow of information in a typical reinforcement learning system using a Markov decision process (MDP) framework based on [<a href="#B20-buildings-14-03480" class="html-bibr">20</a>,<a href="#B258-buildings-14-03480" class="html-bibr">258</a>,<a href="#B259-buildings-14-03480" class="html-bibr">259</a>,<a href="#B260-buildings-14-03480" class="html-bibr">260</a>].</p> ">
Abstract
:1. Introduction
1.1. ABM Background
1.2. Subsection ABM in Architecture, Engineering and Construction (AEC)
1.3. Scope of the Study
2. Methods
3. Results
3.1. Bibliometric Analysis
3.2. Content Analysis in Construction
3.2.1. Agent-Based Modeling in Project Management
Lean Construction
Efficiency Optimization
3.2.2. Construction Management and ABM
Process Planning
Execution Management
3.2.3. Construction Industry Dynamics
Market Behavior
Supply Chain Management
3.2.4. Construction Safety
Worker Behavior Modeling
Accident Prevention Strategies
3.3. Content Analysis in Architecture
3.3.1. Energy Efficiency and Occupant Well-Being
3.3.2. Facility Management
3.4. Integration with Emerging Technologies
3.4.1. Three-DimensionalPrinting
3.4.2. Life Cycle Assessment (LCA) and ABM
3.4.3. Digital Twin Integration
3.4.4. BIM Collaboration
3.4.5. Machine Learning
3.4.6. Hybrid Simulation Models
3.4.7. Open Source and Collaborative Platforms
4. Discussion
4.1. Evolution and Trends in Publication
4.2. Future Research Directions
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khodabandelu, A.; Park, J. Agent-based modeling and simulation in construction. Autom. Constr. 2021, 131, 103882. [Google Scholar] [CrossRef]
- An, L.; Grimm, V.; Sullivan, A.; Turner, B.; Malleson, N.; Heppenstall, A.; Vincenot, C.; Robinson, D.; Ye, X.; Liu, J.; et al. Challenges, tasks, and opportunities in modeling agent-based complex systems. Ecol. Model. 2021, 457, 109685. [Google Scholar] [CrossRef]
- DeAngelis, D.L.; Diaz, S.G. Decision-Making in Agent-Based Modeling: A Current Review and Future Prospectus. Front. Ecol. Evol. 2019, 6, 237. [Google Scholar] [CrossRef]
- Antosz, P.; Birks, D.; Edmonds, B.; Heppenstall, A.; Meyer, R.; Polhill, J.G.; O’Sullivan, D.; Wijermans, N. What do you want theory for?—A pragmatic analysis of the roles of “theory” in agent-based modelling. Environ. Model. Softw. 2023, 168, 105802. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, S.; Osgood, N.; Zhu, H.; Qian, Y.; Jia, P. Using simulation modelling and systems science to help contain COVID-19: A systematic review. Syst. Res. Behav. Sci. 2023, 40, 207–234. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Peng, R.; Han, X.; Zheng, S.; Zhang, Y.; Xiao, C. Smart Agent-Based Modeling: On the Use of Large Language Models in Computer Simulations. arXiv 2023, arXiv:2311.06330. [Google Scholar]
- Nazaryants, A.A. Agent-Based Modeling as the Basis for Sustainable Development of the Modern Economy. Ekon. Upr. Probl. Resheniya 2021, 2, 121–129. [Google Scholar] [CrossRef]
- Gregorio, A.G.D. Neutron physics in the early 1930s. Hist. Stud. Phys. Biol. Sci. 2005, 35, 293–340. [Google Scholar] [CrossRef]
- Santos, F.D. (Ed.) Science and Technology. From the Origins up to the Twenty-First Century. In Humans on Earth: From Origins to Possible Futures; The Frontiers Collection; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–39. ISBN 978-3-642-05360-3. [Google Scholar] [CrossRef]
- González-Méndez, M.; Olaya, C.; Fasolino, I.; Grimaldi, M.; Obregón, N. Agent-Based Modeling for Urban Development Planning based on Human Needs. Conceptual Basis and Model Formulation. Land Use Policy 2021, 101, 105110. [Google Scholar] [CrossRef]
- Raoufi, M.; Fayek, A.R. Fuzzy Monte Carlo Agent-Based Simulation of Construction Crew Performance. J. Constr. Eng. Manag. 2020, 146, 04020041. [Google Scholar] [CrossRef]
- Jacobson, M.J.; Levin, J.A.; Kapur, M. Education as a Complex System: Conceptual and Methodological Implications. Educ. Res. 2019, 48, 112–119. [Google Scholar] [CrossRef]
- Secchi, D.; Grimm, V.; Herath, D.B.; Homberg, F. Modeling and theorizing with agent-based sustainable development. Environ. Model. Softw. 2024, 171, 105891. [Google Scholar] [CrossRef]
- Macal, C.M.; North, M.J. Tutorial on agent-based modelling and simulation. J. Simul. 2010, 4, 151–162. [Google Scholar] [CrossRef]
- Outreach, R. Using Agent-Based Modelling to Understand Social Phenomena. Research Outreach. 2022. Available online: https://researchoutreach.org/articles/using-agent-based-modelling-understand-social-phenomena/ (accessed on 20 February 2024).
- Agriesti, S.; Kuzmanovski, V.; Hollmén, J.; Roncoli, C.; Nahmias-Biran, B.-H. A Bayesian Optimization Approach for Calibrating Large-Scale Activity-Based Transport Models. IEEE Open J. Intell. Transp. Syst. 2023, 4, 740–754. [Google Scholar] [CrossRef]
- Pleyer, J.; Fleck, C. Agent-based models in cellular systems. Front. Phys. 2023, 10, 968409. [Google Scholar] [CrossRef]
- Chen, T.; Chen, Y.; Wang, X.; Wang, Y. Agent-based modeling in global pandemic propagation. In Proceedings of the 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), Dalian, China, 14–16 April 2022; pp. 564–568. [Google Scholar] [CrossRef]
- Guo, N.; Shi, C.; Yan, M.; Gao, X.; Wu, F. Modeling agricultural water-saving compensation policy: An ABM approach and application. J. Clean. Prod. 2022, 344, 131035. [Google Scholar] [CrossRef]
- Zhang, W.; Valencia, A.; Chang, N.-B. Synergistic Integration Between Machine Learning and Agent-Based Modeling: A Multidisciplinary Review. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 2170–2190. [Google Scholar] [CrossRef]
- Vodovotz, Y.; An, G. Agent-based models of inflammation in translational systems biology: A decade later. WIREs Syst. Biol. Med. 2019, 11, e1460. [Google Scholar] [CrossRef]
- Decocq, G.; Regnault, P.; Lenoir, J.; Paccaut, F.; di Menza, L.; Delvoye, G.; Janvresse, E.; Closset-Kopp, D.; Goubet, O. Modelling plant community dynamics in changing forest ecosystems: A review. Bot. Lett. 2023, 170, 541–564. [Google Scholar] [CrossRef]
- Moore, A.D. On the maximum growth equation used in forest gap simulation models. Ecol. Model. 1989, 45, 63–67. [Google Scholar] [CrossRef]
- Validation of Jabowa: A Northeast Forest Simulator. Available online: https://kb.osu.edu/items/a2ec3b5d-25d1-5d61-ba0c-e34bdc2aa4d9 (accessed on 20 February 2024).
- Bankes, S.; Lempert, R.; Popper, S. Making Computational Social Science Effective. Soc. Sci. Comput. Rev. 2002, 20, 377–388. [Google Scholar] [CrossRef]
- Squazzoni, F. The Impact of Agent-Based Models in the Social Sciences after 15 Years of Incursions. Hist. Econ. Ideas 2010, 18, 197–234. [Google Scholar] [CrossRef]
- Bonabeau, E. Agent-based modeling: Methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. USA 2002, 99, 7280–7287. [Google Scholar] [CrossRef]
- Moss, S.; Edmonds, B. Sociology and Simulation: Statistical and Qualitative Cross-Validation1. Am. J. Sociol. 2005, 110, 1095–1131. [Google Scholar] [CrossRef]
- Uhrmacher, A.M.; Weyns, D. Multi-Agent Systems: Simulation and Applications; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-1-4200-7024-8. [Google Scholar]
- Bruch, E.; Atwell, J. Agent-Based Models in Empirical Social Research. Sociol. Methods Res. 2015, 44, 186–221. [Google Scholar] [CrossRef]
- Venkatramanan, S.; Lewis, B.; Chen, J.; Higdon, D.; Vullikanti, A.; Marathe, M. Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics 2017, 22, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Harik, G.; Alameddine, I.; Zurayk, R.; El-Fadel, M. An integrated socio-economic agent-based modeling framework towards assessing farmers’ decision making under water scarcity and varying utility functions. J. Environ. Manag. 2023, 329, 117055. [Google Scholar] [CrossRef]
- Saghafi, Z.; Roshandel, R. Agent-based simulation for technology implementation in an energy-based industrial symbiosis network. Resour. Conserv. Recycl. Adv. 2024, 21, 200201. [Google Scholar] [CrossRef]
- Huang, C.-Y. An Agent-Based Epidemic Simulation of Social Behaviors Affecting HIV Transmission among Taiwanese Homosexuals. Comput. Math. Methods Med. 2015, 2015, 867264. [Google Scholar] [CrossRef]
- Chen, M.; DeHaven, M.; Kitschelt, I.; Lee, S.J.; Sicilian, M. Identifying Financial Crises Using Machine Learning on Textual Data. J. Risk Financ. Manag. 2023, 16, 161. [Google Scholar] [CrossRef]
- Mls, K.; Kořínek, M.; Štekerová, K.; Tučník, P.; Bureš, V.; Čech, P.; Husáková, M.; Mikulecký, P.; Nacházel, T.; Ponce, D.; et al. Agent-based models of human response to natural hazards: Systematic review of tsunami evacuation. Nat. Hazards 2023, 115, 1887–1908. [Google Scholar] [CrossRef] [PubMed]
- Arifovic, J.; Maschek, M. Currency crisis: Evolution of beliefs and policy experiments. J. Econ. Behav. Organ. 2012, 82, 131–150. [Google Scholar] [CrossRef]
- Ionescu, Ș.; Delcea, C.; Chiriță, N.; Nica, I. Exploring the Use of Artificial Intelligence in Agent-Based Modeling Applications: A Bibliometric Study. Algorithms 2024, 17, 21. [Google Scholar] [CrossRef]
- Dicks, M.; Paskaramoorthy, A.; Gebbie, T. A simple learning agent interacting with an agent-based market model. Phys. Stat. Mech. Its Appl. 2024, 633, 129363. [Google Scholar] [CrossRef]
- Sharma, M.; Sehrawat, R. Decision-making in management of technology: A literature review. Int. J. Technol. Intell. Plan. 2021, 13, 38–62. [Google Scholar] [CrossRef]
- Platas-López, A.; Guerra-Hernández, A.; Quiroz-Castellanos, M.; Cruz-Ramirez, N. A survey on agent-based modelling assisted by machine learning. Expert Syst. 2023, e13325. [Google Scholar] [CrossRef]
- Huber, R.; Xiong, H.; Keller, K.; Finger, R. Bridging behavioural factors and standard bio-economic modelling in an agent-based modelling framework. J. Agric. Econ. 2022, 73, 35–63. [Google Scholar] [CrossRef]
- Polhill, J.G.; Ge, J.; Hare, M.P.; Matthews, K.B.; Gimona, A.; Salt, D.; Yeluripati, J. Crossing the chasm: A ‘tube-map’ for agent-based social simulation of policy scenarios in spatially-distributed systems. GeoInformatica 2019, 23, 169–199. [Google Scholar] [CrossRef]
- Datseris, G.; Vahdati, A.R.; DuBois, T.C. Agents.jl: A performant and feature-full agent based modelling software of minimal code complexity. Simulation 2022, 100, 1019–1031. [Google Scholar] [CrossRef]
- Castro, J.; Drews, S.; Exadaktylos, F.; Foramitti, J.; Klein, F.; Konc, T.; Savin, I.; van den Bergh, J. A review of agent-based modeling of climate-energy policy. WIREs Clim. Chang. 2020, 11, e647. [Google Scholar] [CrossRef]
- Zhang, B.; DeAngelis, D.L. An overview of agent-based models in plant biology and ecology. Ann. Bot. 2020, 126, 539–557. [Google Scholar] [CrossRef] [PubMed]
- Blashaw, D.; Fukuda, M. An Interactive Environment to Support Agent-based Graph Programming. In Proceedings of the ICAART, Online, 3–5 February 2022; pp. 148–155. [Google Scholar] [CrossRef]
- Lippe, M.; Bithell, M.; Gotts, N.; Natalini, D.; Barbrook-Johnson, P.; Giupponi, C.; Hallier, M.; Hofstede, G.; Page, C.; Matthews, R.; et al. Using agent-based modelling to simulate social-ecological systems across scales. GeoInformatica 2019, 23, 269–298. [Google Scholar] [CrossRef]
- Uddin, M.J. How the agent-based banking model might facilitate financial inclusion and sustainability in Emerging Markets and Developing Economies (EMDEs) via economic circularity? Eur. J. Soc. Impact Circ. Econ. 2020, 1, 76–94. [Google Scholar] [CrossRef]
- Breeze, P.R.; Squires, H.; Ennis, K.; Meier, P.; Hayes, K.; Lomax, N.; Shiell, A.; Kee, F.; de Vocht, F.; O’Flaherty, M.; et al. Guidance on the use of complex systems models for economic evaluations of public health interventions. Health Econ. 2023, 32, 1603–1625. [Google Scholar] [CrossRef]
- Mazzetto, S. Multidisciplinary collaboration: An integrated and practical approach to the teaching of project management. Int. J. Contin. Eng. Educ. Life Long Learn. 2020, 30, 52–67. [Google Scholar] [CrossRef]
- Nugroho, S.; Uehara, T. Systematic Review of Agent-Based and System Dynamics Models for Social-Ecological System Case Studies. Systems 2023, 11, 530. [Google Scholar] [CrossRef]
- Mazzetto, S. Leadership and collaboration in project management education: A case study. In Resilient Structures and Sustainable Construction; ISEC Press: Fargo, ND, USA, 2017; pp. 1–6. [Google Scholar]
- Romero, D.; Escudero, P. Adaptive Learning in Agent-Based Models: An Approach for Analyzing Human Behavior in Pandemic Crowding. Appl. Syst. Innov. 2023, 6, 113. [Google Scholar] [CrossRef]
- Stieler, D.; Schwinn, T.; Leder, S.; Maierhofer, M.; Kannenberg, F.; Menges, A. Agent-based modeling and simulation in architecture. Autom. Constr. 2022, 141, 104426. [Google Scholar] [CrossRef]
- Chandra, H.P.; Nugraha, P.; Putra, E.S. Building Information Modeling in the Architecture-engineering Construction Project in Surabaya. Procedia Eng. 2017, 171, 348–353. [Google Scholar] [CrossRef]
- Nichols, A.C.; Phillips, S.; Soderlund, A.A. On Resilience-based Optimization of Closeproximity Multi-satellite Coordination via an Artificial Honeybee Colony Algorithm. In AIAA SCITECH 2023 Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2023. [Google Scholar] [CrossRef]
- Thneibat, M.; Thneibat, M.; Al-Shattarat, B.; Al-kroom, H. Development of an agent-based model to understand the diffusion of value management in construction projects as a sustainability tool. Alex. Eng. J. 2022, 61, 747–761. [Google Scholar] [CrossRef]
- Wijermans, N.; Scholz, G.; Chappin, É.; Heppenstall, A.; Filatova, T.; Polhill, J.G.; Semeniuk, C.; Stöppler, F. Agent decision-making: The Elephant in the Room—Enabling the justification of decision model fit in social-ecological models. Environ. Model. Softw. 2023, 170, 105850. [Google Scholar] [CrossRef]
- Castiglione, F. Agent-Based Modeling and Simulation, Introduction to. In Complex Social and Behavioral Systems: Game Theory and Agent-Based Models; Sotomayor, M., Pérez-Castrillo, D., Castiglione, F., Eds.; Encyclopedia of Complexity and Systems Science Series; Springer: New York, NY, USA, 2020; pp. 661–665. ISBN 978-1-07-160368-0. [Google Scholar] [CrossRef]
- Jeong, S.; Elliott, J.B.; Feng, Z.; Feldon, D.F. Understanding Complex Ecosystems Through an Agent-Based Participatory Watershed Simulation. J. Sci. Educ. Technol. 2022, 31, 691–705. [Google Scholar] [CrossRef]
- Mazzetto, S. A practical, multidisciplinary approach for assessing leadership in project management education. J. Appl. Res. High. Educ. 2019, 11, 50–65. [Google Scholar] [CrossRef]
- Eskandar, Y.; Hosny, S.S.; Abdelmohsen, S.; Hamza, H. Utilizing Artificial Intelligence Techniques in Complex Form Generation. Eng. Res. J. Shoubra 2024, 53, 34–39. [Google Scholar] [CrossRef]
- Lindkvist, E.; Wijermans, N.; Daw, T.M.; Gonzalez-Mon, B.; Giron-Nava, A.; Johnson, A.F.; van Putten, I.; Basurto, X.; Schlüter, M. Navigating Complexities: Agent-Based Modeling to Support Research, Governance, and Management in Small-Scale Fisheries. Front. Mar. Sci. 2020, 6, 733. [Google Scholar] [CrossRef]
- Bian, J.; Huang, Y.; Dai, H.; Xu, J.; Wei, R.; Sun, L.; Guo, Y.; Guo, J. Evolution of digital twins in precision health applications: A scoping review study. 2024; preprint. [Google Scholar] [CrossRef]
- Qiu, H.; Chen, Y.; Zhang, H.; Yi, W.; Li, Y. Evolutionary digital twin model with an agent-based discrete-event simulation method. Appl. Intell. 2023, 53, 6178–6194. [Google Scholar] [CrossRef]
- Rainey, L.B.; Tolk, A. Modeling and Simulation Support for System of Systems Engineering Applications; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Savaglio, C.; Ganzha, M.; Paprzycki, M.; Bădică, C.; Ivanović, M.; Fortino, G. Agent-based Internet of Things: State-of-the-art and research challenges. Future Gener. Comput. Syst. 2020, 102, 1038–1053. [Google Scholar] [CrossRef]
- Abdelalim, A.M.; Said, S.O.; Alnaser, A.A.; Sharaf, A.; ElSamadony, A.; Kontoni, D.-P.N.; Tantawy, M. Agent-Based Modeling for Construction Resource Positioning Using Digital Twin and BLE Technologies. Buildings 2024, 14, 1788. [Google Scholar] [CrossRef]
- Galuzin, V.; Galitskaya, A.; Grachev, S.; Larukhin, V.; Novichkov, D.; Skobelev, P.; Zhilyaev, A. Autonomous digital twin of enterprise: Method and toolset for knowledge-based multi-agent adaptive management of tasks and resources in real time. Mathematics 2022, 10, 1662. [Google Scholar] [CrossRef]
- Orozco-Romero, A.; Arias-Portela, C.Y.; Saucedo, J.A.M. The use of agent-based models boosted by digital twins in the supply chain: A literature review. In Intelligent Computing and Optimization: Proceedings of the 2nd International Conference on Intelligent Computing and Optimization 2019 (ICO 2019), Koh Samui, Thailand, 3–9 October 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 642–652. [Google Scholar]
- Ambra, T.; Macharis, C. Agent-based digital twins (ABM-DT) in synchromodal transport and logistics: The fusion of virtual and pysical spaces. In Proceedings of the 2020 Winter Simulation Conference (WSC), Orlando, FL, USA, 14–18 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 159–169. [Google Scholar]
- Yi, H. Visualized Co-Simulation of Adaptive Human Behavior and Dynamic Building Performance: An Agent-Based Model (ABM) and Artificial Intelligence (AI) Approach for Smart Architectural Design. Sustainability 2020, 12, 6672. [Google Scholar] [CrossRef]
- Su, B.; Wang, S. An agent-based distributed real-time optimal control strategy for building HVAC systems for applications in the context of future IoT-based smart sensor networks. Appl. Energy 2020, 274, 115322. [Google Scholar] [CrossRef]
- Mykoniatis, K.; Harris, G.A. A digital twin emulator of a modular production system using a data-driven hybrid modeling and simulation approach. J. Intell. Manuf. 2021, 32, 1899–1911. [Google Scholar] [CrossRef]
- Huang, J.; Cui, Y.; Zhang, L.; Tong, W.; Shi, Y.; Liu, Z. An Overview of Agent-Based Models for Transport Simulation and Analysis. J. Adv. Transp. 2022, 2022, e1252534. [Google Scholar] [CrossRef]
- Clemen, T.; Ahmady-Moghaddam, N.; Lenfers, U.A.; Ocker, F.; Osterholz, D.; Ströbele, J.; Glake, D. Multi-Agent Systems and Digital Twins for Smarter Cities. In Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Suffolk, VA, USA, 31 May–2 June 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 45–55. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Jia, F.; Cheng, X. Digital twin-supported smart city: Status, challenges and future research directions. Expert Syst. Appl. 2023, 217, 119531. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, C.; Kevin, I.; Wang, K.; Huang, H.; Xu, X. Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robot. Comput. Integr. Manuf. 2020, 61, 101837. [Google Scholar] [CrossRef]
- Eugeni, F.; Sacco, S.; Di Ludovico, D. Urban Safety and Resilience: Agent-Based Modelling Simulations for Pre-disaster Planning. In International Conference on Innovation in Urban and Regional Planning; Springer: Berlin/Heidelberg, Germany, 2023; pp. 563–572. [Google Scholar]
- Groenewolt, A.; Schwinn, T.; Nguyen, L.; Menges, A. An interactive agent-based framework for materialization-informed architectural design. Swarm Intell. 2018, 12, 155–186. [Google Scholar] [CrossRef]
- Leder, S.; Menges, A. Introducing Agent-Based Modeling Methods for Designing Architectural Structures with Multiple Mobile Robotic Systems. In Towards Radical Regeneration; Gengnagel, C., Baverel, O., Betti, G., Popescu, M., Thomsen, M.R., Wurm, J., Eds.; Springer International Publishing: Cham, Switzerland; Berlin, Germany, 2023; pp. 71–83. [Google Scholar]
- Scheutz, M.; Mayer, T. Combining agent-based modeling with big data methods to support architectural and urban design. In Understanding Complex Urban Systems: Integrating Multidisciplinary Data in Urban Models; Springer: Berlin/Heidelberg, Germany, 2016; pp. 15–31. [Google Scholar]
- Liang, X.; Shen, G.Q.; Bu, S. Multiagent Systems in Construction: A Ten-Year Review. J. Comput. Civ. Eng. 2016, 30, 04016016. [Google Scholar] [CrossRef]
- Moscatelli, M. Rethinking the Heritage through a Modern and Contemporary Reinterpretation of Traditional Najd Architecture, Cultural Continuity in Riyadh. Buildings 2023, 13, 1471. [Google Scholar] [CrossRef]
- Sirror, H.; Labib, W.; Abowardah, E.; Metwally, W.; Mitchell, C. Sustainability in the Workplace: Evaluating Indoor Environmental Quality of a Higher Education Building in Riyadh. Buildings 2024, 14, 2115. [Google Scholar] [CrossRef]
- Azouqah, H.; Alomar, N.; Kaadan, L.; Sonbul, M.; Abdulaziz, H.; Labib, W. Sustainable Local Materials: A Study of Adobe Bricks in Saudi Arabia. Mater. Sci. Forum 2021, 1047, 163–173. [Google Scholar] [CrossRef]
- Moussa, R.A. A Responsive Approach for Designing Shared Urban Spaces in Tourist Villages. Sustainability 2023, 15, 7549. [Google Scholar] [CrossRef]
- Dwidar, S.; Sirror, H.; Derbali, A.; Abdelgawad, D.; Abdelsattar, A. Importance if internal courtyards in designing historical and contemporary Masjid. J. Islam. Archit. 2022, 7, 356. [Google Scholar] [CrossRef]
- Rajabi, M.; Radzi, A.; Rezaeiashtiani, M.; Famili, A.; Rashidi, M.; Rahman, R. Key assessment criteria for organizational BIM capabilities: A cross-regional study. Buildings 2022, 12, 1013. [Google Scholar] [CrossRef]
- Rajabi, M.S.; Rezaeiashtiani, M.; Radzi, A.R.; Famili, A.; Rezaeiashtiani, A.; Rahman, R.A. Underlying factors and strategies for organizational BIM capabilities: The case of Iran. Appl. Syst. Innov. 2022, 5, 109. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. Informetric analysis and review of literature on the role of BIM in sustainable construction. Autom. Constr. 2019, 103, 221–234. [Google Scholar] [CrossRef]
- Working with JSON—Learn Web Development|MDN. Available online: https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON (accessed on 25 February 2024).
- Python.Org. Welcome to Python.org. Available online: https://www.python.org/ (accessed on 25 February 2024).
- Ganji, M. Distribution-Based Sub-Population Selection (DSPS): A Method for in-Silico Reproduction of Clinical Trials Outcomes. arXiv 2024, arXiv:240900232. [Google Scholar]
- Koseoglu, O.; Nurtan-Gunes, E.T. Mobile BIM implementation and lean interaction on construction site: A case study of a complex airport project. Eng. Constr. Archit. Manag. 2018, 25, 1298–1321. [Google Scholar] [CrossRef]
- Garcés, G.; Peña, C. A Review on Lean Construction for Construction Project Management: Una revisión sobre Lean Construction para la Gestión de Proyectos de Construcción. Rev. Ing. Constr. 2023, 38, 43–60. [Google Scholar] [CrossRef]
- Mellado, F.; Lou, E.C.W. Building information modelling, lean and sustainability: An integration framework to promote performance improvements in the construction industry. Sustain. Cities Soc. 2020, 61, 102355. [Google Scholar] [CrossRef]
- Rizo-Maestre, C.; González-Avilés, Á.; Galiano-Garrigós, A.; Andújar-Montoya, M.D.; Puchol-García, J.A. UAV + BIM: Incorporation of Photogrammetric Techniques in Architectural Projects with Building Information Modeling Versus Classical Work Processes. Remote Sens. 2020, 12, 2329. [Google Scholar] [CrossRef]
- Uvarova, S.S.; Belyaeva, S.V.; Orlov, A.K.; Kankhva, V.S. Cost Forecasting for Building Materials under Conditions of Uncertainty: Methodology and Practice. Buildings 2023, 13, 2371. [Google Scholar] [CrossRef]
- Aslam, M.; Gao, Z.; Smith, G. Exploring factors for implementing lean construction for rapid initial successes in construction. J. Clean. Prod. 2020, 277, 123295. [Google Scholar] [CrossRef]
- Saieg, P.; Sotelino, E.D.; Nascimento, D.; Caiado, R.G.G. Interactions of Building Information Modeling, Lean and Sustainability on the Architectural, Engineering and Construction industry: A systematic review. J. Clean. Prod. 2018, 174, 788–806. [Google Scholar] [CrossRef]
- Ramírez-Fráncel, L.A.; García-Herrera, L.V.; Losada-Prado, S.; Reinoso-Flórez, G.; Sánchez-Hernández, A.; Estrada-Villegas, S.; Lim, B.K.; Guevara, G. Bats and their vital ecosystem services: A global review. Integr. Zool. 2022, 17, 2–23. [Google Scholar] [CrossRef]
- Sbiti, M.; Beddiar, K.; Beladjine, D.; Perrault, R.; Mazari, B. Toward BIM and LPS Data Integration for Lean Site Project Management: A State-of-the-Art Review and Recommendations. Buildings 2021, 11, 196. [Google Scholar] [CrossRef]
- Madusha, M.D.Y.; Francis, M.; Liyanawatta, T.N. Applicability of Bim Technology for Enhancing the Lean Construction Process in Sri Lanka. 2023. Available online: http://dl.lib.uom.lk/handle/123/21266 (accessed on 3 March 2024).
- Ding, Z.; Wang, X.; Sanjayan, J.; Zou, P.X.W.; Ding, Z.-K. A Feasibility Study on HPMC-Improved Sulphoaluminate Cement for 3D Printing. Materials 2018, 11, 2415. [Google Scholar] [CrossRef]
- Alizadehsalehi, S.; Hadavi, A.; Huang, J.C. Virtual Reality for Design and Construction Education Environment. In Proceedings of the AEI 2019, Tysons, VA, USA, 3–6 April 2019; pp. 193–203. [Google Scholar] [CrossRef]
- Cairampoma-Caro, K.; Vargas-Florez, J.; Romero-Izaga, C. Towards a Lean Construction toolbox to improve social projects management. Braz. J. Oper. Prod. Manag. 2022, 19, 1–13. [Google Scholar] [CrossRef]
- Besklubova, S.; Zhang, X. Improving Construction Productivity by Integrating the Lean Concept and the Clancey Heuristic Model. Sustainability 2019, 11, 4535. [Google Scholar] [CrossRef]
- Erusta, N.E.; Sertyesilisik, B. An Investigation into Improving Occupational Health and Safety Performance of Construction Projects Through Usage of BIM for Lean Management. In Advances in Building Information Modeling; Ofluoglu, S., Ozener, O.O., Isikdag, U., Eds.; Springer International Publishing: Cham, Switzerland; Berlin, Germany, 2020; pp. 91–100. [Google Scholar]
- Fang, Q.; Chen, X.; Castro-Lacouture, D.; Li, C. Intervention and management of construction workers’ unsafe behavior: A simulation digital twin model. Adv. Eng. Inform. 2023, 58, 102182. [Google Scholar] [CrossRef]
- Korb, S.; Sacks, R. Towards Multi-Project Simulation of a Lean Production System for Customized Apartment Buildings. In Proceedings of the 2018 Winter Simulation Conference (WSC), Gothenburg, Sweden, 9–12 December 2018; pp. 3897–3908. [Google Scholar] [CrossRef]
- Oktavia Mulyono, Y.; Sukhbaatar, U.; Cabrera, D. ‘Hard’ and ‘Soft’ Methods in Complex Adaptive Systems (CAS): Agent Based Modeling (ABM) and the Agent Based Approach (ABA). J. Syst. Think. 2023, 3, 1–33. [Google Scholar] [CrossRef]
- Heydari, B.; Pennock, M.J. Guiding the behavior of sociotechnical systems: The role of agent-based modeling. Syst. Eng. 2018, 21, 210–226. [Google Scholar] [CrossRef]
- Harris, D.; Da Silva, F.L.; Su, W.; Glatt, R. A Review on Simulation Platforms for Agent-Based Modeling in Electrified Transportation. IEEE Trans. Intell. Transp. Syst. 2024, 25, 1131–1147. [Google Scholar] [CrossRef]
- Uthpala, N.; Hansika, N.; Dissanayaka, S.; Tennakoon, K.; Dharmarathne, S.; Vidanarachchi, R.; Alawatugoda, J.; Herath, D. Analyzing transportation mode interactions using agent-based models. SN Appl. Sci. 2023, 5, 357. [Google Scholar] [CrossRef]
- Price, R.B.; Woody, M.L.; Panny, B.; Siegle, G.J. Pinpointing Mechanisms of a Mechanistic Treatment: Dissociable Roles for Overt and Covert Attentional Processes in Acute and Long-Term Outcomes Following Attention-Bias Modification. Clin. Psychol. Sci. 2019, 7, 1042–1062. [Google Scholar] [CrossRef]
- Assaf, M.; Assaf, S.; Correa, W.; Lemouchi, R.; Mohamed, Y. A Hybrid Simulation-Based Optimization Framework for Managing Modular Bridge Construction Projects: A Cable-Stayed Bridge Case Study. In Proceedings of the 2023 Winter Simulation Conference (WSC), San Antonio, TX, USA, 10–13 December 2023; pp. 3094–3105. [Google Scholar] [CrossRef]
- Sakas, D.P.; Giannakopoulos, N.T.; Terzi, M.C.; Kanellos, N.; Liontakis, A. Digital Transformation Management of Supply Chain Firms Based on Big Data from DeFi Social Media Profiles. Electronics 2023, 12, 4219. [Google Scholar] [CrossRef]
- Li, W.; Yuan, J.; Zhang, G.; Wei, S.; Zhang, B.; Skibniewski, M.J. Agent-Based Simulation Modeling for the Evaluation and Dynamic Adjustment of Project Benefits in Urban Rail Transit PPPs. J. Manag. Eng. 2023, 39, 04022074. [Google Scholar] [CrossRef]
- Müller, B.; Hoffmann, F.; Heckelei, T.; Müller, C.; Hertel, T.W.; Polhill, J.G.; van Wijk, M.; Achterbosch, T.; Alexander, P.; Brown, C.; et al. Modelling food security: Bridging the gap between the micro and the macro scale. Glob. Environ. Chang. 2020, 63, 102085. [Google Scholar] [CrossRef]
- Khansari, N.; Hewitt, E. Incorporating an agent-based decision tool to better understand occupant pathways to GHG reductions in NYC buildings. Cities 2020, 97, 102503. [Google Scholar] [CrossRef]
- Rouzafzoon, J. Development of Transportation and Supply Chain Problems with the Combination of Agent-Based Simulation and Network Optimization. Ph.D. Thesis, Vaasan Yliopisto, Vaasa, Finland, 2023. Available online: https://osuva.uwasa.fi/handle/10024/15296 (accessed on 1 March 2024).
- Aoujil, Z.; Hanine, M. Aoujil, Z.; Hanine, M. A Review on Artificial Intelligence and Behavioral Macroeconomics. In Innovations in Smart Cities Applications; Ben Ahmed, M., Boudhir, A.A., El Meouche, R., Karaș, İ.R., Eds.; Springer Nature Switzerland: Cham, Switzerland; Berlin, Germany, 2024; Volume 7, pp. 332–341. [Google Scholar]
- Wei, Y.; Lei, Z.; Altaf, M.S. Simulation-based comparison of push- and pull-based planning in panelized construction. Autom. Constr. 2024, 158, 105228. [Google Scholar] [CrossRef]
- Collins, A.J.; Sabz Ali Pour, F.; Jordan, C.A. Past challenges and the future of discrete event simulation. J. Def. Model. Simul. 2023, 20, 351–369. [Google Scholar] [CrossRef]
- Ding, Z.; Gong, W.; Li, S.; Wu, Z. System Dynamics versus Agent-Based Modeling: A Review of Complexity Simulation in Construction Waste Management. Sustainability 2018, 10, 2484. [Google Scholar] [CrossRef]
- Rodrigues, F.; Baptista, J.S.; Pinto, D. BIM Approach in Construction Safety—A Case Study on Preventing Falls from Height. Buildings 2022, 12, 73. [Google Scholar] [CrossRef]
- Reyes Aguilera, P.; Trujillo Rufino, M.T. 3D Virtual Space for Collaborative Design Reviews. 2023. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-23228 (accessed on 3 March 2024).
- Alhussein, H.; Shehab, L.; Hamzeh, F. Improvisation in Construction Planning: An Agent-Based Simulation Approach. Buildings 2022, 12, 1608. [Google Scholar] [CrossRef]
- Yao, R.; Hu, Y.; Varga, L. Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review. Energies 2023, 16, 2456. [Google Scholar] [CrossRef]
- Son, J.; Rojas, E.M.; Shin, S.-W. Application of agent-based modeling and simulation to understanding complex management problems in CEM research. J. Civ. Eng. Manag. 2015, 21, 998–1013. [Google Scholar] [CrossRef]
- Ghimire, P.; Kim, K.; Acharya, M. Generative AI in the Construction Industry: Opportunities & Challenges. Buildings 2024, 14, 220. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Edwards, T.C., Jr.; Guisan, A.; McMahon, S.M.; Normand, S.; Thuiller, W.; Wüest, R.O.; Zimmermann, N.E.; Elith, J. What do we gain from simplicity versus complexity in species distribution models? Ecography 2014, 37, 1267–1281. [Google Scholar] [CrossRef]
- North, M.J.; Macal, C.M.; Aubin, J.S.; Thimmapuram, P.; Bragen, M.; Hahn, J.; Karr, J.; Brigham, N.; Lacy, M.E.; Hampton, D. Multiscale agent-based consumer market modeling. Complexity 2010, 15, 37–47. [Google Scholar] [CrossRef]
- Morgan, N.A.; Jayachandran, S.; Hulland, J.; Kumar, B.; Katsikeas, C.; Somosi, A. Marketing performance assessment and accountability: Process and outcomes. Int. J. Res. Mark. 2022, 39, 462–481. [Google Scholar] [CrossRef]
- Tarafdar, P.; Leung, A.C.M.; Yue, W.T.; Bose, I. Understanding the impact of augmented reality product presentation on diagnosticity, cognitive load, and product sales. Int. J. Inf. Manag. 2024, 75, 102744. [Google Scholar] [CrossRef]
- Tian, Z.; Qiu, L.; Wang, L. Drivers and influencers of blockchain and cloud-based business sustainability accounting in China: Enhancing practices and promoting adoption. PLoS ONE 2024, 19, e0295802. [Google Scholar] [CrossRef]
- Silverman, E.; Gostoli, U.; Picascia, S.; Almagor, J.; McCann, M.; Shaw, R.; Angione, C. Situating agent-based modelling in population health research. Emerg. Themes Epidemiol. 2021, 18, 10. [Google Scholar] [CrossRef] [PubMed]
- Akhatova, A.; Kranzl, L.; Schipfer, F.; Heendeniya, C.B. Agent-Based Modelling of Urban District Energy System Decarbonisation—A Systematic Literature Review. Energies 2022, 15, 554. [Google Scholar] [CrossRef]
- Kim, J.; Conte, M.; Oh, Y.; Park, J. From Barter to Market: An Agent-Based Model of Prehistoric Market Development. J. Archaeol. Method Theory 2024, 31, 1232–1271. [Google Scholar] [CrossRef]
- Sturley, C.; Newing, A.; Heppenstall, A. Evaluating the potential of agent-based modelling to capture consumer grocery retail store choice behaviours. Int. Rev. Retail Distrib. Consum. Res. 2018, 28, 27–46. [Google Scholar] [CrossRef]
- Twomey, P.; Cadman, R. Agent-based modelling of customer behaviour in the telecoms and media markets. info 2002, 4, 56–63. [Google Scholar] [CrossRef]
- van der Veen, R.A.C.; Kisjes, K.H.; Nikolic, I. Exploring policy impacts for servicising in product-based markets: A generic agent-based model. J. Clean. Prod. 2017, 145, 1–13. [Google Scholar] [CrossRef]
- Chica, M.; Cordón, O.; Robles, J.F.; Garrido, A.; Mingot, J.; Damas, S. Zio: An artificial intelligence digital twin to build virtual markets. In Proceedings of the 2023 IEEE Conference on Artificial Intelligence (CAI), Santa Clara, CA, USA, 5–6 June 2023; pp. 173–174. Available online: https://ieeexplore.ieee.org/abstract/document/10195144?casa_token=Sc6Lfh3a5p0AAAAA:4zznMT23PGu2OkZOcS5IDAJ_YYcX65ws_wO-5Nt8qUZ6xzuRvUN4JXKaISx2EDTbo_TNV08eTP8 (accessed on 3 March 2024).
- Fan, R.; Yao, Q.; Chen, R.; Qian, R. Agent-based simulation model of panic buying behavior in urban public crisis events: A social network perspective. Sustain. Cities Soc. 2024, 100, 105002. [Google Scholar] [CrossRef]
- Tan, Y.; Lu, Y. Why Excavation of a Small Air Shaft Caused Excessively Large Displacements: Forensic Investigation. J. Perform. Constr. Facil. 2017, 31, 04016083. [Google Scholar] [CrossRef]
- Haas, M.; Mongeard, L.; Ulrici, L.; D’Aloïa, L.; Cherrey, A.; Galler, R.; Benedikt, M. Applicability of excavated rock material: A European technical review implying opportunities for future tunnelling projects. J. Clean. Prod. 2021, 315, 128049. [Google Scholar] [CrossRef]
- Rabbat, C.; Awad, S.; Villot, A.; Rollet, D.; Andrès, Y. Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials. Renew. Sustain. Energy Rev. 2022, 156, 111962. [Google Scholar] [CrossRef]
- Ma, M.; Tam, V.W.Y.; Le, K.N.; Li, W. Challenges in current construction and demolition waste recycling: A China study. Waste Manag. 2020, 118, 610–625. [Google Scholar] [CrossRef]
- Bozdoğan, A.; Görkemli Aykut, L.; Demirel, N. An agent-based modeling framework for the design of a dynamic closed-loop supply chain network. Complex Intell. Syst. 2023, 9, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhang, J.; Taheri, A.; Zhou, N.; Li, Z.; Li, M. Control effect of coal mining solid-waste backfill for ground surface movement in slice mining: A case study of the Nantun Coal Mine. Environ. Sci. Pollut. Res. 2023, 30, 27270–27288. [Google Scholar] [CrossRef]
- Mabey, C.S.; Salmon, J.L.; Mattson, C.A. Agent-Based Product-Social-Impact-Modeling: A Systematic Literature Review and Modeling Process. J. Mech. Des. 2023, 145, 110801. [Google Scholar] [CrossRef]
- Li, Y.L.; Tsang, Y.P.; Wu, C.H.; Lee, C.K.M. A multi-agent digital twin–enabled decision support system for sustainable and resilient supplier management. Comput. Ind. Eng. 2024, 187, 109838. [Google Scholar] [CrossRef]
- Pour Rahimian, F.; Seyedzadeh, S.; Oliver, S.; Rodriguez, S.; Dawood, N. On-demand monitoring of construction projects through a game-like hybrid application of BIM and machine learning. Autom. Constr. 2020, 110, 103012. [Google Scholar] [CrossRef]
- Guo, B.H.W.; Yiu, T.W.; González, V.A. Identifying behaviour patterns of construction safety using system archetypes. Accid. Anal. Prev. 2015, 80, 125–141. [Google Scholar] [CrossRef]
- Spieler, E.A. (Re)Assessing the Grand Bargain: Compensation for Work Injuries in the United States, 1900–2017. Rutgers Univ. Law Rev. 2016, 69, 891. [Google Scholar]
- Umar, T.; Wamuziri, S.C. A Review of Construction Safety, Challenges and Opportunities—Oman Perspective. 2016. Available online: http://dl.lib.uom.lk/handle/123/17294 (accessed on 3 March 2024).
- Tong, R.; Li, H.; Zhang, B.; Yang, X.; Ma, X. Modeling of unsafe behavior risk assessment: A case study of Chinese furniture manufacturers. Saf. Sci. 2021, 136, 105157. [Google Scholar] [CrossRef]
- Mohammadi, A.; Tavakolan, M. Identifying safety archetypes of construction workers using system dynamics and content analysis. Saf. Sci. 2020, 129, 104831. [Google Scholar] [CrossRef]
- Mohammadi, A.; Tavakolan, M.; Khosravi, Y. Factors influencing safety performance on construction projects: A review. Saf. Sci. 2018, 109, 382–397. [Google Scholar] [CrossRef]
- Mohammadfam, I.; Ghasemi, F.; Kalatpour, O.; Moghimbeigi, A. Constructing a Bayesian network model for improving safety behavior of employees at workplaces. Appl. Ergon. 2017, 58, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Guo, F.; Qian, Y.; Cheng, B.; Li, J.; Tang, X.; Peng, X. A system dynamic model for simulating the potential of prefabrication on construction waste reduction. Environ. Sci. Pollut. Res. 2022, 29, 12589–12600. [Google Scholar] [CrossRef]
- Mitropoulos, P.; Memarian, B. Team Processes and Safety of Workers: Cognitive, Affective, and Behavioral Processes of Construction Crews. J. Constr. Eng. Manag. 2012, 138, 1181–1191. [Google Scholar] [CrossRef]
- Wang, H.-H.; Chen, J.-H.; Arifai, A.M.; Gheisari, M. Exploring Empirical Rules for Construction Accident Prevention Based on Unsafe Behaviors. Sustainability 2022, 14, 4058. [Google Scholar] [CrossRef]
- Liu, W.; Meng, Q.; Li, Z.; Hu, X. Applications of Computer Vision in Monitoring the Unsafe Behavior of Construction Workers: Current Status and Challenges. Buildings 2021, 11, 409. [Google Scholar] [CrossRef]
- He, C.; McCabe, B.; Jia, G.; Sun, J. Effects of Safety Climate and Safety Behavior on Safety Outcomes between Supervisors and Construction Workers. J. Constr. Eng. Manag. 2020, 146, 04019092. [Google Scholar] [CrossRef]
- Man, S.S.; Chan, A.H.S.; Alabdulkarim, S.; Zhang, T. The effect of personal and organizational factors on the risk-taking behavior of Hong Kong construction workers. Saf. Sci. 2021, 136, 105155. [Google Scholar] [CrossRef]
- Khoshnava, S.M.; Rostami, R.; Zin, R.M.; Mishra, A.R.; Rani, P.; Mardani, A.; Alrasheedi, M. Assessing the impact of construction industry stakeholders on workers’ unsafe behaviours using extended decision making approach. Autom. Constr. 2020, 118, 103162. [Google Scholar] [CrossRef]
- Kessler, S.R.; Lucianetti, L.; Pindek, S.; Spector, P.E. “Walking the talk”: The role of frontline supervisors in preventing workplace accidents. Eur. J. Work Organ. Psychol. 2020, 29, 450–461. [Google Scholar] [CrossRef]
- Hasle, P.; Uhrenholdt Madsen, C.; Hansen, D. Integrating operations management and occupational health and safety: A necessary part of safety science! Saf. Sci. 2021, 139, 105247. [Google Scholar] [CrossRef]
- Read, G.J.M.; Salmon, P.M.; Thompson, J.; McClure, R.J. Simulating the behaviour of complex systems: Computational modelling in ergonomics. Ergonomics 2020, 63, 931–937. [Google Scholar] [CrossRef]
- Holman, M.; Walker, G.; Lansdown, T.; Hulme, A. Radical systems thinking and the future role of computational modelling in ergonomics: An exploration of agent-based modelling. Ergonomics 2020, 63, 1057–1074. [Google Scholar] [CrossRef]
- Maïzi, Y.; Bendavid, Y. Hybrid RFID-IoT simulation modeling approach for analyzing scrubs’ distribution solutions in operating rooms. Bus. Process Manag. J. 2023, 29, 1734–1761. [Google Scholar] [CrossRef]
- Gurram, S.; Sivaraman, V.; Apple, J.T.; Pinjari, A.R. Agent-based modeling to simulate road travel using Big Data from smartphone GPS: An application to the continental United States. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3553–3562. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, C.; Ye, Y.; Jiang, H. Construction site integrated monitoring system based on fusion of visual localization and UWB. In Proceedings of the Second International Conference on Advanced Manufacturing Technology and Manufacturing Systems (ICAMTMS 2023), Nanjing, China, 26–28 May 2023; SPIE: Bellingham, DC, USA, 2023; Volume 12744, pp. 250–256. [Google Scholar] [CrossRef]
- Yang, G.; Sun, D. Intelligent safety production monitoring system based on UWB. In Proceedings of the International Conference on Electronic Information Engineering and Data Processing (EIEDP 2023), Nanchang, China, 17–19 March 2023; SPIE: Bellingham, DC, USA, 2023; Volume 12700, pp. 764–770. [Google Scholar] [CrossRef]
- Morteza, A.; Ilbeigi, M.; Schwed, J. A blockchain information management framework for construction safety. In Proceedings of the Computing in Civil Engineering 2021, Orlando, FL, USA, 12–14 September 2021; pp. 342–349. [Google Scholar]
- Berger, C.; Mahdavi, A. Review of current trends in agent-based modeling of building occupants for energy and indoor-environmental performance analysis. Build. Environ. 2020, 173, 106726. [Google Scholar] [CrossRef]
- Malik, J.; Mahdavi, A.; Azar, E.; Chandra Putra, H.; Berger, C.; Andrews, C.; Hong, T. Ten questions concerning agent-based modeling of occupant behavior for energy and environmental performance of buildings. Build. Environ. 2022, 217, 109016. [Google Scholar] [CrossRef]
- Lee, S. Development of Self-Tuned Indoor Thermal Environments. Ph.D. Thesis, Purdue University Graduate School, West Lafayette, IN, USA, 2019. Available online: https://hammer.purdue.edu/articles/thesis/DEVELOPMENT_OF_SELF-TUNED_INDOOR_THERMAL_ENVIRONMENTS/11309093/1 (accessed on 3 March 2024).
- Wong, J.K.W.; Bameri, F.; Ahmadian Fard Fini, A.; Maghrebi, M. Tracking indoor construction progress by deep-learning-based analysis of site surveillance video. Constr. Innov. 2023; ahead-of-print. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Nielsen, H.K.; Kraniotis, D.; Svennevig, P.R.; Svidt, K. Improving building occupant comfort through a digital twin approach: A Bayesian network model and predictive maintenance method. Energy Build. 2023, 288, 112992. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Nielsen, H.K.; Kraniotis, D.; Svennevig, P.R.; Svidt, K. Digital Twin framework for automated fault source detection and prediction for comfort performance evaluation of existing non-residential Norwegian buildings. Energy Build. 2023, 281, 112732. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Tingstveit, M.S.; Nielsen, H.K.; Svennevig, P.R.; Svidt, K. Multiobjective optimization of building energy consumption and thermal comfort based on integrated BIM framework with machine learning-NSGA II. Energy Build. 2022, 277, 112479. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Nielsen, H.K.; Alnmr, A.N.; Svennevig, P.R.; Svidt, K. A review of the Digital Twin technology for fault detection in buildings. Front. Built Environ. 2022, 8, 1013196. [Google Scholar] [CrossRef]
- Chiacchio, F.; Pennisi, M.; Russo, G.; Motta, S.; Pappalardo, F. Agent-Based Modeling of the Immune System: NetLogo, a Promising Framework. BioMed Res. Int. 2014, 2014, 907171. [Google Scholar] [CrossRef] [PubMed]
- Muravev, D.; Hu, H.; Rakhmangulov, A.; Mishkurov, P. Multi-agent optimization of the intermodal terminal main parameters by using AnyLogic simulation platform: Case study on the Ningbo-Zhoushan Port. Int. J. Inf. Manag. 2021, 57, 102133. [Google Scholar] [CrossRef]
- Jia, M.; Srinivasan, R.S.; Raheem, A.A. From occupancy to occupant behavior: An analytical survey of data acquisition technologies, modeling methodologies and simulation coupling mechanisms for building energy efficiency. Renew. Sustain. Energy Rev. 2017, 68, 525–540. [Google Scholar] [CrossRef]
- Halimi, Z.; Bavafa, A.; Cui, Q. Barriers to Community Connectivity: An Assessment of Reconnecting Communities Pilot Program. In Proceedings of the International Conference on Transportation and Development 2024, Atlanta, Georgia, 15–18 June 2024; pp. 83–91. [Google Scholar]
- Morteza, A.; Yahyaeian, A.A.; Mirzaeibonehkhater, M.; Sadeghi, S.; Mohaimeni, A.; Taheri, S. Deep learning hyperparameter optimization: Application to electricity and heat demand prediction for buildings. Energy Build. 2023, 289, 113036. [Google Scholar] [CrossRef]
- Barber, K.A.; Krarti, M. A review of optimization based tools for design and control of building energy systems. Renew. Sustain. Energy Rev. 2022, 160, 112359. [Google Scholar] [CrossRef]
- Crawley, D.B.; Hand, J.W.; Kummert, M.; Griffith, B.T. Contrasting the capabilities of building energy performance simulation programs. Build. Environ. 2008, 43, 661–673. [Google Scholar] [CrossRef]
- Suresh, K.; Thakur, D.C. Validazione e Valutazione Delle Performance dei Piani Ottimizzati di Manutenzione Ferroviaria Tramite Simulazione a Eventi Discreti. Performance Assessment and Validation of Railway Maintenance Optimized Plans via Discrete Event Simulations. 2021 Mar 30. Available online: https://unire.unige.it/handle/123456789/3469 (accessed on 3 March 2024).
- Khodabandelu, A.; Park, J.W. Applications of Agent-Based Modeling (ABM) in Enhancing Facility Operation and Management. In Proceedings of the 9th International Conference on Construction Engineering and Project Management, Las Vegas, NV, USA, 20–23 June 2022; pp. 393–400. [Google Scholar]
- Hafez, F.S.; Sa’di, B.; Safa-Gamal, M.; Taufiq-Yap, Y.H.; Alrifaey, M.; Seyedmahmoudian, M.; Stojcevski, A.; Horan, B.; Mekhilef, S. Energy Efficiency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Research. Energy Strategy Rev. 2023, 45, 101013. [Google Scholar] [CrossRef]
- Qiang, G.; Tang, S.; Hao, J.; Di Sarno, L.; Wu, G.; Ren, S. Building automation systems for energy and comfort management in green buildings: A critical review and future directions. Renew. Sustain. Energy Rev. 2023, 179, 113301. [Google Scholar] [CrossRef]
- Silva, R.D.A.; Braga, R.T.V. Simulating Systems-of-Systems with Agent-Based Modeling: A Systematic Literature Review. IEEE Syst. J. 2020, 14, 3609–3617. [Google Scholar] [CrossRef]
- Abou Yassin, A.; Hamzeh, F.; Al Sakka, F. Agent based modeling to optimize workflow of robotic steel and concrete 3D printers. Autom. Constr. 2020, 110, 103040. [Google Scholar] [CrossRef]
- Alabbasi, M.; Agkathidis, A.; Chen, H. Robotic 3D printing of concrete building components for residential buildings in Saudi Arabia. Autom. Constr. 2023, 148, 104751. [Google Scholar] [CrossRef]
- Li, J.; Rombaut, E.; Vanhaverbeke, L. A systematic review of agent-based models for autonomous vehicles in urban mobility and logistics: Possibilities for integrated simulation models. Comput. Environ. Urban Syst. 2021, 89, 101686. [Google Scholar] [CrossRef]
- Prakayaphun, T.; Hayashi, Y.; Vichiensan, V.; Takeshita, H. Identifying Impacts of School-Escorted Trips on Traffic Congestion and the Countermeasures in Bangkok: An Agent-Based Simulation Approach. Sustainability 2023, 15, 16244. [Google Scholar] [CrossRef]
- Dabirian, S.; Moussazadeh, M.; Khanzadi, M.; Abbaspour, S. Predicting the effects of congestion on labour productivity in construction projects using agent-based modelling. Int. J. Constr. Manag. 2023, 23, 606–618. [Google Scholar] [CrossRef]
- Zolfagharipoor, M.A.; Ahmadi, A. Agent-based modeling of participants’ behaviors in an inter-sectoral groundwater market. J. Environ. Manag. 2021, 299, 113560. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, L.; Sun, J.; He, P. Can public participation constraints promote green technological innovation of Chinese enterprises? The moderating role of government environmental regulatory enforcement. Technol. Forecast. Soc. Chang. 2022, 174, 121198. [Google Scholar] [CrossRef]
- Demartini, M.; Tonelli, F.; Govindan, K. An investigation into modelling approaches for industrial symbiosis: A literature review and research agenda. Clean. Logist. Supply Chain 2022, 3, 100020. [Google Scholar] [CrossRef]
- Marvuglia, A.; Bayram, A.; Baustert, P.; Gutiérrez, T.N.; Igos, E. Agent-based modelling to simulate farmers’ sustainable decisions: Farmers’ interaction and resulting green consciousness evolution. J. Clean. Prod. 2022, 332, 129847. [Google Scholar] [CrossRef]
- Liechty, J.C.; Mabey, C.S.; Mattson, C.A.; Salmon, J.L.; Weaver, J.M. Trade-Off Characterization Between Social and Environmental Impacts Using Agent-Based Product Adoption Models and Life Cycle Assessment. J. Mech. Des. 2022, 145, 032001. [Google Scholar] [CrossRef]
- Herrera, M.; Pérez-Hernández, M.; Kumar Parlikad, A.; Izquierdo, J. Multi-Agent Systems and Complex Networks: Review and Applications in Systems Engineering. Processes 2020, 8, 312. [Google Scholar] [CrossRef]
- Brugière, A.; Nguyen-Ngoc, D.; Drogoul, A. Handling multiple levels in agent-based models of complex socio-environmental systems: A comprehensive review. Front. Appl. Math. Stat. 2022, 8, 1020353. [Google Scholar] [CrossRef]
- Lee, K.S.; Eom, J.K.; Moon, D. Applications of TRANSIMS in Transportation: A Literature Review. Procedia Comput. Sci. 2014, 32, 769–773. [Google Scholar] [CrossRef]
- Auld, J.; Hope, M.; Ley, H.; Sokolov, V.; Xu, B.; Zhang, K. POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations. Transp. Res. Part C Emerg. Technol. 2016, 64, 101–116. [Google Scholar] [CrossRef]
- Cenanï, Ş. Emergence and complexity in agent-based modeling: Review of state-of-the-art research. J. Comput. Des. 2021, 2, 1–24. [Google Scholar] [CrossRef]
- Sharma, A.; Kosasih, E.; Zhang, J.; Brintrup, A.; Calinescu, A. Digital Twins: State of the art theory and practice, challenges, and open research questions. J. Ind. Inf. Integr. 2022, 30, 100383. [Google Scholar] [CrossRef]
- Feng, K.; Li, Q.; Ellingwood, B.R. Post-earthquake modelling of transportation networks using an agent-based model. Struct. Infrastruct. Eng. 2020, 16, 1578–1592. [Google Scholar] [CrossRef]
- Rezaei, Z.; Vahidnia, M.H.; Aghamohammadi, H.; Azizi, Z.; Behzadi, S. Digital twins and 3D information modeling in a smart city for traffic controlling: A review. J. Geogr. Cartogr. 2023, 6, 1865. [Google Scholar] [CrossRef]
- Ye, X.; Du, J.; Han, Y.; Newman, G.; Retchless, D.; Zou, L.; Ham, Y.; Cai, Z. Developing Human-Centered Urban Digital Twins for Community Infrastructure Resilience: A Research Agenda. J. Plan. Lit. 2023, 38, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Latsou, C.; Farsi, M.; Erkoyuncu, J.A.; Morris, G. Digital Twin Integration in Multi-Agent Cyber Physical Manufacturing Systems. IFAC-PapersOnLine 2021, 54, 811–816. [Google Scholar] [CrossRef]
- Dasgupta, S.; Rahman, M.; Lidbe, A.D.; Lu, W.; Jones, S. A Transportation Digital-Twin Approach for Adaptive Traffic Control Systems. arXiv 2021, arXiv:2109.10863. [Google Scholar]
- Kashef, M.; Visvizi, A.; Troisi, O. Smart city as a smart service system: Human-computer interaction and smart city surveillance systems. Comput. Hum. Behav. 2021, 124, 106923. [Google Scholar] [CrossRef]
- Williamson, S.M.; Prybutok, V. Balancing Privacy and Progress: A Review of Privacy Challenges, Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Appl. Sci. 2024, 14, 675. [Google Scholar] [CrossRef]
- Darabi, N.; Hosseinichimeh, N. System dynamics modeling in health and medicine: A systematic literature review. Syst. Dyn. Rev. 2020, 36, 29–73. [Google Scholar] [CrossRef]
- Lisiak-Myszke, M.; Marciniak, D.; Bieliński, M.; Sobczak, H.; Garbacewicz, Ł.; Drogoszewska, B. Application of Finite Element Analysis in Oral and Maxillofacial Surgery—A Literature Review. Materials 2020, 13, 3063. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Jiao, Z.; Parker, T.; Sun, Y.; Wang, Q. Recent application of Computational Fluid Dynamics (CFD) in process safety and loss prevention: A review. J. Loss Prev. Process Ind. 2020, 67, 104252. [Google Scholar] [CrossRef]
- Li, W.; Zhou, H.; Lu, Z.; Kamarthi, S. Navigating the Evolution of Digital Twins Research through Keyword Co-Occurence Network Analysis. Sensors 2024, 24, 1202. [Google Scholar] [CrossRef]
- Khanh, H.D.; Kim, S.-Y. Exploring Productivity of Concrete Truck for Multistory Building Projects Using Discrete Event Simulation. KSCE J. Civ. Eng. 2020, 24, 3531–3545. [Google Scholar] [CrossRef]
- Ouda, E.; Sleptchenko, A.; Simsekler, M.C.E. Comprehensive review and future research agenda on discrete-event simulation and agent-based simulation of emergency departments. Simul. Model. Pract. Theory 2023, 129, 102823. [Google Scholar] [CrossRef]
- Hussein, M.; Darko, A.; Eltoukhy, A.E.E.; Zayed, T. Sustainable Logistics Planning in Modular Integrated Construction Using Multimethod Simulation and Taguchi Approach. J. Constr. Eng. Manag. 2022, 148, 04022022. [Google Scholar] [CrossRef]
- Winzar, H.; Baumann, C.; Soboleva, A.; Park, S.H.; Pitt, D. Competitive Productivity (CP) as an emergent phenomenon: Methods for modelling micro, meso, and macro levels. Int. J. Hosp. Manag. 2022, 105, 103252. [Google Scholar] [CrossRef]
- Liang, X.; Luo, L.; Hu, S.; Li, Y. Mapping the knowledge frontiers and evolution of decision making based on agent-based modeling. Knowl. Based Syst. 2022, 250, 108982. [Google Scholar] [CrossRef]
- Ibrahim, M.; Hashmi, U.S.; Nabeel, M.; Imran, A.; Ekin, S. Embracing Complexity: Agent-Based Modeling for HetNets Design and Optimization via Concurrent Reinforcement Learning Algorithms. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4042–4062. [Google Scholar] [CrossRef]
- Kaewmoracharoen, M.; Suwan, T.; Nusen, P.; Champrasert, P. Fitness-for-Use of As-Built Building Information Modeling for Digital Twin. In Proceedings of the 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Phuket, Thailand, 5–8 July 2022; pp. 868–871. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, L.; Li, S.; Pitt, M. Semi-automatic geometric digital twinning for existing buildings based on images and CAD drawings. Autom. Constr. 2020, 115, 103183. [Google Scholar] [CrossRef]
- Furuta, S.; Nakazato, J.; Tsukada, M. Web-Based BIM Platform for Building Digital Twin. In Proceedings of the 2023 IEEE 3rd International Conference on Digital Twins and Parallel Intelligence (DTPI), Orlando, FL, USA, 7–9 November 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Z. Research on Intelligent Dispatching System Management Platform for Construction Projects Based on Digital Twin and BIM Technology. Adv. Civ. Eng. 2022, 2022, e8273451. [Google Scholar] [CrossRef]
- Sacks, R.; Brilakis, I.; Pikas, E.; Xie, H.S.; Girolami, M. Construction with digital twin information systems. Data-Centric Eng. 2020, 1, e14. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Peng, S.; Phil-Ebosie, O. Digital Twin Aided Sustainability and Vulnerability Audit for Subway Stations. Sustainability 2020, 12, 7873. [Google Scholar] [CrossRef]
- Deng, M.; Menassa, C.C.; Kamat, V.R. From BIM to digital twins: A systematic review of the evolution of intelligent building representations in the AEC-FM industry. J. Inf. Technol. Constr. 2021, 26, 58–83. [Google Scholar] [CrossRef]
- Rolfsen, C.N.; Lassen, A.K.; Han, D.; Hosamo, H.; Ying, C. The use of the BIM-model and scanning in quality assurance of bridge constructions. In ECPPM 2021-eWork and eBusiness in Architecture, Engineering and Construction; CRC Press: Boca Raton, FL, USA, 2021; pp. 357–360. Available online: https://books.google.com/books?hl=en&lr=&id=bcY5EAAAQBAJ&oi=fnd&pg=PA357&dq=info:LjR505EsuWoJ:scholar.google.com&ots=nV1TiMI65C&sig=5M3jp9KuahK1A_ID9h8aoaL3xiE (accessed on 3 March 2024).
- Picco, M. Dynamic Energy Simulation Toward Integrated Design of Non-Residential Buildings Model Description Simplifications and Their Impact on Simulation Results; Università degli Studi di Bergamo: Bergamo, Italy, 2014; ISBN 978-88-97413-06-6. [Google Scholar]
- Yan, D.; O’Brien, W.; Hong, T.; Feng, X.; Burak Gunay, H.; Tahmasebi, F.; Mahdavi, A. Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy Build. 2015, 107, 264–278. [Google Scholar] [CrossRef]
- Ahmed, O.; Sezer, N.; Ouf, M.; Wang, L.L.; Hassan, I.G. State-of-the-art review of occupant behavior modeling and implementation in building performance simulation. Renew. Sustain. Energy Rev. 2023, 185, 113558. [Google Scholar] [CrossRef]
- Malik, J.; Azar, E.; Mahdavi, A.; Hong, T. A level-of-details framework for representing occupant behavior in agent-based models. Autom. Constr. 2022, 139, 104290. [Google Scholar] [CrossRef]
- Uddin, M.N.; Chi, H.-L.; Wei, H.-H.; Lee, M.; Ni, M. Influence of interior layouts on occupant energy-saving behaviour in buildings: An integrated approach using Agent-Based Modelling, System Dynamics and Building Information Modelling. Renew. Sustain. Energy Rev. 2022, 161, 112382. [Google Scholar] [CrossRef]
- Uddin, M.N. Occupant Behaviour Modeling for Building Energy Conservation: An Integrated Approach Using Agent Based, System Dynamics and Building Information Modeling. 2022. Available online: https://theses.lib.polyu.edu.hk/handle/200/11818 (accessed on 3 March 2024).
- Sivakumar, N.; Mura, C.; Peirce, S.M. Innovations in integrating machine learning and agent-based modeling of biomedical systems. Front. Syst. Biol. 2022, 2, 959665. [Google Scholar] [CrossRef]
- Arjomandnia, R.; Ilbeigi, M.; Kazemidemneh, M.; Hashemi, A.N. Renovating buildings by modelling energy–CO2 emissions using particle swarm optimization and artificial neural network (case study: Iran). Indoor Built Environ. 2023, 32, 1621–1637. [Google Scholar] [CrossRef]
- Ale Ebrahim Dehkordi, M.; Lechner, J.; Ghorbani, A.; Nikolic, I.; Chappin, É.; Herder, P. Using Machine Learning for Agent Specifications in Agent-Based Models and Simulations: A Critical Review and Guidelines. J. Artif. Soc. Soc. Simul. 2023, 26, 9. [Google Scholar] [CrossRef]
- Augustijn, E.-W.; Abdulkareem, S.A.; Sadiq, M.H.; Albabawat, A.A. Machine Learning to Derive Complex Behaviour in Agent-Based Modellzing. In Proceedings of the 2020 International Conference on Computer Science and Software Engineering (CSASE), Duhok, Iraq, 16–18 April 2020; pp. 284–289. [Google Scholar] [CrossRef]
- Deliu, N. Reinforcement learning for sequential decision making in population research. In Qual Quant; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Moerland, T.M.; Broekens, J.; Jonker, C.M. Emotion in reinforcement learning agents and robots: A survey. Mach. Learn. 2018, 107, 443–480. [Google Scholar] [CrossRef]
- Gilbert, T.K.; Lambert, N.; Dean, S.; Zick, T.; Snoswell, A.; Mehta, S. Reward Reports for Reinforcement Learning. In Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, Montreal, QC, Canada, 8–10 August 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 84–130. [Google Scholar] [CrossRef]
- Sidford, A.; Wang, M.; Wu, X.; Ye, Y. Variance reduced value iteration and faster algorithms for solving Markov decision processes. Nav. Res. Logist. NRL 2023, 70, 423–442. [Google Scholar] [CrossRef]
- Cherrat, E.A.; Kerenidis, I.; Prakash, A. Quantum reinforcement learning via policy iteration. Quantum Mach. Intell. 2023, 5, 30. [Google Scholar] [CrossRef]
- Sivamayil, K.; Rajasekar, E.; Aljafari, B.; Nikolovski, S.; Vairavasundaram, S.; Vairavasundaram, I. A Systematic Study on Reinforcement Learning Based Applications. Energies 2023, 16, 1512. [Google Scholar] [CrossRef]
- Esteso, A.; Peidro, D.; Mula, J.; Díaz-Madroñero, M. Reinforcement learning applied to production planning and control. Int. J. Prod. Res. 2023, 61, 5772–5789. [Google Scholar] [CrossRef]
- Yu, L.; Xiong, J.; Xie, M. GPI-Based design for partially unknown nonlinear two-player zero-sum games. J. Frankl. Inst. 2023, 360, 2068–2088. [Google Scholar] [CrossRef]
- Ying, M.; Feng, Y.; Ying, S. Optimal Policies for Quantum Markov Decision Processes. Int. J. Autom. Comput. 2021, 18, 410–421. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, X. Logarithmic regret bounds for continuous-time average-reward Markov decision processes. arXiv 2022, arXiv:2205.11168. [Google Scholar] [CrossRef]
- Yu, T.; Sra, S. Efficient Policy Learning for Non-Stationary MDPs under Adversarial Manipulation. arXiv 2019, arXiv:1907.09350. [Google Scholar]
- Rai, S.; Hu, X. Hybrid agent-based and graph-based modeling for building occupancy simulation. In Proceedings of the Proceedings of the 4th ACM International Conference of Computing for Engineering and Sciences, Kuala Lumpur, Malaysia, 6–8 July 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–12. [Google Scholar] [CrossRef]
- Jenab, K.; Liu, D. A graph-based model for manufacturing complexity. Int. J. Prod. Res. 2010, 48, 3383–3392. [Google Scholar] [CrossRef]
- Sahraoui, A.-E.-K.; Jayakrishnan, R. Microscopic-Macroscopic Models Systems Integration: A Simulation Case Study for ATMIS. Simulation 2005, 81, 353–363. [Google Scholar] [CrossRef]
- Márquez, C.; César, E.; Sorribes, J. Graph-Based Automatic Dynamic Load Balancing for HPC Agent-Based Simulations. In Euro-Par 2015: Parallel Processing Workshops; Hunold, S., Costan, A., Giménez, D., Iosup, A., Ricci, L., Gómez Requena, M.E., Scarano, V., Varbanescu, A.L., Scott, S.L., Lankes, S., et al., Eds.; Springer International Publishing: Cham, Switzerland; Berlin, Germany, 2015; pp. 405–416. [Google Scholar]
- Evolution of AEC Project Networks: An Agent-Based Modeling Approach—ProQuest. Available online: https://www.proquest.com/openview/451b43500a65d0f59cd9417da27be315/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 3 March 2024).
- Nourisa, J.; Zeller-Plumhoff, B.; Willumeit-Römer, R. CppyABM: An open-source agent-based modeling library to integrate C++ and Python. Softw. Pract. Exp. 2022, 52, 1337–1351. [Google Scholar] [CrossRef]
- Giarola, S.; Sachs, J.; d’Avezac, M.; Kell, A.; Hawkes, A. MUSE: An open-source agent-based integrated assessment modelling framework. Energy Strategy Rev. 2022, 44, 100964. [Google Scholar] [CrossRef]
- Antelmi, A.; Cordasco, G.; D’Ambrosio, G.; De Vinco, D.; Spagnuolo, C. Experimenting with Agent-Based Model Simulation Tools. Appl. Sci. 2023, 13, 13. [Google Scholar] [CrossRef]
- Seid, M.; Bridgeland, D.; Bridgeland, A.; Hartley, D.M. A collaborative learning health system agent-based model: Computational and face validity. Learn. Health Syst. 2021, 5, e10261. [Google Scholar] [CrossRef] [PubMed]
- Ogie, R.I.; O’Brien, S.; Federici, F.M. Towards using agent-based modelling for collaborative translation of crisis information: A systematic literature review to identify the underlying attributes, behaviours, interactions, and environment of agents. Int. J. Disaster Risk Reduct. 2022, 68, 102717. [Google Scholar] [CrossRef]
- Thai, M.T.; Wu, W.; Xiong, H. Big Data in Complex and Social Networks; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Halimi, Z.; SafariTaherkhani, M.; Cui, Q. A Generalized Framework for Assessing Equity in Ground Transportation Infrastructure: An Exploratory Study. arXiv 2024, arXiv:240919018. [Google Scholar]
Field | Key Findings | Reference |
---|---|---|
Environmental Science | Integrates behavioral factors with bio-economic modeling of agricultural production, enhancing the representation of farmers’ decision-making in response to changing conditions. | [42] |
Social Science | Identifies the advancements needed in ABM to make it a mainstream method for exploring scenarios in complex socio-environmental systems. | [43] |
Computer Science | Introduces Agents.jl, a performant Julia-based ABM software 6.1.10 that is less complex and more user-friendly than existing ABM tools, integrating seamlessly with the broader Julia ecosystem. | [44] |
Economics | Proposes agent-based modeling as a vital tool for economic planning and forecasting, essential for sustainable development. | [7] |
Climate-Energy Policy | Reviews ABM studies in climate-energy policy, emphasizing the need for behavioral assumptions and social network structures to analyze a broad spectrum of policies. | [45] |
Biology | Surveys ABM applications in biology, from cellular to ecological levels, highlighting key results in plant growth, mortality, competition, and reproduction. | [46] |
Engineering | Applies ABM to distributed graph analysis, providing an interactive environment for agent-based graph programming and aiding in the discovery of significant structural attributes of networks. | [47] |
Land Use | Suggests conceptual approaches for implementing ABM across scales, using big data to simulate Social-Ecological-Systems (SESs) for policy analysis. | [48] |
Ecology | Discusses the role of ABM in understanding complex systems, comparing it with traditional models, and outlining the challenges and opportunities in the field, especially with the integration of data science and AI. | [2] |
Banking and Economy | Examines how agent-based banking models can support financial inclusion and sustainability in emerging markets and developing economies, contributing to the global development through economic circularity. | [49] |
Feature | Objectives | Reference |
---|---|---|
Lean Construction Principles | Enhance traditional project management processes | [96,97] |
Integrate BIM into LC for improved project outcomes | [98,99] | |
Utilize digital tools for lean construction development | [100] | |
Framework for selecting lean tools based on objectives and functionalities | [101] | |
Enhance efficiency and integration in construction management through BIM and lean principles synergy | [102,103] | |
Efficiency Optimization | Improve construction site productivity and quality | [104,105] |
Leverage ABM for construction waste management complexity | [106] | |
Enhance lean and green project outcomes through BIM | [107,108] | |
Improve construction productivity through integration of lean concept and heuristic models | [109,110] |
Major Trends | Reference | Objectives |
---|---|---|
ABM for Complex Logistics | [127] | ABM application to handle complex adaptive systems in construction waste management. |
Dynamic ABM Simulation | [1] | Capturing recent ABM development in construction research for dynamic simulation. |
ABM in Safety Management | [128] | Using BIM and ABM for planning and managing safety in construction processes. |
Lean Construction and ABM | [99] | Synergy of BIM and Lean Construction enhanced by ABM for efficiency in public projects. |
ABM for Process Improvement | [129] | The use of ABM in developing a Digital Obeya Room framework for visual construction management. |
Feature | Objectives | Reference |
---|---|---|
Worker Behavior Modeling | Identify recurring behavioral patterns leading to accidents and develop interventions | [160,161] |
Forecast and modify unsafe behaviors through predictive modeling | [162] | |
Explore the impact of safety climate and interpersonal relationships on safety behavior | [163] | |
Improve understanding of team processes and their effects on worker safety | [164] | |
Accident Prevention Strategies | Develop and implement safety archetypes for construction safety management | [161] |
Explore rules for accident prevention based on unsafe behaviors and apply association rules for prevention | [165] | |
Utilize computer vision technology for real-time monitoring and identification of risky behaviors | [166] | |
Apply building information Modeling (BIM) for integrating safety measures from design to construction site management | [128] |
Study Title | Application Area | Potential ABM Integration |
---|---|---|
[232] | Building Management | ABM could simulate occupant behaviors (e.g., movement, energy usage) within the DT to optimize building operations and energy efficiency. |
[233] | Construction and Renovation | Use ABM to model the interactions of construction agents (workers, machinery) to enhance project scheduling and resource allocation in the renovation process. |
[234] | Facility Management | Implement ABM to simulate the dynamic maintenance requirements and operational tasks of building components, improving lifecycle management. |
[235] | Construction Project Management | Integrate ABM to simulate the decision-making process of project managers and the impact of dispatching strategies on project timelines and resource efficiency. |
[236] | Construction and Operations | Apply ABM to explore how different construction scenarios (e.g., supply chain disruptions, workforce dynamics) affect project outcomes and operational efficiency. |
[237] | Infrastructure Management | Utilize ABM to assess the impact of human behaviors and system interactions on the sustainability and vulnerability of subway stations, aiding in emergency planning and resource optimization. |
[238] | AEC-FM Industry | ABM could be used to simulate stakeholder interactions within the DT environment to identify and address bottlenecks in information flow and collaboration. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzetto, S. Interdisciplinary Perspectives on Agent-Based Modeling in the Architecture, Engineering, and Construction Industry: A Comprehensive Review. Buildings 2024, 14, 3480. https://doi.org/10.3390/buildings14113480
Mazzetto S. Interdisciplinary Perspectives on Agent-Based Modeling in the Architecture, Engineering, and Construction Industry: A Comprehensive Review. Buildings. 2024; 14(11):3480. https://doi.org/10.3390/buildings14113480
Chicago/Turabian StyleMazzetto, Silvia. 2024. "Interdisciplinary Perspectives on Agent-Based Modeling in the Architecture, Engineering, and Construction Industry: A Comprehensive Review" Buildings 14, no. 11: 3480. https://doi.org/10.3390/buildings14113480
APA StyleMazzetto, S. (2024). Interdisciplinary Perspectives on Agent-Based Modeling in the Architecture, Engineering, and Construction Industry: A Comprehensive Review. Buildings, 14(11), 3480. https://doi.org/10.3390/buildings14113480