The Role of High Carbon Additives on Physical–Mechanical Characteristics and Microstructure of Cement-Based Composites
<p>Photographic image of wood dust (<b>a</b>) and burned wood dust at 325 °C (<b>b</b>).</p> "> Figure 2
<p>Photographic image of final fine-particulate products: (<b>a</b>) coal dust, (<b>b</b>) biochar.</p> "> Figure 3
<p>SEM micrographs of BC (<b>a</b>) and CD samples (<b>b</b>).</p> "> Figure 4
<p>Bending strengths development of 28 days’ hardened samples in dependence on mix type (REF—control material; BC—biochar-modified pastes; CD—coal dust-modified pastes).</p> "> Figure 5
<p>Compressive strengths development of 28 days’ hardened samples in dependence on mix type (REF—control material; BC—biochar-modified pastes; CD—coal dust-modified pastes).</p> "> Figure 6
<p>Dynamic moduli development of 28 days’ hardened samples in dependence on mix type (REF—control material; BC—biochar-modified pastes; CD—coal dust-modified pastes).</p> "> Figure 7
<p>SEM micrograph of REF (<b>a</b>), paste BC 10.0 with 10 wt.% of biochar (<b>b</b>), paste CD 10.0 with 10 wt.% of coal dust (<b>c</b>), detailed image of BC paste—biochar crooked rod-shaped residues are highlighted in rectangles (<b>d</b>). Some of the observed phases are indicated (Cal—calcite; CSH—CSH gel; Vat—vaterite; Port—portlandite; BC—biochar; Etr—ettringite).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Used Materials
2.2. Mixing and Sampling
2.3. Measuring Procedures
3. Results and Discussion
3.1. Characterization of Cement-Replacing Additives
3.2. Structural Properties
3.3. Mechanical Resistance
3.4. Mineralogical Composition and Micro-Structural Analysis
4. Conclusions
- Both carbon-based additives dosed in increased amounts caused a worsening of the workability of fresh pastes due to importantly higher specific surface area of grains in comparison with OPC; moreover, superplasticizer had to be added into the cement pastes’ composition.
- SEM micrographs revealed tiny crooked rod-shaped nanoparticles adsorbed on the surface of coarser grains in biochar and a considerable representation of irregularly shaped particles with predominantly smooth surfaces and diameters from 2 up to 7 µm in the case of coal dust, which are predominantly responsible for the increased water absorption of both additives.
- Lower biochar dosages of up to 2.5% by cement weight increased the bulk density of the hardened paste, and thus helped to slightly reduce its porosity. Comparable structural properties with the control paste were observed for the materials BC 5.0 and CD 2.5.
- Reduced porosity of the BC 2.5 samples enhanced strength properties, namely the bending and compressive strengths after a 28 day curing period, which were significantly improved by 10.3% and 7.9%, respectively. The application of 5 wt.% of biochar maintained strengths at a comparable level with the hardened control mix. The influence of CD on the mechanical resistance improvement of the prepared pastes was significantly lower compared with biochar. Accordingly, only 2.5 wt.% of coal dust did not impair strength properties.
- XPRD observations showed the enhanced consumption of clinker minerals and increased formation of cement hydration products caused by controlled incorporation of both additives into blended cement paste samples, which are in line with the aforementioned physical and mechanical properties. Apparent ettringite formation and increased occurrence of voids in the porous cement matrix of pastes with higher CD content were also revealed.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pokorný, J.; Ševčík, R.; Šál, J.; Fiala, L.; Zárybnická, L.; Podolka, L. Bio-Based Aggregate in the Production of Advanced Thermal-Insulating Concrete with Improved Acoustic Performance. Constr. Build. Mater. 2022, 358, 129436. [Google Scholar] [CrossRef]
- Aldred, J. Burj Khalifa—A New High for High-Performance Concrete. Proc. Inst. Civ. Eng. Civ. Eng. 2010, 163, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Cements: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Gupta, S.; Chaudhary, S. State of the Art Review on Supplementary Cementitious Materials in India—I: An Overview of Legal Perspective, Governing Organizations, and Development Patterns. J. Clean. Prod. 2020, 261, 121203. [Google Scholar] [CrossRef]
- Djamaluddin, A.R.; Caronge, M.A.; Tjaronge, M.W.; Lando, A.T.; Irmawaty, R. Evaluation of Sustainable Concrete Paving Blocks Incorporating Processed Waste Tea Ash. Case Stud. Constr. Mater. 2020, 12, e00325. [Google Scholar] [CrossRef]
- Kajaste, R.; Hurme, M. Cement Industry Greenhouse Gas Emissions—Management Options and Abatement Cost. J. Clean. Prod. 2016, 112, 4041–4052. [Google Scholar] [CrossRef]
- Snellings, R.; Scrivener, K.L. Rapid Screening Tests for Supplementary Cementitious Materials: Past and Future. Mater. Struct. 2016, 49, 3265–3279. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Nonat, A. Hydration of Cementitious Materials, Present and Future. Cem. Concr. Res. 2011, 41, 651–665. [Google Scholar] [CrossRef]
- Juenger, M.C.G.; Snellings, R.; Bernal, S.A. Supplementary Cementitious Materials: New Sources, Characterization, and Performance Insights. Cem. Concr. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Kuz′min, M.P.; Kuz′mina, M.Y.; Kuz′min, P.B. Possibilities and Prospects for Producing Silumins with Different Silicon Contents Using Amorphous Microsilica. Trans. Nonferrous Met. Soc. China 2020, 30, 1406–1418. [Google Scholar] [CrossRef]
- Caneda-Martínez, L.; Kunther, W.; Medina, C.; Sánchez de Rojas, M.I.; Frías, M. Exploring Sulphate Resistance of Coal Mining Waste Blended Cements through Experiments and Thermodynamic Modelling. Cem. Concr. Compos. 2021, 121, 104086. [Google Scholar] [CrossRef]
- Paris, J.M.; Roessler, J.G.; Ferraro, C.C.; DeFord, H.D.; Townsend, T.G. A Review of Waste Products Utilized as Supplements to Portland Cement in Concrete. J. Clean. Prod. 2016, 121, 1–18. [Google Scholar] [CrossRef]
- García Giménez, R.; Vigil de la Villa, R.; Frías, M. From Coal-Mining Waste to Construction Material: A Study of Its Mineral Phases. Environ. Earth Sci. 2016, 75, 478. [Google Scholar] [CrossRef]
- Amrani, M.; Taha, Y.; El Haloui, Y.; Benzaazoua, M.; Hakkou, R. Sustainable Reuse of Coal Mine Waste: Experimental and Economic Assessments for Embankments and Pavement Layer Applications in Morocco. Minerals 2020, 10, 851. [Google Scholar] [CrossRef]
- Chandran Govindaraju, V.G.R.; Tang, C.F. The Dynamic Links between CO2 Emissions, Economic Growth and Coal Consumption in China and India. Appl. Energy 2013, 104, 310–318. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, T.-C. Reactivity Activation of Waste Coal Gangue and Its Impact on the Properties of Cement-Based Materials—A Review. Constr. Build. Mater. 2020, 234, 117424. [Google Scholar] [CrossRef]
- Zhang, L.; He, C.; Yang, A.; Yang, Q.; Han, J. Modeling and Implication of Coal Physical Input-Output Table in China—Based on Clean Coal Concept. Resour. Conserv. Recycl. 2018, 129, 355–365. [Google Scholar] [CrossRef]
- Frías, M.; Sanchez de Rojas, M.I.; García, R.; Juan Valdés, A.; Medina, C. Effect of Activated Coal Mining Wastes on the Properties of Blended Cement. Cem. Concr. Compos. 2012, 34, 678–683. [Google Scholar] [CrossRef]
- Khan, I.; Umar, R. Environmental Risk Assessment of Coal Fly Ash on Soil and Groundwater Quality, Aligarh, India. Groundw. Sustain. Dev. 2019, 8, 346–357. [Google Scholar] [CrossRef]
- Karimipour, A. Effect of Untreated Coal Waste as Fine and Coarse Aggregates Replacement on the Properties of Steel and Polypropylene Fibres Reinforced Concrete. Mech. Mater. 2020, 150, 103592. [Google Scholar] [CrossRef]
- Karimaei, M.; Dabbaghi, F.; Sadeghi-Nik, A.; Dehestani, M. Mechanical Performance of Green Concrete Produced with Untreated Coal Waste Aggregates. Constr. Build. Mater. 2020, 233, 117264. [Google Scholar] [CrossRef]
- Karimipour, A.; Edalati, M. Influence of Untreated Coal and Recycled Aggregates on the Mechanical Properties of Green Concrete. J. Clean. Prod. 2020, 276, 124291. [Google Scholar] [CrossRef]
- Luo, F.; Jiang, Y.; Wei, C. Potential of Decarbonized Coal Gasification Residues as the Mineral Admixture of Cement-Based Material. Constr. Build. Mater. 2021, 269, 121259. [Google Scholar] [CrossRef]
- Cheah, C.B.; Ramli, M. The Implementation of Wood Waste Ash as a Partial Cement Replacement Material in the Production of Structural Grade Concrete and Mortar: An Overview. Resour. Conserv. Recycl. 2011, 55, 669–685. [Google Scholar] [CrossRef]
- Rajamma, R.; Ball, R.J.; Tarelho, L.A.C.; Allen, G.C.; Labrincha, J.A.; Ferreira, V.M. Characterisation and Use of Biomass Fly Ash in Cement-Based Materials. J. Hazard. Mater. 2009, 172, 1049–1060. [Google Scholar] [CrossRef]
- Sklivaniti, V.; Tsakiridis, P.E.; Katsiotis, N.S.; Velissariou, D.; Pistofidis, N.; Papageorgiou, D.; Beazi, M. Valorisation of Woody Biomass Bottom Ash in Portland Cement: A Characterization and Hydration Study. J. Environ. Chem. Eng. 2017, 5, 205–213. [Google Scholar] [CrossRef]
- Pavlíková, M.; Zemanová, L.; Pokorný, J.; Záleská, M.; Jankovský, O.; Lojka, M.; Sedmidubský, D.; Pavlík, Z. Valorization of Wood Chips Ash as an Eco-Friendly Mineral Admixture in Mortar Mix Design. Waste Manag. 2018, 80, 89–100. [Google Scholar] [CrossRef]
- Wijitkosum, S.; Jiwnok, P. Elemental Composition of Biochar Obtained from Agricultural Waste for Soil Amendment and Carbon Sequestration. Appl. Sci. 2019, 9, 3980. [Google Scholar] [CrossRef] [Green Version]
- Gezae, A.; Chandraratne, M. Biochar Production from Biomass Waste-Derived Material. Encycl. Renew. Sustain. Mater. 2018, 4, 370–378. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-Chemical Properties and Microbial Responses in Biochar-Amended Soils: Mechanisms and Future Directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Low, C.Y. Use of Biochar as Carbon Sequestering Additive in Cement Mortar. Cem. Concr. Compos. 2018, 87, 110–129. [Google Scholar] [CrossRef]
- Restuccia, L.; Ferro, G.A.; Suarez-Riera, D.; Sirico, A.; Bernardi, P.; Belletti, B.; Malcevschi, A. Mechanical Characterization of Different Biochar-Based Cement Composites. Procedia Struct. Integr. 2020, 25, 226–233. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Tsang, D.C.W.; Guo, B.; Yang, J.; Shen, Z.; Hou, D.; Ok, Y.S.; Poon, C.S. Biochar as Green Additives in Cement-Based Composites with Carbon Dioxide Curing. J. Clean. Prod. 2020, 258, 120678. [Google Scholar] [CrossRef]
- EN 197-1; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements 2011. European Comitee for Standardization (CEN): Brussels, Belgium, 2011.
- Newalkar, G.; Iisa, K.; D’Amico, A.; Sievers, C.; Agrawal, P. Effect of Temperature, Pressure, and Residence Time on Pyrolysis of Pine in an Entrained Flow Reactor. Energy Fuels 2014, 28, 5144–5157. [Google Scholar] [CrossRef]
- Querol, X.; Zhuang, X.; Font, O.; Izquierdo, M.; Alastuey, A.; Castro, I.; van Drooge, B.L.; Moreno, T.; Grimalt, J.O.; Elvira, J.; et al. Influence of Soil Cover on Reducing the Environmental Impact of Spontaneous Coal Combustion in Coal Waste Gobs: A Review and New Experimental Data. Int. J. Coal Geol. 2011, 85, 2–22. [Google Scholar] [CrossRef]
- Lehotský, L.; Černoch, F.; Osička, J.; Ocelík, P. When Climate Change Is Missing: Media Discourse on Coal Mining in the Czech Republic. Energy Policy 2019, 129, 774–786. [Google Scholar] [CrossRef]
- EN 196-1; Method of Testing Cement—Part 1: Determination of Strength 2005. European Comitee for Standardization (CEN): Brussels, Belgium, 2005.
- EN 12390-1; Testinf Hardened Concrete—Part 1: Shape, Dimensions and Other Requirements for Specimens and Moulds 2013. European Comitee for Standardization (CEN): Brussels, Belgium, 2013.
- EN 1097-3; Test of Mechanical and Physical Properties of Aggregate—Part 3: Determination of Loose Bulk Density and Voids 1999. European Comitee for Standardization (CEN): Brussels, Belgium, 1999.
- EN 1015-3; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar 2000. European Comitee for Standardization (CEN): Brussels, Belgium, 2000.
- EN 1015-10; Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar 1999. European Comitee for Standardization (CEN): Brussels, Belgium, 1999.
- Pokorný, J.; Ševčík, R.; Šál, J.; Zárybnická, L. Lightweight Blended Building Waste in the Production of Innovative Cement-Based Composites for Sustainable Construction. Constr. Build. Mater. 2021, 299, 123933. [Google Scholar] [CrossRef]
- Záleská, M.; Pavlik, Z.; Pavlíková, M.; Scheinherrova, L.; Pokorny, J.; Trnik, A.; Svora, P.; Fořt, J.; Jankovský, O.; Suchorab, Z.; et al. Biomass Ash-Based Mineral Admixture Prepared from Municipal Sewage Sludge and Its Application in Cement Composites. Clean. Technol. Environ. Policy 2018, 20, 159–171. [Google Scholar] [CrossRef]
- EN 1015-11; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar 1999. European Comitee for Standardization (CEN): Brussels, Belgium, 1999.
- EN 12504-4; Testing Concrete—Part 4: Determination of Ultrasonic Pulse Velocity 2005. European Comitee for Standardization (CEN): Brussels, Belgium, 2005.
- Singh, L.P.; Karade, S.R.; Bhattacharyya, S.K.; Yousuf, M.M.; Ahalawat, S. Beneficial Role of Nanosilica in Cement Based Materials—A Review. Constr. Build. Mater. 2013, 47, 1069–1077. [Google Scholar] [CrossRef]
- Flores, Y.C.; Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M. Performance of Portland Cement Pastes Containing Nano-Silica and Different Types of Silica. Constr. Build. Mater. 2017, 146, 524–530. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Koh, H.J. Application of Biochar from Food and Wood Waste as Green Admixture for Cement Mortar. Sci. Total. Environ. 2018, 619–620, 419–435. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W. Effect of Water Entrainment by Pre-Soaked Biochar Particles on Strength and Permeability of Cement Mortar. Constr. Build. Mater. 2018, 159, 107–125. [Google Scholar] [CrossRef]
- Choi, W.C.; Yun, H.D.; Lee, J.Y. Mechanical Properties of Mortar Containing Bio-Char from Pyrolysis. J. Korea Inst. Struct. Maint. Insp. 2012, 16, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Tulliani, J.-M.; Ferro, G.; Khushnood, R.; Restuccia, L.; Jagdale, P. Crack Path and Fracture Surface Modifications in Cement Composites. Frat. Ed. Integrita Strutt. 2015, 9, 524–533. [Google Scholar] [CrossRef]
- Restuccia, L.; Reggio, A.; Ferro, G.A.; Kamranirad, R. Fractal Analysis of Crack Paths into Innovative Carbon-Based Cementitious Composites. Theor. Appl. Fract. Mech. 2017, 90, 133–141. [Google Scholar] [CrossRef]
- Gastaldi, D.; Paul, G.; Marchese, L.; Irico, S.; Boccaleri, E.; Mutke, S.; Buzzi, L.; Canonico, F. Hydration Products in Sulfoaluminate Cements: Evaluation of Amorphous Phases by XRD/Solid-State NMR. Cem. Concr. Res. 2016, 90, 162–173. [Google Scholar] [CrossRef]
- Yan, C.; Qi, J.; Ma, J.; Tang, H.; Zhang, T.; Li, H. Determination of Carbon and Sulfur Content in Coal by Laser Induced Breakdown Spectroscopy Combined with Kernel-Based Extreme Learning Machine. Chemom. Intell. Lab. Syst. 2017, 167, 226–231. [Google Scholar] [CrossRef]
- Xu, N.; Tao, X. Changes in Sulfur Form during Coal Desulfurization with Microwave: Effect on Coal Properties. Int. J. Min. Sci. Technol. 2015, 25, 435–438. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, Z.; Wu, Q.; Lin, L.; Zhang, Q. Determination of Total Sulfur in Coal by Ultraviolet Fluorescence Method Based on the Large Capacity Combustion Framework. Fuel Commun. 2022, 11, 100063. [Google Scholar] [CrossRef]
OPC | c (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|
SiO2 | Fe2O3 | Al2O3 | MgO | CaO | K2O | Na2O | SO3 | Cl− |
19.64 | 3.33 | 4.82 | 1.44 | 63.69 | 0.75 | 0.19 | 3.09 | 0.04 |
c (wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Element | C | Ca | Mg | K | O | Si | Al | Cu | Fe |
BC | 65.42 | 0.80 | 0.48 | 0.53 | 28.95 | 0.38 | 1.17 | 0.35 | 1.92 |
CD | 67.20 | 1.00 | 0.55 | 0.09 | 18.60 | 4.32 | 2.62 | 1.89 | 3.73 |
Material | Specific Surface Area (m2·kg−1) | Specific Density (kg·m−3) | Powder Density (kg·m−3) | Loss on Ignition (wt.%) |
---|---|---|---|---|
OPC | 408 | 3110 | 980 | 3.40 |
BC | 886 | 1550 | 318 | - |
CD | 628 | 1285 | 482 | - |
Paste Mix | OPC (g) | Mineral Admixture (g) | Superplasticizer (g) | Batch Water (g) | Value of Spreading (mm) |
---|---|---|---|---|---|
REF | 1500.0 | 0.0 | 0.0 | 450 | 160 × 160 |
BC 2.5 | 1462.5 | 37.5 | 0.0 | 450 | 155 × 155 |
BC 5.0 | 1425.0 | 75.0 | 3.0 | 450 | 160 × 155 |
BC 7.5 | 1387.5 | 112.5 | 6.0 | 450 | 160 × 160 |
BC 10.0 | 1350.0 | 150.0 | 10.0 | 450 | 165 × 160 |
CD 2.5 | 1462.5 | 37.5 | 0.0 | 450 | 160 × 165 |
CD 5.0 | 1425.0 | 75.0 | 0.0 | 450 | 150 × 150 |
CD 7.5 | 1387.5 | 112.5 | 2.0 | 450 | 160 × 155 |
CD 10.0 | 1350.0 | 150.0 | 4.0 | 450 | 160 × 160 |
Material | d10 | d50 | d90 |
---|---|---|---|
(µm) | |||
OPC | 6.4 | 32.7 | 53.7 |
BC | 7.2 | 36.9 | 59.8 |
CD | 5.4 | 40.8 | 70.5 |
Mix | Bulk Density (kg·m−3) | Specific Density (kg·m−3) | Open Porosity (%) | |||
---|---|---|---|---|---|---|
Average | St. Dev. | Average | St. Dev. | Average | St. Dev. | |
REF | 1755 | 16.3 | 2298 | 8.9 | 23.6 | 1.0 |
BC 2.5 | 1775 | 20.2 | 2294 | 11.0 | 22.6 | 1.3 |
BC 5.0 | 1738 | 17.5 | 2283 | 7.4 | 23.8 | 1.0 |
BC 7.5 | 1715 | 21.4 | 2271 | 8.7 | 24.5 | 1.2 |
BC 10.0 | 1683 | 15.7 | 2262 | 10.2 | 25.6 | 1.0 |
CD 2.5 | 1762 | 16.8 | 2296 | 8.2 | 23.3 | 1.0 |
CD 5.0 | 1729 | 16.0 | 2280 | 10.2 | 24.2 | 1.0 |
CD 7.5 | 1692 | 19.5 | 2269 | 9.3 | 25.4 | 1.2 |
CD 10.0 | 1665 | 13.3 | 2254 | 9.6 | 26.1 | 0.9 |
Mineral | REF | BC 2.5 | BC 10.0 | CD 2.5 | CD 10.0 |
---|---|---|---|---|---|
Content in wt.% | |||||
Quartz | 0.4 | 0.3 | 0.3 | 0.4 | 0.5 |
Vaterite | 4.4 | 4.6 | 6.6 | 3.0 | 3.4 |
Brownmillerite | 3.1 | 2.8 | 2.5 | 1.8 | 2.1 |
Calcite | 11.8 | 12.9 | 10.3 | 9.9 | 8.6 |
Alite | 8.8 | 7.4 | 4.6 | 8.2 | 6.0 |
Belite | 4.7 | 4.5 | 4.2 | 4.7 | 4.5 |
Portlandite | 8.6 | 9.8 | 6.8 | 9.0 | 5.3 |
Ettringite | 3.6 | 3.6 | 3.9 | 3.6 | 5.4 |
Amorphous content | 53.9 | 55.3 | 56.8 | 54.2 | 54.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokorný, J.; Ševčík, R.; Zárybnická, L.; Podolka, L. The Role of High Carbon Additives on Physical–Mechanical Characteristics and Microstructure of Cement-Based Composites. Buildings 2023, 13, 1585. https://doi.org/10.3390/buildings13071585
Pokorný J, Ševčík R, Zárybnická L, Podolka L. The Role of High Carbon Additives on Physical–Mechanical Characteristics and Microstructure of Cement-Based Composites. Buildings. 2023; 13(7):1585. https://doi.org/10.3390/buildings13071585
Chicago/Turabian StylePokorný, Jaroslav, Radek Ševčík, Lucie Zárybnická, and Luboš Podolka. 2023. "The Role of High Carbon Additives on Physical–Mechanical Characteristics and Microstructure of Cement-Based Composites" Buildings 13, no. 7: 1585. https://doi.org/10.3390/buildings13071585
APA StylePokorný, J., Ševčík, R., Zárybnická, L., & Podolka, L. (2023). The Role of High Carbon Additives on Physical–Mechanical Characteristics and Microstructure of Cement-Based Composites. Buildings, 13(7), 1585. https://doi.org/10.3390/buildings13071585