Hemagglutination Assay via Optical Density Characterization in 3D Microtrap Chips
<p>(<b>a</b>) 3D design of the mold for microtrap chip. (<b>b</b>) The microtrap chip consists of microwell and microchannel geometries.</p> "> Figure 2
<p>Fabrication of 3D microtrap chips. (<b>a</b>) 3D printing of the mold by a digital light processing (DLP) instrument. (<b>b</b>) 3D mold structure created by DLP is placed in a 10 cm petri dish for polydimethylsiloxane (PDMS) casting. (<b>c</b>) A stereomicroscopic image of the 3D mold with its dimensions of the microchannel and microwell structures. (<b>d</b>–<b>f</b>) Fabrication procedures of the top layer. On a flat glass slide, a PDMS mixture was poured, cured, and detached. Inlet and outlet holes were punched into the PDMS layer. (<b>g</b>–<b>i</b>) Fabrication procedures for constructing the bottom layer with multi-level structures consisting of microchannel and microwell. Using the 3D-printed mold, PDMS was cured and detached. (<b>j</b>) Two PDMS layers were assembled by plasma treatment. (<b>k</b>) Stereomicroscopy image of the tilted cross-section of 3D microtrap chip. The microtrap chip has the specification as follows: microchannel height = 500 µm, microtrap height = 1000 µm, and the ratio of the lower base (500 µm) and upper base = 1:2.</p> "> Figure 3
<p>(<b>a</b>) Variation of the vertical dimensions of the reverse trapezoidal microwells for nine different 3D printed molds. (<b>b</b>) Optical microscope images of the reverse trapezoidal microwell. (<b>c</b>) Scanning electron microscopy image of the microwell.</p> "> Figure 4
<p>Variation of the dimensions of the microwell structures for 3D microtrap chips. (<b>a</b>–<b>i</b>) For nine different 3D printed acrylonitrile butadiene styrene (ABS) molds, the details of the dimensions, CAD designs, and stereomicroscopy pictures are summarized. We put two variables as follows: (1) The ratio of the lower base to the upper base of the reverse trapezoidal geometry of the microwell is from 1:3 to 1:1 (row). (2) The microwell height is from 1000 μm to 300 μm (column). Note that all the microwells are designed to have the same lower base, 500 μm, as a constant. Additionally, the microchannels have the same dimensions: The microchannel width is 500 μm, and the microchannel height is 500 μm.</p> "> Figure 5
<p>Hemagglutination assay in 3D microtrap chips. (<b>a</b>) The whole blood samples are collected in purple top tubes. (<b>b</b>) Antibody reagents, anti-A (bluish) and anti-B (yellowish). (<b>c</b>) Conventional blood typing test for whole blood A, B, O, and AB. (<b>d</b>–<b>f</b>) Characterization of optical density (OD, absorbance) for hemagglutination assay in a 96 microwell plate. (<b>d</b>) Stereomicroscopy image of a part of a 96-well microplate for hemagglutination assay. (<b>e</b>) Magnified images showing the anti-A + blood A and anti-B + blood B for agglutination and the anti-B + blood A and anti-A + blood B for non-agglutination. (<b>f</b>) The OD variations as a function of RBC concentration for column 1 to column 8. (<b>g</b>,<b>h</b>) Diagrams depicting the working principles governing the relationship between agglutination and OD. (<b>g</b>) For non-agglutination, high optical density was measured. (<b>h</b>) For agglutination, low optical density was measured.</p> "> Figure 6
<p>(<b>a</b>–<b>d</b>) Schematic of red blood cell (RBC) and antibody loading procedures. (<b>a</b>) As-fabricated 3D microtrap chip. (<b>b</b>) RBC suspension, either blood A or blood B, is inserted into the 3D microtrap chip. (<b>c</b>) RBC droplets are captured in the microwells. (<b>d</b>) To induce hemagglutination reactions, either anti-A or anti-B are loaded. (<b>e</b>) A schematic of hemagglutination assay in 3D microtrap chips. Depending on the surface glycoproteins present on the RBCs, agglutination occurs with corresponding antibodies. Mixing the mismatched RBCs and antibodies does not cause agglutination (lower right). Mixing the matched RBCs and antibodies does cause agglutination (lower left). (<b>f</b>) A table summarizing the agglutination and non-agglutination for RBC and antibody mixing.</p> "> Figure 7
<p>(<b>a</b>) Digital camera image of the 3D microtrap chip in which four different mixings occur, corresponding to the blood A + anti-A, blood A + anti-B, blood B + anti-A, and blood B + anti-B. (<b>b</b>) A fused deposition modeling (FDM) 3D printer is used for creating a 3D aperture structure. For the FDM process, acrylonitrile butadiene styrene (ABS) filaments are used. (<b>c</b>) 3D aperture made by ABS is printed on the bed of the FDM 3D printer. (<b>d</b>) A microplate reader machine to measure OD from either a 96-well microplate or a 3D microtrap chip. The orange-dotted region indicates the dock for a 96-well microplate. (<b>e</b>) In the orange dotted region of the microplate reader in (<b>d</b>), the 3D printed aperture is equipped, upon which the 3D microtrap chip is placed and aligned with the light path. (<b>f</b>) The aligned 3D printed aperture and 3D microtrap chip in the microplate reader.</p> "> Figure 8
<p>Transmitted light microscopy images of red blood cells (RBCs) (<b>a</b>) A meandering microchannel where whole blood is loaded. The microchannel has a dark contrast due to the high concentration of red blood cells (RBCs) in the whole blood. (<b>b</b>) A magnified area of the red dotted region in (<b>a</b>). (<b>c</b>) A magnified area of the red dotted region in (<b>b</b>). Individual RBCs are observed. A large number of RBCs contribute a dark contrast (almost black contrast) in the middle of the microchannel. (<b>d</b>,<b>f</b>,<b>h</b>,<b>j</b>) Optical density (OD) characterizations for hemagglutination reactions of whole blood A, B, O, and AB with anti-A and anti-B both with and without aperture in a 3D microtrap chip. Low OD values imply agglutinations, while high OD values imply non-agglutinations. (<b>e</b>,<b>g</b>,<b>i</b>,<b>k</b>) Transmitted light microscopy images of 3D microtrap chips after hemagglutination reactions were induced by whole blood A, B, O, and AB, with Anti-A and Anti-B. Bright channels imply agglutination, while dark channels imply non-agglutination.</p> "> Figure 9
<p>(<b>a</b>,<b>b</b>) For the hemagglutination assay (n = 140) of agglutination and non-agglutination from whole blood A, B, O, and AB, with Anti-A and Anti-B in the best conditioned 3D microtrap chips such as a microwell height of 500 µm with a ratio of lower base and upper base of 1:2. OD values were measured both without (<b>a</b>) and with (<b>b</b>) aperture. (<b>c</b>) Receiver operating characteristic curves are analyzed for OD values both with and without aperture.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. PDMS Casting for Fabrication of 3D Microtrap Chips
2.2. Hemagglutination Reactions of Whole Blood Samples in 3D Microtrap Chips
3. Results
3.1. Fabrication of 3D Microtrap Chips
3.2. Control of the Reverse Trapezoidal Geometry of the Microwells
3.3. Optical Absorbance Property for the Agglutinated RBCs
3.4. Hemagglutination in 3D Microtrap Chips
3.5. Hemagglutination Assay via Optical Density Characterization
3.6. Optimization of Microwell Specification
3.7. Statistical Analysis of the Hemagglutination Assay in 3D Microtrap Chips
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nelson, D.L.; Cox, M.M.; Lehninger, A.L. Lehninger Principles of Biochemistry; W.H. Freeman and Company: New York, NY, USA, 2017. [Google Scholar]
- Payne, S. Virus: From Understanding to Investigation, 1st ed.; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Vyas, G.N.; Shulman, N.R. Hemagglutination Assay for Antigen and Antibody Associated with Viral Hepatitis. Science 1970, 170, 332. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.A.; Hambie, E.A.; Pettit, D.E.; Perryman, M.W.; Kraus, S.J. Specificity, Sensitivity, and Reproducibility among the Fluorescent Treponemal Antibody-Absorption Test, the Microhemagglutination Assay for Treponema-Pallidum Antibodies, and the Hemagglutination Treponemal Test for Syphilis. J. Clin. Microbiol. 1981, 14, 441–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Killian, M.L. Hemagglutination assay for influenza virus. Methods Mol. Biol. 2014, 1161, 3–9. [Google Scholar] [PubMed]
- Neumann, P.W.; Weber, J.M.; Jessamine, A.G.; Oshaughnessy, M.V. Comparison of Measles Antihemolysin Test, Enzyme-Linked Immunosorbent-Assay, and Hemagglutination Inhibition Test with Neutralization Test for Determination of Immune Status. J. Clin. Microbiol. 1985, 22, 296–298. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, L.; Syedbasha, M.; Vogt, D.; Hollenstein, Y.; Hartmann, J.; Linnik, J.E.; Egli, A. An Optimized Hemagglutination Inhibition (HI) Assay to Quantify Influenza-specific Antibody Titers. Jove-J. Vis. Exp. 2017, 130, 55833. [Google Scholar]
- Chong, Z.L.; Soe, H.J.; Ismail, A.A.; Mahboob, T.; Chandramathi, S.; Sekaran, S.D. Evaluation of the Diagnostic Accuracy of a New Biosensors-Based Rapid Diagnostic Test for the Point-Of-Care Diagnosis of Previous and Recent Dengue Infections in Malaysia. Biosensors 2021, 11, 129. [Google Scholar] [CrossRef]
- Kruse, R.L.; Huang, Y.T.; Lee, A.; Zhu, X.M.; Shrestha, R.; Laeyendecker, O.; Littlefield, K.; Pekosz, A.; Bloch, E.M.; Tobian, A.A.R.; et al. A Hemagglutination-Based Semiquantitative Test for Point-of-Care Determination of SARS-CoV-2 Antibody Levels. J. Clin. Microbiol. 2021, 59, e01186-21. [Google Scholar] [CrossRef]
- Townsend, A.; Rijal, P.; Xiao, J.; Tan, T.K.; Huang, K.Y.A.; Schimanski, L.; Huo, J.D.; Gupta, N.; Rahikainen, R.; Matthews, P.C.; et al. A haemagglutination test for rapid detection of antibodies to SARS-CoV-2. Nat. Commun. 2021, 12, 1951. [Google Scholar] [CrossRef]
- Kruse, R.L.; Huang, Y.; Smetana, H.; Gehrie, E.A.; Amukele, T.K.; Tobian, A.A.R.; Mostafa, H.H.; Wang, Z.Z. A rapid, point-of-care red blood cell agglutination assay detecting antibodies against SARS-CoV-2. Biochem. Biophys. Res. Commun. 2021, 553, 165–171. [Google Scholar] [CrossRef]
- Sun, S.Q.; Wu, L.; Geng, Z.H.; Shum, P.P.; Ma, X.Y.; Wang, J.W. Refractometric Imaging and Biodetection Empowered by Nanophotonics. Laser Photonics Rev. 2023, 17, 2200814. [Google Scholar] [CrossRef]
- Ferraz, A.; Carvalho, V.; Soares, F.; Leao, C.P. Characterization of blood samples using image processing techniques. Sens. Actuators A Phys. 2011, 172, 308–314. [Google Scholar] [CrossRef]
- Huet, M.; Cubizolles, M.; Buhot, A. Real time observation and automated measurement of red blood cells agglutination inside a passive microfluidic biochip containing embedded reagents. Biosens. Bioelectron. 2017, 93, 110–117. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, S.H.; Ahn, C.H.; Lee, J.Y.; Kwon, T.H. Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding. Lab Chip 2006, 6, 794–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.Y.; Huang, Y.T.; Chou, H.H.; Wang, C.P.; Chen, C.F. Rapid and inexpensive blood typing on thermoplastic chips. Lab Chip 2015, 15, 4533–4541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qiu, X.P.; Zou, Y.R.; Ye, Y.Y.; Qi, C.; Zou, L.Y.; Yang, X.; Yang, K.; Zhu, Y.F.; Yang, Y.J.; et al. A dye-assisted paper-based point-of-care assay for fast and reliable blood grouping. Sci. Transl. Med. 2017, 9, eaaf9209. [Google Scholar] [CrossRef]
- Nam, S.W.; Lee, M.H.; Lee, S.H.; Lee, D.J.; Rossnagel, S.M.; Kim, K.B. Sub-10-nm Nanochannels by Self-Sealing and Self-Limiting Atomic Layer Deposition. Nano Lett. 2010, 10, 3324–3329. [Google Scholar] [CrossRef]
- Nam, S.W. 200 mm wafer-scale fabrication of polydimethylsiloxane fluidic devices for fluorescence imaging of single DNA molecules. Mrs Commun. 2018, 8, 420–427. [Google Scholar] [CrossRef]
- Wang, C.; Nam, S.W.; Cotte, J.M.; Jahnes, C.V.; Colgan, E.G.; Bruce, R.L.; Brink, M.; Lofaro, M.F.; Patel, J.V.; Gignac, L.M.; et al. Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules. Nat. Commun. 2017, 8, 14243. [Google Scholar] [CrossRef]
- Okoshi, M.; Yoshida, T. Fabrication of Silicone Rubber-Based Biochip for Disinfection under Deep-UV Light by ArF Excimer Laser-Induced Photodissociation. Electron. Mater. Lett. 2021, 17, 68–73. [Google Scholar] [CrossRef]
- Mehta, V.; Rath, S.N. 3D printed microfluidic devices: A review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-Des. Manuf. 2021, 4, 311–343. [Google Scholar] [CrossRef]
- Zhai, Y.G.; Wang, A.Y.; Koh, D.; Schneider, P.; Oh, K.W. A robust, portable and backflow-free micromixing device based on both capillary- and vacuum-driven flows. Lab Chip 2018, 18, 276–284. [Google Scholar] [CrossRef]
- Kamei, K.; Mashimo, Y.; Koyama, Y.; Fockenberg, C.; Nakashima, M.; Nakajima, M.; Li, J.J.; Chen, Y. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Biomed. Microdevices 2015, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, N.; Urrios, A.; Kanga, S.; Folch, A. The upcoming 3D-printing revolution in microfluidics. Lab Chip 2016, 16, 1720–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waheed, S.; Cabot, J.M.; Macdonald, N.P.; Lewis, T.; Guijt, R.M.; Paull, B.; Breadmore, M.C. 3D printed microfluidic devices: Enablers and barriers. Lab Chip 2016, 16, 1993–2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, R.; Knowlton, S.; Hart, A.; Yenilmez, B.; Ghaderinezhad, F.; Katebifar, S.; Messina, M.; Khademhosseini, A.; Tasoglu, S. 3D-printed microfluidic devices. Biofabrication 2016, 8, 022001. [Google Scholar] [CrossRef] [Green Version]
- Saggiomo, V.; Velders, A.H. Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices. Adv. Sci. 2015, 2, 1500125. [Google Scholar] [CrossRef]
- Comina, G.; Suska, A.; Filippini, D. PDMS lab-on-a-chip fabrication using 3D printed templates. Lab Chip 2014, 14, 424–430. [Google Scholar] [CrossRef]
- Nam, S.W.; Chae, J.P.; Kwon, Y.H.; Son, M.Y.; Bae, J.S.; Park, M.J. Xenopus chip for single-egg trapping, in vitro fertilization, development, and tadpole escape. Biochem. Biophys. Res. Commun. 2021, 569, 29–34. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.Q.; Hao, J.N.; Wallace, G.G.; Beirne, S.; Chen, J. 3D-Printed Wearable Electrochemical Energy Devices. Adv. Funct. Mater. 2022, 32, 2103092. [Google Scholar] [CrossRef]
- Ghosh, U.; Ning, S.; Wang, Y.Z.; Kong, Y.L. Addressing Unmet Clinical Needs with 3D Printing Technologies. Adv. Heal. Mater. 2018, 7, 1800417. [Google Scholar] [CrossRef]
- Jeon, D.G.; Lee, M.J.; Heo, J.; Lee, S.Y.; Boo, Y.C.; Nam, S.W. 3D Sacrificial Microchannels by Scaffold Removal Process for Electrical Characterization of Electrolytes. Electron. Mater. Lett. 2023, 19, 342–349. [Google Scholar] [CrossRef]
- Rehmani, M.A.A.; Jaywant, S.A.; Arif, K.M. Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems. Micromachines 2021, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Kaweesa, D.V.; Moore, J.; Meisel, N.A. Investigating the Impact of Acetone Vapor Smoothing on the Strength and Elongation of Printed ABS Parts. Jom 2017, 69, 580–585. [Google Scholar] [CrossRef]
- Xu, K.; Xi, T.; Liu, C. Design of the desktop vapor polisher with acetone vapor absorption mechanism. J. Phys. Conf. Ser. 2019, 1303, 012061. [Google Scholar] [CrossRef]
- Cai, G.Z.; Xue, L.; Zhang, H.L.; Lin, J.H. A Review on Micromixers. Micromachines 2017, 8, 274. [Google Scholar] [CrossRef]
- Atencia, J.; Beebe, D.J. Controlled microfluidic interfaces. Nature 2005, 437, 648–655. [Google Scholar] [CrossRef]
- Chin, C.D.; Laksanasopin, T.; Cheung, Y.K.; Steinmiller, D.; Linder, V.; Parsa, H.; Wang, J.; Moore, H.; Rouse, R.; Umviligihozo, G.; et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 2011, 17, 1015–1019. [Google Scholar] [CrossRef]
- Fan, R.; Vermesh, O.; Srivastava, A.; Yen, B.K.H.; Qin, L.D.; Ahmad, H.; Kwong, G.A.; Liu, C.C.; Gould, J.; Hood, L.; et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 2008, 26, 1373–1378. [Google Scholar] [CrossRef]
- Bernard, A.; Renault, J.P.; Michel, B.; Bosshard, H.R.; Delamarche, E. Microcontact printing of proteins. Adv. Mater. 2000, 12, 1067–1070. [Google Scholar] [CrossRef]
- Kenis, P.J.A.; Ismagilov, R.F.; Whitesides, G.M. Microfabrication inside capillaries using multiphase laminar flow patterning. Science 1999, 285, 83–85. [Google Scholar] [CrossRef] [Green Version]
- Stroock, A.D.; Dertinger, S.K.W.; Ajdari, A.; Mezić, I.; Stone, H.A.; Whitesides, G.M. Chaotic Mixer for Microchannels. Science 2002, 295, 647–651. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.T.; Wu, Z.G. Micromixers—A review. J. Micromech. Microeng. 2005, 15, R1–R16. [Google Scholar] [CrossRef]
- Williams, M.S.; Longmuir, K.J.; Yager, P. A practical guide to the staggered herringbone mixer. Lab Chip 2008, 8, 1121–1129. [Google Scholar] [CrossRef] [Green Version]
- Woo, H.K.; Sunkara, V.; Park, J.; Kim, T.H.; Han, J.R.; Kim, C.J.; Choi, H.I.; Kim, Y.K.; Cho, Y.K. Exodisc for Rapid, Size-Selective, and Efficient Isolation and Analysis of Nanoscale Extracellular Vesicles from Biological Samples. Acs Nano 2017, 11, 1360–1370. [Google Scholar] [CrossRef]
- Gorkin, R.; Park, J.; Siegrist, J.; Amasia, M.; Lee, B.S.; Park, J.M.; Kim, J.; Kim, H.; Madou, M.; Cho, Y.K. Centrifugal microfluidics for biomedical applications. Lab Chip 2010, 10, 1758–1773. [Google Scholar] [CrossRef] [Green Version]
- Choi, G.; Song, D.; Shrestha, S.; Miao, J.; Cui, L.W.; Guan, W.H. A field-deployable mobile molecular diagnostic system for malaria at the point of need. Lab Chip 2016, 16, 4341–4349. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, C.M.; Kinahan, D.J.; Mishra, R.; Mangwanya, F.; Kilcawley, N.; Ferreira, M.; Ducree, J. Label-free, spatially multiplexed SPR detection of immunoassays on a highly integrated centrifugal Lab-on-a-Disc platform. Biosens. Bioelectron. 2018, 119, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Ashiba, H.; Fujimaki, M.; Awazu, K.; Fu, M.; Ohki, Y.; Tanaka, T.; Makishima, M. Hemagglutination detection for blood typing based on waveguide-mode sensors. Sens. Bio-Sens. Res. 2015, 3, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Adamova, L.; Malinovska, L.; Wimmerova, M. New Sensitive Detection Method for Lectin Hemagglutination using Microscopy. Microsc. Res. Techniq. 2014, 77, 841–849. [Google Scholar] [CrossRef]
- Mehri, R.; Mavriplis, C.; Fenech, M. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system. PLoS ONE 2018, 13, e0199911. [Google Scholar] [CrossRef] [PubMed]
- Wicklein, B.; del Burgo, M.A.M.; Yuste, M.; Carregal-Romero, E.; Llobera, A.; Darder, M.; Aranda, P.; Ortin, J.; del Real, G.; Fernandez-Sanchez, C.; et al. Biomimetic Architectures for the Impedimetric Discrimination of Influenza Virus Phenotypes. Adv. Funct. Mater. 2013, 23, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.; Pimenta, S.; Soares, F.O.; Minas, G. A Complete Blood Typing Device for Automatic Agglutination Detection Based on Absorption Spectrophotometry. IEEE Trans. Instrum. Meas. 2015, 64, 112–119. [Google Scholar] [CrossRef]
- Park, J.; Park, J.K. Finger-Actuated Microfluidic Display for Smart Blood Typing. Anal. Chem. 2019, 91, 11636–11642. [Google Scholar] [CrossRef]
- Sklavounos, A.A.; Lamanna, J.; Modi, D.; Gupta, S.; Mariakakis, A.; Callum, J.; Wheeler, A.R. Digital Microfluidic Hemagglutination Assays for Blood Typing, Donor Compatibility Testing, and Hematocrit Analysis. Clin. Chem. 2021, 67, 1699–1708. [Google Scholar] [CrossRef] [PubMed]
- Goh, G.L.; Zhang, H.; Chong, T.H.; Yeong, W.Y. 3D Printing of Multilayered and Multimaterial Electronics: A Review. Adv. Electron. Mater. 2021, 7, 2100445. [Google Scholar] [CrossRef]
- Wu, C.; Sun, J.; Yin, B. Research on Integrated 3D Printing of Microfluidic Chips. Micromachines 2023, 14, 1302. [Google Scholar] [CrossRef]
- Kerestes, O.; Pohanka, M. Affordable Portable Platform for Classic Photometry and Low-Cost Determination of Cholinesterase Activity. Biosensors 2023, 13, 599. [Google Scholar] [CrossRef]
- Vu, B.V.; Lei, R.; Mohan, C.; Kourentzi, K.; Willson, R.C. Flash Characterization of Smartphones Used in Point-of-Care Diagnostics. Biosensors 2022, 12, 1060. [Google Scholar] [CrossRef]
- Joo, S.H.; Kim, J.; Hong, J.; Fakhraei Lahiji, S.; Kim, Y.H. Dissolvable Self-Locking Microneedle Patches Integrated with Immunomodulators for Cancer Immunotherapy. Adv. Mater. 2023, 35, 2209966. [Google Scholar] [CrossRef]
- Quan, B.; Liu, X.; Zhao, S.; Chen, X.; Zhang, X.; Chen, Z. Detecting Early Ocular Choroidal Melanoma Using Ultrasound Localization Microscopy. Bioengineering 2023, 10, 428. [Google Scholar] [CrossRef]
- Alawsi, T.; Al-Bawi, Z. A review of smartphone point-of-care adapter design. Eng. Rep. 2019, 1, e12039. [Google Scholar] [CrossRef]
- Lan, Y.; He, B.; Tan, C.S.; Ming, D. Applications of Smartphone-Based Aptasensor for Diverse Targets Detection. Biosensors 2022, 12, 477. [Google Scholar] [CrossRef] [PubMed]
- Hrncirik, F.; Roberts, I.V.; Swords, C.; Christopher, P.J.; Chhabu, A.; Gee, A.H.; Bance, M.L. Impact of Scala Tympani Geometry on Insertion Forces during Implantation. Biosensors 2022, 12, 999. [Google Scholar] [CrossRef] [PubMed]
Sample# | Microwell Dimension | Whole Blood Type | Optical Density (OD) | Diagnostic Decision | ⭘/🞩 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Without Aperture | With Aperture | ||||||||||
Height (μm) | Lower Base (500 μm): Upper Base | Anti-A | Anti-B | Anti-A | <1.7 (Agglutination) >1.7 (Non-agglutinaion) | Anti-B | <1.7 (Agglutination) >1.7 (Non-agglutinaion) | ||||
1 | 500 | 1:2 | A | 0.148 | 0.194 | 1.256 | Agglutination | 2.146 | Non-agglutination | A | ⭘ |
2 | 500 | 1:2 | B | 0.348 | 0.228 | 1.875 | Non-agglutination | 1.233 | Agglutination | B | ⭘ |
3 | 500 | 1:2 | O | 0.210 | 0.286 | 2.555 | Non-agglutination | 2.638 | Non-agglutination | O | ⭘ |
4 | 500 | 1:2 | AB | 0.164 | 0.120 | 1.258 | Agglutination | 1.338 | Agglutination | AB | ⭘ |
5 | 500 | 1:3 | A | 0.165 | 0.214 | 1.504 | Agglutination | 1.881 | Non-agglutination | A | ⭘ |
6 | 500 | 1:3 | B | 0.150 | 0.136 | 2.134 | Non-agglutination | 1.349 | Agglutination | B | ⭘ |
7 | 500 | 1:3 | O | 0.337 | 0.382 | 2.313 | Non-agglutination | 2.486 | Non-agglutination | O | ⭘ |
8 | 500 | 1:3 | AB | 0.240 | 0.223 | 1.119 | Agglutination | 1.529 | Agglutination | AB | ⭘ |
9 | 300 | 1:2 | A | 0.139 | 0.183 | 1.341 | Agglutination | 1.928 | Non-agglutination | A | ⭘ |
10 | 300 | 1:2 | B | 0.186 | 0.115 | 1.959 | Non-agglutination | 1.288 | Agglutination | B | ⭘ |
11 | 300 | 1:2 | O | 0.198 | 0.232 | 3.002 | Non-agglutination | 3.500 | Non-agglutination | O | ⭘ |
12 | 300 | 1:2 | AB | 0.254 | 0.153 | 0.936 | Agglutination | 1.169 | Agglutination | AB | ⭘ |
13 | 500 | 1:2 | A | 0.124 | 0.160 | 1.211 | Agglutination | 2.008 | Non-agglutination | A | ⭘ |
14 | 500 | 1:2 | B | 0.292 | 0.148 | 1.837 | Non-agglutination | 1.230 | Agglutination | B | ⭘ |
15 | 500 | 1:2 | O | 0.247 | 0.323 | 2.058 | Non-agglutination | 1.810 | Non-agglutination | O | ⭘ |
16 | 500 | 1:2 | AB | 0.159 | 0.204 | 1.214 | Agglutination | 0.979 | Agglutination | AB | ⭘ |
17 | 300 | 1:1 | A | 0.126 | 0.127 | 1.004 | Agglutination | 1.170 | Agglutination | O | 🞩 |
18 | 300 | 1:1 | B | 0.244 | 0.195 | 2.421 | Non-agglutination | 1.113 | Agglutination | B | ⭘ |
19 | 300 | 1:1 | O | 0.197 | 0.190 | 2.184 | Non-agglutination | 2.164 | Non-agglutination | O | ⭘ |
20 | 300 | 1:1 | AB | 0.144 | 0.176 | 1.289 | Agglutination | 1.381 | Agglutination | AB | ⭘ |
21 | 1000 | 1:2 | A | 0.096 | 0.107 | 1.010 | Agglutination | 2.232 | Non-agglutination | A | ⭘ |
22 | 1000 | 1:2 | B | 0.198 | 0.151 | 2.383 | Agglutination | 1.238 | Agglutination | B | ⭘ |
23 | 1000 | 1:2 | O | 0.247 | 0.284 | 2.284 | Non-agglutination | 2.355 | Non-agglutination | O | ⭘ |
24 | 1000 | 1:2 | AB | 0.120 | 0.098 | 1.220 | Agglutination | 1.390 | Agglutination | AB | ⭘ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, S.-W.; Jeon, D.-G.; Yoon, Y.-R.; Lee, G.H.; Chang, Y.; Won, D.I. Hemagglutination Assay via Optical Density Characterization in 3D Microtrap Chips. Biosensors 2023, 13, 733. https://doi.org/10.3390/bios13070733
Nam S-W, Jeon D-G, Yoon Y-R, Lee GH, Chang Y, Won DI. Hemagglutination Assay via Optical Density Characterization in 3D Microtrap Chips. Biosensors. 2023; 13(7):733. https://doi.org/10.3390/bios13070733
Chicago/Turabian StyleNam, Sung-Wook, Dong-Gyu Jeon, Young-Ran Yoon, Gang Ho Lee, Yongmin Chang, and Dong Il Won. 2023. "Hemagglutination Assay via Optical Density Characterization in 3D Microtrap Chips" Biosensors 13, no. 7: 733. https://doi.org/10.3390/bios13070733
APA StyleNam, S.-W., Jeon, D.-G., Yoon, Y.-R., Lee, G. H., Chang, Y., & Won, D. I. (2023). Hemagglutination Assay via Optical Density Characterization in 3D Microtrap Chips. Biosensors, 13(7), 733. https://doi.org/10.3390/bios13070733