The Development and Evaluation of Reagentless Glucose Biosensors Using Dendritic Gold Nanostructures as a Promising Sensing Platform
<p>Schematic representation of the preparation of the GR/DGNs/FCA/GOx, GR/DGNs/PD/GOx, GR/DGNs/TMB/GOx or GR/DGNs/TTF/GOx (<b>A</b>), and GR/DGNs/(PD/GOx)<sub>3</sub> (<b>B</b>) electrodes.</p> "> Figure 2
<p>Cyclic voltammograms registered using bare GR or GR electrodes modified with DGNs, TTF, TMB, PD, or FCA (<b>A</b>) and those acquired after different stages of GR electrode modification using PD as a redox mediator (<b>B</b>). Cyclic voltammograms were recorded in 0.05 mol L<sup>−1</sup> SA buffer of pH 6.0 with 0.1 mol L<sup>−1</sup> KCl.</p> "> Figure 3
<p>Calibration plots (<b>A</b>) and diagrams of current responses (<b>B</b>) registered using enzymatic glucose biosensors based on GR electrodes modified using DGNs without or with redox mediators. Details of the presented results: GR/DGNs/GOx (◼, 1 line, 1′ column) at +0.30 V vs. Ag/AgCl<sub>(3 mol L</sub><sup>−1</sup><sub>KCl)</sub>; GR/DGNs/FCA/GOx (◻, 2 line, 2′ column) at +0.70 V vs. Ag/AgCl<sub>(3 mol L</sub><sup>−1</sup><sub>KCl)</sub>; GR/DGNs/TMB/GOx (○, 4 line, 3′ column) at +0.75 V vs. Ag/AgCl<sub>(3 mol L</sub><sup>−1</sup><sub>KCl)</sub>; GR/DGNs/PD/GOx (◆, 3 line, 4′ column), GR/DGNs/(PD/GOx)<sub>3</sub> (▲, 5 line, 5′ column), and GR/DGNs/TTF/GOx (●, 6 line, 6′ column) at +0.40 V vs. Ag/AgCl<sub>(3 mol L</sub><sup>−1</sup><sub>KCl)</sub>. Responses of CPA were registered in 0.05 mol L<sup>−1</sup> SA buffer, pH 6.0, with 0.1 mol L<sup>−1</sup> KCl. Typical amperograms are presented in <a href="#app1-biosensors-13-00727" class="html-app">Figure S3</a>.</p> "> Figure 4
<p>Δ<span class="html-italic">I</span><sub>max</sub> values (<b>A</b>), calibration plots (<b>B</b>), and linear dynamic ranges (LDR) (<b>C</b>) for biosensors based on GR/DGNs/TTF/GOx/Ppy electrodes fabricated using various polymerization times. Details of the presented results: symbols for (<b>B</b>,<b>C</b>) graphs are the same. Current responses were registered using CPA in 0.05 mol L<sup>−1</sup> SA buffer, pH 6.0, with 0.1 mol L<sup>−1</sup> KCl at + 0.40 V vs. Ag/AgCl<sub>(3 mol L</sub><sup>−1</sup><sub>KCl)</sub>. Typical amperograms are presented in <a href="#app1-biosensors-13-00727" class="html-app">Figure S4A</a>.</p> "> Figure 5
<p>Δ<span class="html-italic">I</span><sub>max</sub> values (<b>A</b>), calibration plots (<b>B</b>), and linear dynamic ranges (<b>C</b>) for biosensors based on GR/DGNs/(PD/GOx)<sub>3</sub>/Ppy electrodes fabricated using various polymerization times. Details of the presented results: symbols for (<b>B</b>,<b>C</b>) graphs are the same. Current responses were registered using CPA in 0.05 mol L<sup>−1</sup> SA buffer, pH 6.0, with 0.1 mol L<sup>−1</sup> KCl at +0.40 V vs. Ag/AgCl<sub>(3 mol L</sub><sup>−1</sup><sub>KCl)</sub>. Typical amperograms are presented in <a href="#app1-biosensors-13-00727" class="html-app">Figure S4B</a>.</p> "> Figure 6
<p>Changes in current responses over time (<b>A</b>,<b>C</b>) and calibration plots (<b>B</b>,<b>D</b>) of glucose biosensors based on unmodified and Ppy-layer-modified GR/DGNs/TTF/GOx (<b>A</b>,<b>B</b>) or GR/DGNs/(PD/GOx)<sub>3</sub> electrodes (<b>C</b>,<b>D</b>). Details of the presented plots: GR/DGNs/TTF/GOx electrode (<b>A</b>—▲, line 1), GR/DGNs/TTF/GOx/Ppy<sub>(3.5 h)</sub> (<b>A</b>—●, line 2, <b>B</b>—all lines), GR/DGNs/(PD/GOx)<sub>3</sub> (<b>C</b>—▲, line 3), and GR/DGNs/(PD/GOx)<sub>3</sub>/Ppy<sub>(5 h)</sub> (<b>C</b>—●, line 4, <b>D</b>—all lines). Responses of CPA were registered in 0.05 mol L<sup>−1</sup> SA buffer, pH 6.0, with 0.1 mol L<sup>−1</sup> KCl at + 0.40 V vs. Ag/AgCl<sub>(3 mol L</sub><sup>−1</sup><sub>KCl)</sub>. Typical amperograms for the GR/DGNs/TTF/GOx, GR/DGNs/TTF/GOx/Ppy<sub>(3.5 h)</sub>, GR/DGNs/(PD/GOx)<sub>3</sub>, and GR/DGNs/(PD/GOx)<sub>3</sub>/Ppy<sub>(5 h)</sub> electrodes are presented in <a href="#app1-biosensors-13-00727" class="html-app">Figures S7A,B and S8A,B</a>, respectively.</p> "> Figure 7
<p>The influences of carbohydrates (1.0 mmol L<sup>−1</sup>) (<b>A</b>, grey color) and electroactive species (<b>B</b>, grey color) on the current responses of a biosensor based on a GR/DGNs/(PD/GOx)<sub>3</sub>/Ppy<sub>(5 h)</sub> electrode in the presence of 10.0 mmol L<sup>−1</sup> of glucose (white color). Responses of CPA were registered in 10-times-diluted serum at +0.40 V vs. Ag/AgCl<sub>(3 mol L</sub><sup>−1</sup><sub>KCl)</sub>. AA—ascorbic acid; UA—uric acid.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Preparation of the Graphite Rod Electrode
2.3. Electrochemical Characterization and Evaluation of the Developed Glucose Biosensors
2.4. The Enzymatic Synthesis of Polypyrrole and the Stability of the Developed Glucose Biosensors
2.5. The Application of a Biosensor Based on a GR/DGNs/(PD/GOx)3/Ppy(5 h) Electrode for Glucose Detection in Serum
3. Results and Discussion
3.1. Electrochemical Characterization of the Developed Biosensors
3.2. The Selection of the Optimal Redox Mediator for Glucose Biosensor Construction
3.3. Influence of the Polypyrrole Layer on Biosensor Performance
Working Electrode; Redox Mediator | LOD (mmol L−1)/ Sensitivity (μA mM−1 cm−2) | LDR (mmol L−1) | Reference |
---|---|---|---|
GR/DGNs/GOx; PMS in solution | 0.059/169 | 0.1–9.97 | [18] |
GR/DGNs/GOx/Ppy(22 h); PMS in solution | 0.070/59.4 | 0.1–19.9 | [19] |
GR/GNPs(3.5nm)/PD/GOx | 0.024/52.1 | 0.1–10.0 | [27] |
GR/PD/GOx | 0.095/28.5 | ||
SPC/DGNs/GOx; K3[Fe(CN6)] in solution | 0.007/46.76 | 0.028–8.4 | [12] |
Carbon ink/GOx/HRP; K4[Fe(CN6)] in solution | 0.03/− | 0.05–1.0 | [48] |
GC/NPG/GOx; − | 0.00102/12.1 | 0.05–10 | [13] |
Au-Cys/TTF/GOx-AOx | 0.03/− | 0.1–1.0 | [31] |
GC/OOPpy(300 s)-GNPs/GOx; − | 0.5/− | 1.0–8.0 | [39] |
GR/DGNs/TTF/GOx | 0.012/67.6 | 0.10–1.00 | This work This work This work This work |
GR/DGNs/TTF/GOx/Ppy(3.5 h) | 0.078/11.1 | 0.70–2.99 | |
GR/DGNs/(PD/GOx)3 | 0.114/13.4 | 0.50–16.5 | |
GR/DGNs/(PD/GOx)3/Ppy(5 h) | 0.683/3.03 | 2.0–39.0 |
3.4. The Stability of Glucose Biosensors
3.5. Glucose Determination in Blood Serum Using the Developed Glucose Biosensor Based on the GR/DGNs/(PD/GOx)3/Ppy(5 h) Electrode
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Xu, H.; Zhang, J.; Li, G. Electrochemical sensors for clinic analysis. Sensors 2008, 8, 2043–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galant, A.L.; Kaufman, R.C.; Wilson, J.D. Glucose: Detection and analysis. Food Chem. 2015, 188, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 2008, 108, 2482–2505. [Google Scholar] [CrossRef] [Green Version]
- Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.I.; Fiore, V.; et al. Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids. Sensors 2016, 16, 780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Orazio, P. Biosensors in clinical chemistry. Clin. Chim. Acta 2003, 334, 41–69. [Google Scholar] [CrossRef]
- Rasmussen, M.; Abdellaoui, S.; Minteer, S.D. Enzymatic biofuel cells: 30 years of critical advancements. Biosens. Bioelectron. 2016, 76, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Cosnier, S.; Le Goff, A.; Holzinger, M. Towards glucose biofuel cells implanted in human body for powering artificial organs: Review. Electrochem. Commun. 2014, 38, 19–23. [Google Scholar] [CrossRef]
- Turner, A.P.F. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, N.; Gadre, A.P.; Paranjape, M.; Currie, J.F. Gold layer-based dual crosslinking procedure of glucose oxidase with ferrocene monocarboxylic acid provides a stable biosensor. Anal. Biochem. 2005, 343, 188–191. [Google Scholar] [CrossRef]
- Soomro, R.A.; Akyuz, O.P.; Ozturk, R.; Ibupoto, Z.H. Highly sensitive non-enzymatic glucose sensing using gold nanocages as efficient electrode material. Sens. Actuators B Chem. 2016, 233, 230–236. [Google Scholar] [CrossRef]
- Shu, H.; Cao, L.; Chang, G.; He, H.; Zhang, Y.; He, Y. Direct electrodeposition of gold nanostructures onto glassy carbon electrodes for non-enzymatic detection of glucose. Electrochim. Acta 2014, 132, 524–532. [Google Scholar] [CrossRef]
- Liu, H.C.; Tsai, C.C.; Wang, G.J. Glucose biosensors based on a gold nanodendrite modified screen-printed electrode. Nanotechnology 2013, 24, 215101. [Google Scholar] [CrossRef]
- Wu, C.; Sun, H.; Li, Y.; Liu, X.; Du, X.; Wang, X.; Xu, P. Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection. Biosens. Bioelectron. 2015, 66, 350–355. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.Y.; Yang, C.; Xia, X.H. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem. Commun. 2007, 9, 981–988. [Google Scholar] [CrossRef]
- Mahshid, S.; Mepham, A.H.; Mahshid, S.S.; Burgess, I.B.; Saberi Safaei, T.; Sargent, E.H.; Kelley, S.O. Mechanistic control of the growth of three-dimensional gold sensors. J. Phys. Chem. C 2016, 120, 21123–21132. [Google Scholar] [CrossRef]
- Du, X.; Zhang, Z.; Miao, Z.; Ma, M.; Zhang, Y.; Zhang, C.; Wang, W.; Han, B.; Chen, Q. One step electrodeposition of dendritic gold nanostructures on β-lactoglobulin-functionalized reduced graphene oxide for glucose sensing. Talanta 2015, 144, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Ulstrup, J.; Li, H.; Wang, M.; Zhang, J.; Si, P. Nanoporous gold assembly of glucose oxidase for electrochemical biosensing. Electrochim. Acta 2014, 130, 559–567. [Google Scholar] [CrossRef]
- Ramanaviciene, A.; German, N.; Kausaite-Minkstimiene, A.; Ramanavicius, A. Glucose biosensor based on dendritic gold nanostructures electrodeposited on graphite electrode by different electrochemical methods. Chemosensors 2021, 9, 188. [Google Scholar] [CrossRef]
- German, N.; Popov, A.; Ramanavicius, A.; Ramanaviciene, A. Development and practical application of glucose biosensor based on dendritic gold nanostructures modified by conducting polymers. Biosensors 2022, 12, 641. [Google Scholar] [CrossRef]
- Seo, Y.; Manivannan, S.; Kang, I.; Lee, S.W.; Kim, K. Gold dendrites Co-deposited with M13 virus as a biosensor platform for nitrite ions. Biosens. Bioelectron. 2017, 94, 87–93. [Google Scholar] [CrossRef]
- Shanmugam, M.; Kim, K. Electrodeposited gold dendrites at reduced graphene oxide as an electrocatalyst for nitrite and glucose oxidation. J. Electroanal. Chem. 2016, 776, 82–92. [Google Scholar] [CrossRef]
- Soomro, R.A.; Akyuz, O.P.; Ozturk, R.; Ibupoto, Z.H.; Shu, H.; Cao, L.; Chang, G.; He, H.; Zhang, Y.; He, Y.; et al. Glucose biosensor based on immobilization of glucose oxidase in electropolymerized poly(o-phenylenediamine) film on platinum nanoparticles-polyvinylferrocenium modified electrode. Electrochim. Acta 2014, 9, 524–532. [Google Scholar] [CrossRef]
- Li, X.; Gao, L.; Chen, Z. Highly sensitive colorimetric detection of glucose through glucose oxidase and Cu2+ -catalyzed 3,3′,5,5′-tetramethylbenzidine oxidation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 213, 37–41. [Google Scholar] [CrossRef]
- Fiorito, P.A.; Córdoba De Torresi, S.I. Glucose amperometric biosensor based on the co-immobilization of glucose oxidase (GOx) and ferrocene in poly(pyrrole) generated from ethanol/water mixtures. J. Braz. Chem. Soc. 2001, 12, 729–733. [Google Scholar] [CrossRef]
- Takahashi, S.; Anzai, J. Recent Progress in ferrocene-modified thin films and nanoparticles for biosensors. Materials 2013, 6, 5742–5762. [Google Scholar] [CrossRef] [Green Version]
- Zor, E.; Oztekin, Y.; Mikoliunaite, L.; Voronovic, J.; Ramanaviciene, A.; Anusevicius, Z.; Bingol, H.; Ramanavicius, A. 1,10-Phenanthroline-5,6-dione and 9,10-phenanthrenequinone as redox mediators for amperometric glucose biosensors. J. Solid State Electrochem. 2014, 18, 1529–1536. [Google Scholar] [CrossRef]
- German, N.; Kausaite-Minkstimiene, A.; Ramanavicius, A.; Semashko, T.; Mikhailova, R.; Ramanaviciene, A. The use of different glucose oxidases for the development of an amperometric reagentless glucose biosensor based on gold nanoparticles covered by polypyrrole. Electrochim. Acta 2015, 169, 326–333. [Google Scholar] [CrossRef]
- Darabdhara, G.; Sharma, B.; Das, M.R.; Boukherroub, R.; Szunerits, S. Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection. Sens. Actuators B Chem. 2017, 238, 842–851. [Google Scholar] [CrossRef]
- Kowalewska, B.; Kulesza, P.J. Application of tetrathiafulvalene-modified carbon nanotubes to preparation of integrated mediating system for bioelectrocatalytic oxidation of glucose. Electroanalysis 2009, 21, 351–359. [Google Scholar] [CrossRef]
- Nielsen, M.B.; Lomholt, C.; Becher, J. Tetrathiafulvalene-based supramolecular chemistry; Recent developments. Forma 2000, 15, 233–248. [Google Scholar]
- Asav, E.; Akyilmaz, E. Preparation and optimization of a bienzymic biosensor based on self-assembled monolayer modified gold electrode for alcohol and glucose detection. Biosens. Bioelectron. 2010, 25, 1014–1018. [Google Scholar] [CrossRef]
- Wu, M.; Mao, X.; Li, X.; Yang, X.; Zhu, L. 1,10-phenanthroline-5,6-dione adsorbed on carbon nanotubes: The electrochemistry and catalytic oxidation of ascorbic acid. J. Electroanal. Chem. 2012, 682, 1–6. [Google Scholar] [CrossRef]
- Gayathri, P.; Senthil Kumar, A. Electrochemical behavior of the 1,10-phenanthroline ligand on a multiwalled carbon nanotube surface and its relevant electrochemistry for selective recognition of copper ion and hydrogen peroxide sensing. Langmuir 2014, 30, 10513–10521. [Google Scholar] [CrossRef]
- Ivashenko, O.; van Herpt, J.T.; Rudolf, P.; Feringa, B.L.; Browne, W.R. Oxidative electrochemical aryl C–C coupling of spiropyrans. Chem. Commun. 2013, 49, 6737–6739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauscher, U.; Bartels, K.; Schrader, I.; Azov, V.A.; Ravoo, B.J. Metastable oxidation states of tetrathiafulvalenes on the surface of liposomes. J. Mater. Chem. B 2015, 3, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Zavada, S.R.; Battsengel, T.; Scott, T.F. Radical-mediated enzymatic polymerizations. Int. J. Mol. Sci. 2016, 17, 195. [Google Scholar] [CrossRef] [Green Version]
- Le, T.H.; Kim, Y.; Yoon, H. Electrical and electrochemical properties of conducting polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Palomera, N.; Vera, J.L.; Meléndez, E.; Ramirez-Vick, J.E.; Tomar, M.S.; Arya, S.K.; Singh, S.P. Redox active poly(pyrrole-N-ferrocene-pyrrole) copolymer based mediator-less biosensors. J. Electroanal. Chem. 2011, 658, 33–37. [Google Scholar] [CrossRef]
- Haghighi, B.; Tabrizi, M.A. Direct electron transfer from glucose oxidase immobilized on an overoxidized polypyrrole film decorated with Au nanoparticles. Colloids Surfaces B Biointerfaces 2013, 103, 566–571. [Google Scholar] [CrossRef]
- Jugović, B.; Grgur, B.; Antov, M.; Knežević-Jugović, Z.; Stevanović, J.; Gvozdenović, M. Polypyrrole-based enzyme electrode with immobilized glucose oxidase for electrochemical determination of glucose. Int. J. Electrochem. Sci. 2016, 11, 1152–1161. [Google Scholar] [CrossRef]
- German, N.; Ramanaviciene, A.; Ramanavicius, A. Formation of polyaniline and polypyrrole nanocomposites with embedded glucose oxidase and gold nanoparticles. Polymers 2019, 11, 377. [Google Scholar] [CrossRef] [Green Version]
- German, N.; Popov, A.; Ramanaviciene, A.; Ramanavicius, A. Enzymatic formation of polyaniline, polypyrrole, and polythiophene nanoparticles with embedded glucose oxidase. Nanomaterials 2019, 9, 806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popov, A.; Brasiunas, B.; Damaskaite, A.; Plikusiene, I.; Ramanavicius, A.; Ramanaviciene, A. Electrodeposited gold nanostructures for the enhancement of electrochromic properties of pani–pedot film deposited on transparent electrode. Polymers 2020, 12, 2778. [Google Scholar] [CrossRef] [PubMed]
- Adeel, S.M.; Li, Q.; Nafady, A.; Zhao, C.; Siriwardana, A.I.; Bond, A.M.; Martin, L.L. A systematic study of the variation of tetrathiafulvalene (TTF), TTF+ and TTF2+ reaction pathways with water in the presence and absence of light. RSC Adv. 2014, 4, 49789–49795. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Cheng, Y.; Jiang, S.P. Effect of carbon nanotubes on direct electron transfer and electrocatalytic activity of immobilized glucose oxidase. ACS Omega 2018, 3, 667–676. [Google Scholar] [CrossRef]
- Zor, E.; Oztekin, Y.; Ramanaviciene, A.; Anusevicius, Z.; Bingol, H.; Barkauskas, J.; Ersoz, M.; Ramanavicius, A. Amperometric glucose biosensor based on glucose oxidase, 1,10-phenanthroline-5,6-dione and carbon nanotubes. J. Electrochem. Soc. 2014, 161, H3064–H3069. [Google Scholar] [CrossRef]
- German, N.; Ramanaviciene, A.; Ramanavicius, A. Formation and electrochemical evaluation of polyaniline and polypyrrole nanocomposites based on glucose oxidase and gold nanostructures. Polymers 2020, 12, 3026. [Google Scholar] [CrossRef]
- Rama, E.C.; Costa-García, A.; Fernández-Abedul, M.T. Pin-based electrochemical glucose sensor with multiplexing possibilities. Biosens. Bioelectron. 2017, 88, 34–40. [Google Scholar] [CrossRef]
- Banks, C.E.; Compton, R.G.; Fisher, A.C.; Henley, I.E. The transport limited currents at insonated electrodes. Phys. Chem. Chem. Phys. 2004, 6, 3147–3152. [Google Scholar] [CrossRef]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The human serum metabolome. PLoS ONE 2011, 6, e16957. [Google Scholar] [CrossRef] [Green Version]
- Sautin, Y.Y.; Johnson, R.J. Uric acid: The oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids 2008, 27, 608–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, J.; Ahn, S.; Yim, J.; Cheon, Y.; Jeong, S.H.; Lee, S.G.; Kim, J.H. Influence of vitamin C and maltose on the accuracy of three models of glucose meters. Ann. Lab. Med. 2016, 36, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, P.; Sidloi, M.; Tonks, D.B. Estimation of serum ascorbic acid in patients and the effect of ascorbic acid and its oxidation products on SMA 12/60 parameters. Clin. Biochem. 1980, 13, 73–77. [Google Scholar] [CrossRef]
- Rong, L.Q.; Yang, C.; Qian, Q.Y.; Xia, X.H. Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta 2007, 72, 819–824. [Google Scholar] [CrossRef]
- Villena Gonzales, W.; Mobashsher, A.T.; Abbosh, A. The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors 2019, 19, 800. [Google Scholar] [CrossRef] [Green Version]
Added Concentration (mmol L−1) | Detected * Concentration (mmol L−1) | RSD (%) | Recovery Ratio (%) |
---|---|---|---|
10.0 | 9.78 ± 0.47 | 4.76 | 97.8 |
20.0 | 19.5 ± 1.3 | 6.50 | 97.5 |
25.0 | 24.5 ± 1.5 | 6.31 | 98.0 |
30.0 | 29.3 ± 1.6 | 5.51 | 97.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
German, N.; Popov, A.; Ramanaviciene, A. The Development and Evaluation of Reagentless Glucose Biosensors Using Dendritic Gold Nanostructures as a Promising Sensing Platform. Biosensors 2023, 13, 727. https://doi.org/10.3390/bios13070727
German N, Popov A, Ramanaviciene A. The Development and Evaluation of Reagentless Glucose Biosensors Using Dendritic Gold Nanostructures as a Promising Sensing Platform. Biosensors. 2023; 13(7):727. https://doi.org/10.3390/bios13070727
Chicago/Turabian StyleGerman, Natalija, Anton Popov, and Almira Ramanaviciene. 2023. "The Development and Evaluation of Reagentless Glucose Biosensors Using Dendritic Gold Nanostructures as a Promising Sensing Platform" Biosensors 13, no. 7: 727. https://doi.org/10.3390/bios13070727
APA StyleGerman, N., Popov, A., & Ramanaviciene, A. (2023). The Development and Evaluation of Reagentless Glucose Biosensors Using Dendritic Gold Nanostructures as a Promising Sensing Platform. Biosensors, 13(7), 727. https://doi.org/10.3390/bios13070727