A Self-Powered Wearable Motion Sensor for Monitoring Volleyball Skill and Building Big Sports Data
<p>Experimental design of self-powered wearable motion sensor for monitoring volleyball skill and building big sports data. (<b>a</b>) The wearable sensor for building big sports data; (<b>b</b>) the optical image of sensor; (<b>c</b>) The fabrication processes of the self-powered sensor; (<b>d</b>) The working mechanism of the piezoelectric sensor. (<b>e</b>) The top-view SEM image of PVDF film; (<b>f</b>) The side-view SEM image of PVDF film; (<b>g</b>) The side-view SEM image of PVDF film encapsulated by PDMS.</p> "> Figure 2
<p>The performance of the self-powered wearable sensor. (<b>a</b>) The schematic diagram of the bending sensor with stepper motor; (<b>b</b>) The output piezoelectric voltage at different bending frequencies; (<b>c</b>) Details of output piezoelectric voltage at different frequencies; (<b>d</b>) The output piezoelectric voltage at different bending angles; (<b>e</b>) The output piezoelectric voltage response at different frequencies; (<b>f</b>) The output piezoelectric voltage response at different angles; (<b>g</b>) The durability test of sensor.</p> "> Figure 3
<p>Multiple functions of the sensor. (<b>a</b>) Circuit diagram of the charging system for the sensor; (<b>b</b>) The charging capability of the sensor under different capacitance capacities; (<b>c</b>) The relationship between charging the voltage and charging time of sensor; (<b>d</b>) An optical image of the sensor while monitoring pulse; (<b>e</b>) The output piezoelectric voltage under volunteer’s different states; (<b>f</b>) The sensor for voice recognition; (<b>g</b>) The output piezoelectric voltage when the volunteer speaks different words.</p> "> Figure 4
<p>Practical application of the sensor. (<b>a</b>) A schematic diagram of spiking technology; (<b>b</b>)The optical image of the sensor attached on the finger; (<b>c</b>) An optical image of the sensor attached on the elbow; (<b>d</b>) A schematic diagram of different bending angles of palm during test; (<b>e</b>–<b>g</b>) The output piezoelectric voltage of three subjects when finger bending angle changes; (<b>h</b>) A schematic diagram of different bending angles of the elbow during testing; (<b>i</b>–<b>k</b>) The output piezoelectric voltage of three subjects when elbow bending angle changes.</p> "> Figure 5
<p>Simple wireless system integrated with the sensor. (<b>a</b>) The wireless system when wrist is straight; (<b>b</b>) The wireless system when wrist is bent.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Fabrication
2.2. Characterization and Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fuchs, P.X.; Fusco, A.; Bell, J.W.; von Duvillard, S.P.; Cortis, C.; Wagner, H. Movement characteristics of volleyball spike jump performance in females. J. Sci. Med. Sport 2019, 22, 833–837. [Google Scholar] [CrossRef]
- Challoumas, D.; Artemiou, A. Predictors of Attack Performance in High-Level Male Volleyball Players. Int. J. Sports Physiol. Perform. 2018, 13, 1230–1236. [Google Scholar] [CrossRef]
- Baena-Raya, A.; Soriano-Maldonado, A.; Rodriguez-Perez, M.A.; Garcia-de-Alcaraz, A.; Ortega-Becerra, M.; Jimenez-Reyes, P.; Garcia-Ramos, A. The force-velocity profile as determinant of spike and serve ball speed in top-level male volleyball players. PLoS ONE 2021, 16, e0249612. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.T.; Tsai, W.J.; Lee, S.Y.; Yu, J.Y. Ball tracking and 3D trajectory approximation with applications to tactics analysis from single-camera volleyball sequences. Multimed. Tools Appl. 2011, 60, 641–667. [Google Scholar] [CrossRef]
- Han, J.; Farin, D.; de With, P.H.N. Broadcast Court-Net Sports Video Analysis Using Fast 3-D Camera Modeling. IEEE Trans. Circuits Syst. Video Technol. 2008, 18, 1628–1638. [Google Scholar]
- Shan, C.Z.; Ming, E.S.L.; Rahman, H.A.; Fai, Y.C. Investigation of Upper Limb Movement during Badminton Smash. In Proceedings of the 2015 10th Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, 31 May–3 June 2015; pp. 1–6. [Google Scholar]
- Wang, Y.; Zhao, Y.; Chan, R.H.M.; Li, W.J. Volleyball Skill Assessment Using a Single Wearable Micro Inertial Measurement Unit at Wrist. IEEE Access 2018, 6, 13758–13765. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, K.; Jiang, W.; Jin, X. Method of Analyzing and Managing Volleyball Action by Using Action Sensor of Mobile Device. J. Sens. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Rawashdeh, S.A.; Rafeldt, D.A.; Uhl, T.L. Wearable IMU for Shoulder Injury Prevention in Overhead Sports. Sensors 2016, 16, 1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, Y.S.; Kim, J.H.; Xie, Z.; Cho, S.; Han, H.; Jeon, S.W.; Park, M.; Namkoong, M.; Avila, R.; Song, Z.; et al. Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nat. Commun. 2021, 12, 5008. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Min, J.H.; Yu, Y.; Wang, H.B.; Yang, Y.R.; Zhang, H.X.; Gao, W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 2020, 6, eaay9842. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xu, L.; Zheng, Q.; Kang, Y.; Shi, B.; Jiang, D.; Li, H.; Qu, X.; Fan, Y.; Wang, Z.L.; et al. Human Motion Driven Self-Powered Photodynamic System for Long-Term Autonomous Cancer Therapy. ACS Nano 2020, 14, 8074–8083. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Shi, Q.; He, T.; Yi, Z.; Ma, Y.; Yang, B.; Chen, T.; Lee, C. Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring. ACS Nano 2019, 13, 1940–1952. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Xiao, M.; Zou, G.; Liu, L.; Duley, W.W.; Zhou, Y.N. Self-Powered Wearable Electronics Based on Moisture Enabled Electricity Generation. Adv. Mater. 2018, 30, e1705925. [Google Scholar] [CrossRef]
- Xu, C.; Song, Y.; Han, M.; Zhang, H. Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst. Nanoeng. 2021, 7, 25. [Google Scholar] [CrossRef]
- Xue, X.; Qu, Z.; Fu, Y.; Yu, B.; Xing, L.; Zhang, Y. Self-powered electronic-skin for detecting glucose level in body fluid basing on piezo-enzymatic-reaction coupling process. Nano Energy 2016, 26, 148–156. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; Gao, H.; Yang, W.; Wang, S.; Xing, L.; Xue, X. Self-Powered Implantable Skin-Like Glucometer for Real-Time Detection of Blood Glucose Level In Vivo. Nanomicro. Lett. 2018, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Zheng, Z.; Yang, L.; Luo, M.; Fu, L.; Lin, B.; Xu, C. A High-Performance, Sensitive, Wearable Multifunctional Sensor Based on Rubber/CNT for Human Motion and Skin Temperature Detection. Adv. Mater. 2021, 34, e2107309. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhao, T.; Guan, H.; Zhong, T.; He, H.; Xing, L.; Xue, X. A self-powered temperature-sensitive electronic-skin based on tribotronic effect of PDMS/PANI nanostructures. J. Mater. Sci. Technol. 2019, 35, 2187–2193. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, J.; Li, X.; Zhou, Z.; Meng, K.; Wei, W.; Yang, J.; Wang, Z.L. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring. ACS Nano 2017, 11, 8830–8837. [Google Scholar] [CrossRef]
- Shen, S.; Xiao, X.; Xiao, X.; Chen, J. Wearable triboelectric nanogenerators for heart rate monitoring. Chem. Commun. 2021, 57, 5871–5879. [Google Scholar] [CrossRef]
- Chen, S.; Wu, N.; Lin, S.; Duan, J.; Xu, Z.; Pan, Y.; Zhang, H.; Xu, Z.; Huang, L.; Hu, B.; et al. Hierarchical elastomer tuned self-powered pressure sensor for wearable multifunctional cardiovascular electronics. Nano Energy 2020, 70, 104460. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Z.; Gao, F.; Zhao, X.; Xun, X.; Kang, Z.; Liao, Q.; Zhang, Y. Self-powered ultrasensitive pulse sensors for noninvasive multi-indicators cardiovascular monitoring. Nano Energy 2021, 81, 105614. [Google Scholar] [CrossRef]
- Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2021, 171, 112714. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Han, Y.; Zhang, W.; Zhong, T.; Guan, H.; Song, Y.; Zhang, Y.; Xing, L.; Xue, X.; Li, G.; et al. A self-powered wearable body-detecting/brain-stimulating system for improving sports endurance performance. Nano Energy 2022, 93, 106851. [Google Scholar] [CrossRef]
- Liu, M.; Pu, X.; Jiang, C.; Liu, T.; Huang, X.; Chen, L.; Du, C.; Sun, J.; Hu, W.; Wang, Z.L. Large-Area All-Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals. Adv. Mater. 2017, 29, 1703700. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.-S.; Wang, Y.; Gong, W.; Zhang, Q.; Wang, H.; Brugger, J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 2018, 48, 152–160. [Google Scholar] [CrossRef]
- Shi, M.; Wu, H.; Zhang, J.; Han, M.; Meng, B.; Zhang, H. Self-powered wireless smart patch for healthcare monitoring. Nano Energy 2017, 32, 479–487. [Google Scholar] [CrossRef]
- Guo, W.; Tan, C.; Shi, K.; Li, J.; Wang, X.X.; Sun, B.; Huang, X.; Long, Y.Z.; Jiang, P. Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale 2018, 10, 17751–17760. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Yi, C.; Liu, S.; Wang, Y.; Liu, L.; Liu, X.; Xu, X.; Wang, L. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals. Biosens. Bioelectron. 2016, 77, 907–913. [Google Scholar] [CrossRef]
- Shi, Y.; Wei, X.; Wang, K.; He, D.; Yuan, Z.; Xu, J.; Wu, Z.; Wang, Z.L. Integrated All-Fiber Electronic Skin toward Self-Powered Sensing Sports Systems. ACS Appl. Mater. Interfaces 2021, 13, 50329–50337. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, Y.; Jia, C.; Zhao, T.; Bian, M.; Jia, C.; Zhang, Y.; Mao, Y. A Self-Powered Portable Flexible Sensor of Monitoring Speed Skating Techniques. Biosensors 2021, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Zhu, Y.; Zhao, T.; Jia, C.; Bian, M.; Li, X.; Liu, Y.; Liu, B. A Portable and Flexible Self-Powered Multifunctional Sensor for Real-Time Monitoring in Swimming. Biosensors 2021, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.R.; Tang, W.; Wang, Z.L. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. Adv. Mater. 2016, 28, 4283–4305. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Ding, W.; Liu, J.; Yang, B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy 2020, 78, 105251. [Google Scholar] [CrossRef]
- Liu, H.; Zhong, J.; Lee, C.; Lee, S.-W.; Lin, L. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl. Phys. Rev. 2018, 5, 041306. [Google Scholar] [CrossRef]
- Sarvestan, J.; Svoboda, Z.; Linduska, P. Kinematic differences between successful and faulty spikes in young volleyball players. J. Sports Sci. 2020, 38, 2314–2320. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.F.; Wang, Y.C. Spiking Kinematics in Volleyball Players with Shoulder Pain. J. Athl. Train. 2019, 54, 90–98. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Long, Z.; Yang, G.; Xing, L. A Self-Powered Wearable Motion Sensor for Monitoring Volleyball Skill and Building Big Sports Data. Biosensors 2022, 12, 60. https://doi.org/10.3390/bios12020060
Liu W, Long Z, Yang G, Xing L. A Self-Powered Wearable Motion Sensor for Monitoring Volleyball Skill and Building Big Sports Data. Biosensors. 2022; 12(2):60. https://doi.org/10.3390/bios12020060
Chicago/Turabian StyleLiu, Weijie, Zhihe Long, Guangyou Yang, and Lili Xing. 2022. "A Self-Powered Wearable Motion Sensor for Monitoring Volleyball Skill and Building Big Sports Data" Biosensors 12, no. 2: 60. https://doi.org/10.3390/bios12020060
APA StyleLiu, W., Long, Z., Yang, G., & Xing, L. (2022). A Self-Powered Wearable Motion Sensor for Monitoring Volleyball Skill and Building Big Sports Data. Biosensors, 12(2), 60. https://doi.org/10.3390/bios12020060