A Multi-Layered Origami Tactile Sensory Ring for Wearable Biomechanical Monitoring
<p>Origami tactile sensors with three different structures and their conduction mechanism: (<b>a</b>) Preparation of conductive paper by Screen printing process. (<b>b</b>) Schematic diagram of Love-knot, Square-knot, and Pentagon-knot origami structure. Airlaid paper was used as substrate with the graphene ink used as sensing material. (<b>c</b>) ECR variation mechanism for tactile sensing.</p> "> Figure 2
<p>Material properties data: (<b>a</b>) SEM image of uncoated airlaid paper. (<b>b</b>) SEM image of screen-printed airlaid paper. (<b>c</b>) The magnified view of a single fiber, which shows the infusion of conductive ink into the fibrous structure of the substrate. (<b>d</b>) C1s and (<b>e</b>) O1s peaks of XPS spectra of conductive composite films. The deconvolution of these peaks were done to understand the bonds present in the material. (<b>f</b>) Raman spectra of conductive composite films showing the material composition of both inks. The D, G and 2D bands were explored to understand the presence of graphene layers.</p> "> Figure 3
<p>Circuit representation of Origami Tactile sensor. (<b>a</b>) The front and back side schematic of Love-knot origami tactile sensor (S1) showing the symmetrical arrangement of sensing layers. The real-time image of sensing device is also presented here. (<b>b</b>) The circuit representation of Love-knot structure. (<b>c</b>) The schematic diagram of Square-knot origami tactile sensor along with the real-time photograph of the device. (<b>d</b>) The circuit representation of Square-knot structure for three different configurations based on interfacial resistive layers’ numbers i.e., S2, S3 and S4. To identify those layers, the face-to-face arranged conductive papers were marked red borderline in this schematic. (<b>e</b>) The front and back side schematic of Pentagon-knot origami tactile sensor (S5), which also demonstrates the symmetrical arrangement of sensing layers. The real-time image of sensing device is also presented here. (<b>f</b>) The circuit representation of Pentagon-knot structure.</p> "> Figure 4
<p>Resistive sensing characteristics of Origami tactile sensors. (<b>a</b>) The comparison of recorded initial resistance (R<sub>0</sub>) value of all five origami sensor configuration along with the R<sub>0</sub> value of single sensing layer. Normalized resistance (R/R<sub>0</sub>) changes with applied pressure for all the origami tactile sensors for (<b>b</b>) the entire pressure range of 0–200 kPa and (<b>c</b>) low pressure region i.e., 0–5 kPa. (<b>d</b>) Sensitivity data of all five different fabricated sensors for three different pressures. (<b>e</b>) The co-efficient of variation data of all fabricated Origami tactile sensors indicating the stability and repeatability of sensor measurements. (<b>f</b>) The degree of hysteresis of all fabricated Origami tactile sensors indicating the accuracy of fabricated sensors. (<b>g</b>) Reversible testing for 2000 cycles of repeated loading and unloading of medium (10 kPa) and high (200 kPa) applied pressures. (<b>h</b>) Five number of cycles from medium- and high-pressure regions. (<b>i</b>) The relative ECR values of all fabricated origami sensors at 10 and 200 kPa to understand the resistance deviation in the end of loading-unloading cycle. The time-dependent resistance characteristics for tactile sensors with (<b>j</b>) 10 kPa and (<b>k</b>) 200 kPa applies pressure for one cycle. (<b>l</b>) The Recovery time of all five different sensors calculate from the time-dependent resistive data for one cycle.</p> "> Figure 5
<p>Comparison between origami structured tactile sensing device and planner sensing devices. (<b>a</b>) The resistive characteristics data of planner and origami tactile sensors for dual interfacial layers and quadruple interfacial layers. (<b>b</b>) The sensitivity comparison for 0.05 kPa and 1 kPa applied pressure. (<b>c</b>) The Formation method of Origami tactile sensing ring. It was created by using the extended paper strip to form a loop around the finger. Two sensors (S2 and S5) were selected as shown in the inset. The placement of origami ring was also demonstrated here. (<b>d</b>) Demonstration of wearable application by performing the grasping test by using two different objects, i.e., Tennis Ball and Rubber Bellow respectively.</p> "> Figure 6
<p>Grip Strength Monitoring. (<b>a</b>) Experimental set up of grip strength monitoring. (<b>b)</b> The close-up image of hand to show the origami ring location. (<b>c</b>) Isometric results of dynamometer and origami ring with S2 and S5 for three different applied force. (<b>d</b>) Isotonic test results of dynamometer and origami ring with S2 and S5 at rapid press and release movement. (<b>e</b>) Experimental set up of pulse rate monitoring. (<b>f</b>) The close-up image of hand to show the origami ring location. (<b>g</b>) Pulse-rate data detected by S2 and S5 origami ring compared to a standard ECG signal obtained simultaneously. (<b>h</b>) The three peaks of both pulse rate and ECG signal were emphasized for analyzing the pulse transit time (PTT).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Fabrication and Assembly
2.2. Characterization Methodologies
3. Results
3.1. Sensing Mechanism
3.2. Material Analysis
3.3. Structural Analysis
3.4. Resistive Sensing Characterization
3.5. Self-Packaging of Tactile Sensors by Origami Ring Formation
3.6. Demonstration of Wearable Sensing Application with Origami Ring
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Pumera, M. Wearable Sensors for Telehealth Based on Emerging Materials and Nanoarchitectonics. npj Flex. Electron. 2023, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Fabbrizio, A.; Fucarino, A.; Cantoia, M.; De Giorgio, A.; Garrido, N.D.; Iuliano, E.; Reis, V.M.; Sausa, M.; Vilaça-Alves, J.; Zimatore, G.; et al. Smart Devices for Health and Wellness Applied to Tele-Exercise: An Overview of New Trends and Technologies Such as IoT and AI. Healthcare 2023, 11, 1805. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, H.; Nan, S.; Yang, Y.; Wang, Z.; Zhu, R.; Zhang, T.; Zhang, J. Flexible Pressure Sensors Tuned by Interface Structure Design—Numerical and Experimental Study. Appl. Surf. Sci. 2023, 638, 158021. [Google Scholar] [CrossRef]
- Gao, J.; Fan, Y.; Zhang, Q.; Luo, L.; Hu, X.; Li, Y.; Song, J.; Jiang, H.; Gao, X.; Zheng, L.; et al. Ultra-Robust and Extensible Fibrous Mechanical Sensors for Wearable Smart Healthcare. Adv. Mater. 2022, 34, 2107511. [Google Scholar] [CrossRef]
- Yan, W.; Ma, C.; Cai, X.; Sun, Y.; Zhang, G.; Song, W. Self-Powered and Wireless Physiological Monitoring System with Integrated Power Supply and Sensors. Nano Energy 2023, 108, 108203. [Google Scholar] [CrossRef]
- Song, W.; Gan, B.; Jiang, T.; Zhang, Y.; Yu, A.; Yuan, H.; Chen, N.; Sun, C.; Wang, Z.L. Nanopillar Arrayed Triboelectric Nanogenerator as a Self-Powered Sensitive Sensor for a Sleep Monitoring System. ACS Nano. 2016, 10, 8097–8103. [Google Scholar] [CrossRef]
- Zeng, X.; Peng, R.; Fan, Z.; Lin, Y. Self-Powered and Wearable Biosensors for Healthcare. Mater. Today Energy 2022, 23, 100900. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, Y.; Wu, J.; Nyein, H.Y.Y.; Bariya, M.; Tai, L.-C.; Chao, M.; Ji, W.; Zhang, G.; Fan, Z.; et al. A Fully Integrated and Self-Powered Smartwatch for Continuous Sweat Glucose Monitoring. ACS Sens. 2019, 4, 1925–1933. [Google Scholar] [CrossRef]
- Pang, Y.; Xu, X.; Chen, S.; Fang, Y.; Shi, X.; Deng, Y.; Wang, Z.-L.; Cao, C. Skin-Inspired Textile-Based Tactile Sensors Enable Multifunctional Sensing of Wearables and Soft Robots. Nano Energy 2022, 96, 107137. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Tong, Q.; Shan, B.; He, L.; Zhang, Y.; Wang, D. Active Electronic Skin: An Interface towards Ambient Haptic Feedback on Physical Surfaces. npj Flex. Electron. 2024, 8, 25. [Google Scholar] [CrossRef]
- Wang, X.; Yu, J.; Cui, Y.; Li, W. Research Progress of Flexible Wearable Pressure Sensors. Sens. Actuator A Phys. 2021, 330, 112838. [Google Scholar] [CrossRef]
- Zang, Y.; Zhang, F.; Di, C.; Zhu, D. Advances of Flexible Pressure Sensors Toward Artificial Intelligence and Health Care Applications. Mater. Horiz. 2015, 2, 140–156. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, X.; Xu, J.; Fang, Y.; Chen, G.; Song, Y.; Li, S.; Chen, J. Giant Magnetoelastic Effect in Soft Systems for Bioelectronics. Nat. Mater. 2021, 20, 1670–1676. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.-J.; Guo, W.-T.; Sun, Q.-J. Emerging Functional Polymer Composites for Tactile Sensing. Materials 2023, 16, 4310. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.-T.; Tang, X.-G.; Tang, Z.; Sun, Q.-J. Recent Advances in Polymer Composites for Flexible Pressure Sensors. Polymers. 2023, 15, 2176. [Google Scholar] [CrossRef]
- Li, L.; Zheng, J.; Chen, J.; Luo, Z.; Su, Y.; Tang, W.; Gao, X.; Li, Y.; Cao, C.; Liu, Q.; et al. Flexible Pressure Sensors for Biomedical Applications: From Ex Vivo to In Vivo. Adv. Mater. Interfaces 2020, 7, 2000743. [Google Scholar] [CrossRef]
- Sun, Q.-J.; Lai, Q.-T.; Tang, Z.; Tang, X.-G.; Zhao, X.-H.; Roy, V.A.L. Advanced Functional Composite Materials toward E-Skin for Health Monitoring and Artificial Intelligence. Adv. Mater. Technol. 2023, 8, 2201088. [Google Scholar] [CrossRef]
- Zheng, S.; Du, R.; Wang, N.; Cao, M.; Zhang, Y.; Jiang, Y.; Liu, Z.; Yang, W.; Yang, M.; Xia, X. Construction of Dual Conductive Network in Paper-Based Composites towards Flexible Degradable Dual-Mode Sensor. Compos. Part A Appl. Sci. Manuf. 2021, 151, 106649. [Google Scholar] [CrossRef]
- Wang, M.; Wang, G.; Zheng, M.; Xu, C.; Liu, Z.; Yang, Y. Epoxy Resin Reinforced High-Performance Conductive Composite Foam with Ultra-Wide Pressure Sensing Range. Electrochim. Acta. 2024, 484, 144109. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Liu, J.; Zhu, Y.; Kong, G.; Ou, Z.; Lai, D.; Zhang, S.; Che, C. Reduced Graphene Oxide/Polyurethane Composite Sponge Fabricated by Dual-Templates Method for Piezoresistive Pressure Sensor. Carbon Lett. 2024, 34, 805–814. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Z.; Zhou, H.; Guo, X.; Zhang, Y.; Wang, Y.; Liu, P.; Liu, C.; Ma, Y.; Zhang, Y. Highly Sensitive Pressure Sensor Based on Structurally Modified Tissue Paper for Human Physiological Activity Monitoring. J. Appl. Polym. Sci. 2020, 137, 48973. [Google Scholar] [CrossRef]
- Karmakar, R.S.; Chu, C.-P.; Liao, Y.-C.; Lu, Y.-W. Pva Tactile Sensors Based on Electrical Contact Resistance (Ecr) Change Mechanism for Subtle Pressure Detection. Sens. Actuator A Phys. 2022, 342, 113613. [Google Scholar] [CrossRef]
- Karmakar, R.S.; Chu, C.-P.; Li, C.-L.; Hsueh, C.-H.; Liao, Y.-C.; Lu, Y.-W. Skin-Inspired Tactile Sensor on Cellulose Fiber Substrates with Interfacial Microstructure for Health Monitoring and Guitar Posture Feedback. Biosensors 2023, 13, 174. [Google Scholar] [CrossRef]
- Karmakar, R.S.; Huang, J.-F.; Chu, C.-P.; Mai, M.-H.; Chao, J.-I.; Liao, Y.-C.; Lu, Y.-W. Origami-Inspired Conductive Paper-Based Folded Pressure Sensor with Interconnection Scaling at the Crease for Novel Wearable Applications. ACS Appl. Mater. Interfaces 2023, 16, 4231–4241. [Google Scholar] [CrossRef]
- Tang, Z.; Jia, S.; Zhou, C.; Li, B. 3D Printing of Highly Sensitive and Large-Measurement-Range Flexible Pressure Sensors with a Positive Piezoresistive Effect. ACS Appl. Mater. Interfaces 2020, 12, 28669–28680. [Google Scholar] [CrossRef]
- Li, W.; Jin, X.; Han, X.; Li, Y.; Wang, W.; Lin, T.; Zhu, Z. Synergy of Porous Structure and Microstructure in Piezoresistive Material for High-Performance and Flexible Pressure Sensors. ACS Appl. Mater. Interfaces 2021, 13, 19211–19220. [Google Scholar] [CrossRef]
- Wang, G.; Wang, M.; Zheng, M.; Ebo, B.; Xu, C.; Liu, Z.; He, L. Thermoplastic Polyurethane/Carbon Nanotube Composites for Stretchable Flexible Pressure Sensors. ACS Appl. Nano Mater. 2023, 6, 9865–9873. [Google Scholar] [CrossRef]
- Choong, C.; Shim, M.; Lee, B.; Jeon, S.; Ko, D.; Kang, T.; Bae, J.; Lee, S.H.; Byun, K.; Im, J.; et al. Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array. Adv. Mater. 2014, 26, 3451–3458. [Google Scholar] [CrossRef]
- Guo, D.; Lei, X.; Chen, H.; Yi, L.; Li, Y.; Zhao, Y.; Liu, F.; Cheng, G.J. Highly Flexible and Sensitive Pressure Sensor: Fabrication of Porous PDMS/Graphene Composite via Laser Thermoforming. Adv. Sens. Res. 2024, 3, 2300165. [Google Scholar] [CrossRef]
- Khan, S.M.; Nassar, J.M.; Hussain, M.M. Paper as a Substrate and an Active Material in Paper Electronics. ACS Appl. Electron. Mater. 2021, 3, 30–52. [Google Scholar] [CrossRef]
- Nandy, S.; Goswami, S.; Marques, A.; Gaspar, D.; Grey, P.; Cunha, I.; Nunes, D.; Pimentel, A.; Igreja, R.; Barquinha, P.; et al. Cellulose: A Contribution for the Zero e-Waste Challenge. Adv. Mater. Technol. 2021, 6, 2000994. [Google Scholar] [CrossRef]
- Sakhuja, N.; Kumar, R.; Katare, P.; Bhat, N. Structure-Driven, Flexible, Multilayered, Paper-Based Pressure Sensor for Human–Machine Interfacing. ACS Sustain. Chem. Eng. 2022, 10, 9697–9706. [Google Scholar] [CrossRef]
- Lee, T.; Kang, Y.; Kim, K.; Sim, S.; Bae, K.; Kwak, Y.; Park, W.; Kim, M.; Kim, J. All Paper-Based, Multilayered, Inkjet-Printed Tactile Sensor in Wide Pressure Detection Range with High Sensitivity. Adv. Mater. Technol. 2022, 7, 2100428. [Google Scholar] [CrossRef]
- Grey, S.W.; Scarpa, F.; Schenk, M. Mechanics of Paper-Folded Origami: A Cautionary Tale. Mech. Res. Commun. 2020, 107, 103540. [Google Scholar] [CrossRef]
- Moshtaghzadeh, M.; Mardanpour, P. Design, Mechanical Characteristics Evaluation, and Energy Absorption of Multi-Story Kresling Origami-Inspired Structures. Mech. Res. Commun. 2023, 130, 104125. [Google Scholar] [CrossRef]
- Liu, X.; Sun, J.; Tong, Y.; Zhang, M.; Wang, X.; Guo, S.; Han, X.; Zhao, X.; Tang, Q.; Liu, Y. Calligraphy and Kirigami/Origami-Inspired All-Paper Touch–Temperature Sensor with Stimulus Discriminability. ACS Appl. Mater. Interfaces 2023, 15, 1726–1735. [Google Scholar] [CrossRef]
- Li, S.; Chu, J.; Li, B.; Chang, Y.; Pan, T. Handwriting Iontronic Pressure Sensing Origami. ACS Appl. Mater. Interfaces 2019, 11, 46157–46164. [Google Scholar] [CrossRef]
- Yao, D.-J.; Tang, Z.; Zhang, L.; Liu, Z.-G.; Sun, Q.-J.; Hu, S.-C.; Liu, Q.-X.; Tang, X.-G.; Ouyang, J. A Highly Sensitive, Foldable and Wearable Pressure Sensor Based on MXene-Coated Airlaid Paper for Electronic Skin. J. Mater. Chem. C 2021, 9, 12642–12649. [Google Scholar] [CrossRef]
- Guo, X.; Li, Y.; Hong, W.; Yan, Z.; Duan, Z.; Zhang, A.; Zhang, X.; Jin, C.; Liu, T.; Li, X.; et al. Bamboo-Inspired, Environmental Friendly PDMS/Plant Fiber Composites-Based Capacitive Flexible Pressure Sensors by Origami for Human–Machine Interaction. ACS Sustain. Chem. Eng. 2024, 12, 4835–4845. [Google Scholar] [CrossRef]
- Li, J.; Godaba, H.; Zhu, J. Paper-Based Origami Transducer Capable of Both Sensing and Actuation. Extrem. Mech. Lett. 2021, 49, 101507. [Google Scholar] [CrossRef]
- Moeinnia, H.; Agron, D.J.; Ganzert, C.; Schubert, L.; Kim, W.S. Wireless Pressure Monitoring System Utilizing a 3D-Printed Origami Pressure Sensor Array. npj Flex. Electron. 2024, 8, 21. [Google Scholar] [CrossRef]
- Ray, L.; Geißler, D.; Zhou, B.; Lukowicz, P.; Greinke, B. Origami Single-End Capacitive Sensing for Continuous Shape Estimation of Morphing Structures. Sci. Rep. 2024, 14, 17448. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kalhori, A.H.; Kim, T.-H.; Bao, C.; Kim, W.S. 3D Designed Battery-Free Wireless Origami Pressure Sensor. Microsyst. Nanoeng. 2022, 8, 120. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, R.S.; Huang, J.-F.; Chao, J.-I.; Liao, Y.-C.; Lu, Y.-W. Origami-Inspired Tactile Sensors Based On Electrical Contact Resistance (Ecr) For Wearable Applications. In Proceedings of the 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS), Austin, TX, USA, 21–25 January 2024; pp. 829–832. [Google Scholar]
- Shiau, C.-C.; Liao, Y.-C.; Kao, Z.-K.; Yeh, Y.-C.; Lu, Y.-W. Paper-Based Flexible Taxel Device Using Electrical Contact Resistance Variation for Elasticity Measurement on Biological Objects. IEEE Sens. J. 2013, 13, 4038–4044. [Google Scholar] [CrossRef]
- Chen, W.-L.; Liao, Y.-C.; Lu, Y.-W. A Wearable Tactile Sensor Based on Electrical-Contact-Resistance (Ecr) Variation with High Sensitivity for Health Monitoring. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; IEEE: New York, NY, USA, 2017; pp. 1116–1119. [Google Scholar]
- Mishra, V.; Yang, F.; Pitchumani, R. Measurement and Prediction of Electrical Contact Resistance Between Gas Diffusion Layers and Bipolar Plate for Applications to PEM Fuel Cells. J. Fuel Cell Sci. Technol. 2004, 1, 2–9. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Kam, C.S.; Leung, T.L.; Liu, F.; Djurišić, A.B.; Xie, M.H.; Chan, W.-K.; Zhou, Y.; Shih, K. Lead Removal from Water—Dependence on the Form of Carbon and Surface Functionalization. RSC Adv. 2018, 8, 18355–18362. [Google Scholar] [CrossRef]
- Jnido, G.; Ohms, G.; Viöl, W. One-Step Deposition of Polyester/TiO2 Coatings by Atmospheric Pressure Plasma Jet on Wood Surfaces for UV and Moisture Protection. Coatings 2020, 10, 184. [Google Scholar] [CrossRef]
- Oh, J.-H.; Park, C.H. Colorful Fluorine-Free Superhydrophobic Polyester Fabric Prepared via Disperse Dyeing Process. Adv. Mater. Interfaces 2020, 7, 2000127. [Google Scholar] [CrossRef]
- Xie, W.; Chan, C.-M. Surface Analysis of Graphene and Graphite. In Applications and Use of Diamond; Zhan, G.D., Ed.; IntechOpen: Rijeka, Croatia, 2022; Chapter 4; ISBN 978-1-80356-318-3. [Google Scholar]
- Sun, Y.; Ouyang, B.; Rawat, R.S.; Chen, Z. Rapid and Stable Plasma Transformation of Polyester Fabrics for Highly Efficient Oil–Water Separation. Glob. Chall. 2020, 4, 1900095. [Google Scholar] [CrossRef]
- Gupta, B.; Kumar, N.; Panda, K.; Kanan, V.; Joshi, S.; Visoly-Fisher, I. Role of Oxygen Functional Groups in Reduced Graphene Oxide for Lubrication. Sci. Rep. 2017, 7, 45030. [Google Scholar] [CrossRef]
- Gutić, S.; Dobrota, A.S.; Gavrilov, N.; Baljozović, M.; Pašti, I.A.; Mentus, S.V. Surface Charge Storage Properties of Selected Graphene Samples in pH-Neutral Aqueous Solutions of Alkali Metal Chlorides—Particularities and Universalities. Int. J. Electrochem. Sci. 2016, 11, 8662–8682. [Google Scholar] [CrossRef]
- Edwards, H.G.M. Analytical Raman Spectroscopy of Inks. In Raman Spectroscopy in Archaeology and Art History: Volume 2; Vandenabeele, P., Edwards, H., Eds.; The Royal Society of Chemistry: London, UK, 2018; ISBN 978-1-78801-138-9. [Google Scholar]
- Zuikafly, S.N.F.; Khalifa, A.; Ahmad, F.; Shafie, S.; Harun, S. Conductive Graphene as Passive Saturable Absorber with High Instantaneous Peak Power and Pulse Energy in Q-Switched Regime. Results Phys. 2018, 9, 371–375. [Google Scholar] [CrossRef]
- Woodward, R.I.; Kelleher, E.J.R. 2D Saturable Absorbers for Fibre Lasers. Appl. Sci. 2015, 5, 1440–1456. [Google Scholar] [CrossRef]
- Johra, F.T.; Lee, J.-W.; Jung, W.-G. Facile and Safe Graphene Preparation on Solution Based Platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Saravanan, M.; Ganesan, M.; Ambalavanan, S. An in Situ Generated Carbon as Integrated Conductive Additive for Hierarchical Negative Plate of Lead-Acid Battery. J. Power Sources 2014, 251, 20–29. [Google Scholar] [CrossRef]
- Youssry, M.; Kamand, F.Z.; Magzoub, M.I.; Nasser, M.S. Aqueous Dispersions of Carbon Black and Its Hybrid with Carbon Nanofibers. RSC Adv. 2018, 8, 32119–32131. [Google Scholar] [CrossRef]
- Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman Spectroscopy of Graphene-Based Materials and Its Applications in Related Devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef]
- Pawlaczyk, M.; Lelonkiewicz, M.; Wieczorowski, M. Age-Dependent Biomechanical Properties of the Skin. Adv. Dermatol. Allergol. 2013, 30, 302–306. [Google Scholar] [CrossRef]
- Oh, J.; Kim, J.-O.; Kim, Y.; Choi, H.B.; Yang, J.C.; Lee, S.; Pyatykh, M.; Kim, J.; Sim, J.Y.; Park, S. Highly Uniform and Low Hysteresis Piezoresistive Pressure Sensors Based on Chemical Grafting of Polypyrrole on Elastomer Template with Uniform Pore Size. Small 2019, 15, 1901744. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Vyskočil, J.; Pumera, M. Black Phosphorous-Based Human-Machine Communication Interface. Nat. Commun. 2023, 14, 2. [Google Scholar] [CrossRef]
- Iwamoto, T.; Shinoda, H. Finger Ring Device for Tactile Sensing and Human Machine Interface. In Proceedings of the SICE Annual Conference 2007, Takamatsu, Japan, 17–20 September 2007; IEEE: New York, NY, USA, 2008; pp. 2132–2136. [Google Scholar]
- Sun, Z.; Zhu, M.; Shan, X.; Lee, C. Augmented Tactile-Perception and Haptic-Feedback Rings as Human-Machine Interfaces Aiming for Immersive Interactions. Nat. Commun. 2022, 13, 5224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zuo, W.; Wang, P. Comparison Between Pulse and ECG. In Computational Pulse Signal Analysis; Zhang, D., Zuo, W., Wang, P., Eds.; Springer: Singapore, 2018; pp. 301–318. ISBN 978-981-10-4044-3. [Google Scholar]
- Schäfer, A.; Vagedes, J. How Accurate Is Pulse Rate Variability as an Estimate of Heart Rate Variability?: A Review on Studies Comparing Photoplethysmographic Technology with an Electrocardiogram. Int. J. Cardiol. 2013, 166, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Hey, S.; Gharbi, A.; Von Haaren, B.; Walter, K.; König, N.; Löffler, S. Continuous Noninvasive Pulse Transit Time Measurement for Psycho-Physiological Stress Monitoring. In Proceedings of the 2009 International Conference on eHealth, Telemedicine, and Social Medicine, Cancun, Mexico, 1–7 February 2009; IEEE: New York, NY, USA, 2009; pp. 113–116. [Google Scholar]
- Bohannon, R.W. Muscle Strength: Clinical and Prognostic Value of Hand-Grip Dynamometry. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 465. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, Á.H.; Díaz, B.F.; Cabrera, M.M.Y.; Jerez-Mayorga, D. Grip Power Test: A New Valid and Reliable Method for Assessing Muscle Power in Healthy Adolescents. PLoS ONE 2021, 16, e0258720. [Google Scholar] [CrossRef]
- Millar, P.J.; Levy, A.S.; McGowan, C.L.; McCartney, N.; MacDonald, M.J. Isometric Handgrip Training Lowers Blood Pressure and Increases Heart Rate Complexity in Medicated Hypertensive Patients. Scand. J. Med. Sci. Sports 2013, 23, 620–626. [Google Scholar] [CrossRef]
- Badrov, M.B.; Freeman, S.R.; Zokvic, M.A.; Millar, P.J.; McGowan, C.L. Isometric Exercise Training Lowers Resting Blood Pressure and Improves Local Brachial Artery Flow-Mediated Dilation Equally in Men and Women. Eur. J. Appl. Physiol. 2016, 116, 1289–1296. [Google Scholar] [CrossRef]
- Jung, Y.; Choi, J.; Lee, W.; Ko, J.S.; Park, I.; Cho, H. Irregular Microdome Structure-Based Sensitive Pressure Sensor Using Internal Popping of Microspheres. Adv. Funct. Mater. 2022, 32, 2201147. [Google Scholar] [CrossRef]
- Shen, H.; Gu, X.; Wu, Y. A Fingertip-Type Magnetic Pulse Detection Device for Unusual Monitoring Conditions. Commun. Eng. 2023, 2, 52. [Google Scholar] [CrossRef]
- Nguyen, T.-V.; Mizuki, Y.; Tsukagoshi, T.; Takahata, T.; Ichiki, M.; Shimoyama, I. MEMS-Based Pulse Wave Sensor Utilizing a Piezoresistive Cantilever. Sensors 2020, 20, 1052. [Google Scholar] [CrossRef]
- Mol, A.; Meskers, C.G.M.; Niehof, S.P.; Maier, A.B.; van Wezel, R.J.A. Pulse Transit Time as a Proxy for Vasoconstriction in Younger and Older Adults. Exp. Gerontol. 2020, 135, 110938. [Google Scholar] [CrossRef]
- Cao, J.J.; Nashta, N.F.; Weber, J.; Bano, R.; Passick, M.; Cheng, Y.J.; Schapiro, W.; Grgas, M.; Gliganic, K. Association of Pulmonary Transit Time by Cardiac Magnetic Resonance with Heart Failure Hospitalization in a Large Prospective Cohort with Diverse Cardiac Conditions. J. Cardiovasc. Magn. Reson. 2023, 25, 57. [Google Scholar] [CrossRef]
- Farley, J.; Brown, L.A.; Garg, P.; Wahab, A.; Klassen, J.R.; Jex, N.; Thirunavukarasu, S.; Chowdhary, A.; Sharrack, N.; Gorecka, M.; et al. Pulmonary Transit Time Is a Predictor of Outcomes in Heart Failure: A Cardiovascular Magnetic Resonance First-Pass Perfusion Study. BMC Cardiovasc. Disord. 2024, 24, 329. [Google Scholar] [CrossRef]
Origami Structure | Single Sensing Region Shape | Interfacial Overlapped Layers | Overall Thickness (µm) | Average Elastic Modulus (kPa) | Overall Resistance (kOhm) |
---|---|---|---|---|---|
Love-knot | Triangle | 2 x 4 i.e., 4 dual layers | 1505 | ~190 | 580 |
Square-knot | Square | 2 layers separated by multiple papers | 2610 | ~344 | 740.5 |
3 layers separated by multiple papers | 3060 | ~407 | 737.8 | ||
4 layers separated by multiple papers | 3600 | ~455 | 736.7 | ||
Pentagon-knot | Rhombus | 4 layers arranged back-to-back | 2670 | ~284 | 973.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karmakar, R.S.; Lin, H.-F.; Huang, J.-F.; Chao, J.-I.; Liao, Y.-C.; Lu, Y.-W. A Multi-Layered Origami Tactile Sensory Ring for Wearable Biomechanical Monitoring. Biosensors 2025, 15, 8. https://doi.org/10.3390/bios15010008
Karmakar RS, Lin H-F, Huang J-F, Chao J-I, Liao Y-C, Lu Y-W. A Multi-Layered Origami Tactile Sensory Ring for Wearable Biomechanical Monitoring. Biosensors. 2025; 15(1):8. https://doi.org/10.3390/bios15010008
Chicago/Turabian StyleKarmakar, Rajat Subhra, Hsin-Fu Lin, Jhih-Fong Huang, Jui-I Chao, Ying-Chih Liao, and Yen-Wen Lu. 2025. "A Multi-Layered Origami Tactile Sensory Ring for Wearable Biomechanical Monitoring" Biosensors 15, no. 1: 8. https://doi.org/10.3390/bios15010008
APA StyleKarmakar, R. S., Lin, H.-F., Huang, J.-F., Chao, J.-I., Liao, Y.-C., & Lu, Y.-W. (2025). A Multi-Layered Origami Tactile Sensory Ring for Wearable Biomechanical Monitoring. Biosensors, 15(1), 8. https://doi.org/10.3390/bios15010008