Modelling Potential Candidates for Targeted Auger Therapy
<p>A visual representation of targeted Auger therapy showing the radiopharmaceutical being taken up by a cancer cell into the cell nucleus where Auger electrons target the cell DNA.</p> "> Figure 2
<p>Detailed illustration of Auger electron emission following either electron capture or internal conversion processes.</p> "> Figure 3
<p>Track length, projected length, and penetration of incident electrons on a 1m radius sphere of liquid water.</p> "> Figure 4
<p>The simulated dose on the tetranucleosome from five prospective Auger-emitting radionuclides. Each is split to show the contribution from Auger electrons, conversion electrons, and β<sup>−</sup> particles.</p> "> Figure 5
<p>The equivalent dose applied on the tetranucleosome by four radionuclides currently used in nuclear medicine showing the contributions from Auger, conversion electrons, and β<sup>−</sup> particles.</p> "> Figure 6
<p>The number of double-strand breaks induced by low-energy electrons of increasing energy.</p> "> Figure 7
<p>The number of double-strand breaks induced in the tetranucleosome showing contributions from Auger electrons, conversion electrons, and β<sup>−</sup> particles emitted from novel radionuclides.</p> "> Figure 8
<p>The number of double-strand breaks induced on the tetranucleosome by radionuclides currently used in nuclear medicine showing contributions from Auger electrons, conversion electrons, and β<sup>−</sup> particles.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ku, A.; Facca, V.J.; Cai, Z.; Reilly, R.M. Auger electrons for cancer therapy—A review. EJNMMI Radiopharm. Chem. 2019, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Dash, A.; Knapp, F.F.; Pillai, M. Targeted radionuclide therapy—An overview. Curr. Radiopharm. 2013, 6, 152–180. [Google Scholar] [CrossRef] [PubMed]
- Filosofov, D.; Kurakina, E.; Radchenko, V. Potent candidates for Targeted Auger Therapy: Production and radiochemical considerations. Nucl. Med. Biol. 2021, 94–95, 1–19. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, J.A.; Wheldon, T.E. Targeted Radiotherapy Using Auger Electron Emitters. Phys. Med. Biol. 1996, 41, 1973–1992. [Google Scholar] [CrossRef]
- Nikjoo, H.; Martin, R.F.; Charlton, D.E.; Terrissol, M.; Kandaiya, S.; Lobachevsky, P. Modelling of Auger-Induced DNA Damage by Incorporated125I. Acta Oncol. 1996, 35, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Fourie, H.; Newman, R.T.; Slabbert, J.P. Microdosimetry of the Auger emitting 123I radionuclide using Geant4-DNA simulations. Phys. Med. Biol. 2015, 60, 3333. [Google Scholar] [CrossRef]
- Ahmadi, P.; Ghandi, M.S.Z.; Shokri, A. Investigation of Auger Emitting Radionuclides Effects in Therapy Using the Geant4-DNA Toolkit: A Simulation Study. Front. Biomed. Technol. 2021, 8, 79–86. [Google Scholar] [CrossRef]
- Di Maria, S.; Belchior, A.; Pereira, E.; Quental, L.; Oliveira, M.; Mendes, F.; Lavrado, J.; Paulo, A.; Vaz, P. Dosimetry assessment of DNA damage by Auger-emitting radionuclides: Experimental and Monte Carlo studies. Radiat. Phys. Chem. 2017, 140, 278–282. [Google Scholar] [CrossRef]
- Hindié, E.; Larouze, A.; Alcocer-Ávila, M.; Morgat, C.; Champion, C. Palladium-103 (103Pd/103mRh), a promising Auger-electron emitter for targeted radionuclide therapy of disseminated tumor cells—Absorbed doses in single cells and clusters, with comparison to 177Lu and 161Tb. Theranostics 2024, 14, 4318–4330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Unak, P.; Cetinkaya, B. Absorbed dose estimates at the cellular level for 131I. Appl. Radiat. Isot. 2005, 62, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Falzone, N.; Lee, B.Q.; Fernández-Varea, J.M.; Kartsonaki, C.; Stuchbery, A.E.; Kibédi, T.; Vallis, K.A. Absorbed dose evaluation of Auger electron-emitting radionuclides: Impact of input decay spectra on dose point kernels and S-values. Phys. Med. Biol. 2017, 62, 2239–2253. [Google Scholar] [CrossRef]
- Bolcaen, J.; Gizawy, M.A.; Terry, S.Y.; Paulo, A.; Cornelissen, B.; Korde, A.; Engle, J.; Radchenko, V.; Howell, R.W. Marshalling the Potential of Auger Electron Radiopharmaceutical Therapy. J. Nucl. Med. 2023, 64, 1344–1351. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 2003, 503, 250–303. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Dubois, P.A.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef]
- Incerti, S.; Baldacchino, G.; Bernal, M.; Capra, R.; Champion, C.; Francis, Z.; Guèye, P.; Mantero, A.; Mascialino, B.; Moretto, P.; et al. The geant4-dna project. Int. J. Model. Simul. Sci. Comput. 2010, 1, 157–178. [Google Scholar] [CrossRef]
- Delage, E.; Pham, Q.; Karamitros, M.; Payno, H.; Stepan, V.; Incerti, S.; Maigne, L.; Perrot, Y. PDB4DNA: Implementation of DNA geometry from the protein data bank (PDB) description for Geant4-DNA Monte-Carlo simulations. Comput. Phys. Commun. 2015, 192, 282–288. [Google Scholar] [CrossRef]
- Chatzipapas, K.P.; Papadimitroulas, P.; Obeidat, M.; McConnell, K.A.; Kirby, N.; Loudos, G.; Papanikolaou, N.; Kagadis, G.C. Quantification of DNA double-strand breaks using Geant4-DNA. Med. Phys. 2019, 46, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Schalch, T.; Duda, S.; Sargent, D.F.; Richmond, T.J. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 2005, 436, 138–141. [Google Scholar] [CrossRef] [PubMed]
- NNDC; Pritychenko, B.; Běták, E.; Singh, B.; Totans, J. Nuclear Sciences References (NSR); National Nuclear Data Center: Upton, NY, USA, 2022. [CrossRef]
- Bernal, M.; Bordage, M.; Brown, J.; Davídková, M.; Delage, E.; El Bitar, Z.; Enger, S.; Francis, Z.; Guatelli, S.; Ivanchenko, V.; et al. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys. Medica 2015, 31, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Incerti, S.; Ivanchenko, A.; Karamitros, M.; Mantero, A.; Moretto, P.; Tran, H.N.; Mascialino, B.; Champion, C.; Ivanchenko, V.N.; Bernal, M.A.; et al. Comparison of GEANT4 very low energy cross section models with experimental data in water. Med. Phys. 2010, 37, 4692–4708. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.-Y.; Hung, T.-H.; Tu, S.-J.; Tung, C.-J. Fast Monte Carlo simulation of DNA damage induction by Auger-electron emission. Int. J. Radiat. Biol. 2014, 90, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, P.; Zafarghandi, M.S.; Shokri, A. Calculation of direct geometric model: A simulation study using Geant4-DNA toolkit. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interactions Mater. Atoms 2020, 483, 22–28. [Google Scholar] [CrossRef]
- Pomplun, E. 123I: Calaculation of the Auger electron spectrum and assessment of the strand breakage efficiency. Biophys. Asp. Auger Process. Am. Assoc. Phys. Med. Symp. Proc. 1992, 8, 121–136. [Google Scholar]
- Raisali, G.; Mirzakhanian, L.; Masoudi, S.F.; Semsarha, F. Calculation of DNA strand breaks due to direct and indirect effects of Auger electrons from incorporated123I and125I radionuclides using the Geant4 computer code. Int. J. Radiat. Biol. 2013, 89, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Terrissol, M.; Peudon, A.; Kümmerle, E.; Pomplun, E. On the biological efficiency of I-123 and I-125 decay on the molecular level. Int. J. Radiat. Biol. 2008, 84, 1063–1068. [Google Scholar] [CrossRef] [PubMed]
- Humm, J.; Charlton, D. A new calculational method to assess the therapeutic potential of auger electron emission. Int. J. Radiat. Oncol. Biol. Phys. 1989, 17, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.K.; Kassis, A.I.; Makrigiorgos, G.M.; Baranowska-Kortylewicz, J.; Adelstein, S.J. The effects of indium-111 decay on pBR322 DNA. Radiat. Res. 1995, 141, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Piroozfar, B.; Raisali, G.; Alirezapour, B.; Mirzaii, M. The effect of 111In radionuclide distance and auger electron energy on direct induction of DNA double-strand breaks: A Monte Carlo study using Geant4 toolkit. Int. J. Radiat. Biol. 2018, 94, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Hernandez, J.; Ramos-Méndez, J.; Padilla-Rodal, E.; Avila-Rodriguez, M.A. Cellular lethal damage of 64Cu incorporated in mammalian genome evaluated with Monte Carlo methods. Front. Med. 2023, 10, 1253746. [Google Scholar] [CrossRef] [PubMed]
- Bolch, W.E.; Eckerman, K.F.; Sgouros, G.; Thomas, S.R. MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry—Standardization of Nomenclature. J. Nucl. Med. 2009, 50, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.S.; Bidabadi, B.S. Micro-dosimetry calculation of Auger-electron-emitting radionuclides mostly used in nuclear medicine using GEANT4-DNA. Appl. Radiat. Isot. 2018, 141, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Fourie, H.; Nair, S.; Miles, X.; Rossouw, D.; Beukes, P.; Newman, R.T.; Zeevaart, J.R.; Vandevoorde, C.; Slabbert, J. Estimating the Relative Biological Effectiveness of Auger Electron Emitter 123I in Human Lymphocytes. Front. Phys. 2020, 8, 567732. [Google Scholar] [CrossRef]
- Park, Y.; Peoples, A.R.; Madugundu, G.S.; Sanche, L.; Wagner, J.R. Side-by-side comparison of DNA damage induced by low-energy electrons and high-energy photons with solid TpTpT trinu-cleotide. J. Phys. Chem. B 2013, 117, 10122–10131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Radionuclide | Number of Auger Electrons Emitted per Decay |
---|---|
119Sb | 23.7 [1] |
193mPt | 27.4 [1] |
195mPt | 36.6 [1] |
103Pd | 7.44 [9] |
103mRh | 5.88 [9] |
197Hg | 23.2 [1] |
161Tb | 0.9 [1] |
123I | 13.7 [1] |
125I | 23 [1] |
131I | 1.31 [10] |
111In | 7.4 [1] |
89Zr | 9.45 [11] |
64Cu | 1.8 [12] |
Radionuclide | Dose Rate (GSv/h) | Error |
---|---|---|
119Sb | 1.8 | 0.2 |
193mPt | 0.91 | 0.03 |
195mPt | 0.39 | 0.04 |
103Pd | 0.16 | 0.02 |
103mRh | 41.77 | 0.07 |
197Hg | 0.31 | 0.01 |
161Tb | 0.16 | 0.03 |
Radionuclide | Dose Rate (GSv/h) | Error |
---|---|---|
131I | 0.019 | 0.005 |
125I | 0.056 | 0.002 |
123I | 2.548 | 0.003 |
111In | 0.545 | 0.002 |
89Zr | 0.551 | 0.004 |
64Cu | 4.567 | 0.004 |
This Study | P. Ahmadi et al. Front. Bio. Tech. 2021 [7] | ||
---|---|---|---|
Energy (keV) | No. of Double-Strand Breaks | Energy (keV) | YDSB × 10−11 DSB (Gy·Da)−1 |
10 | 0.1 | 2.6 | |
15 | 0.3 | 2 | |
20 | 0.5 | 1.2 | |
25 | 1 | 0.87 | |
30 | 1.5 | 0.64 | |
35 | 4.5 | 0.11 | |
40 | |||
45 | |||
50 |
Radionuclide | Number of Double-Strand Breaks per Decay (In This Study) | Number of Double-Strand Breaks per Decay (In Other Works) |
---|---|---|
119Sb | 0.31 [22] | |
193mPt | ||
195mPt | 2.02 [7] | |
103Pd | ||
103mRh | ||
197Hg | ||
161Tb | ||
123I | 0.21 [22] 0.5 [23] 0.4 [24] 0.747 [25] 1 [26] | |
125I | 1.57 [7] 0.38 [22] 1.7 [23] 0.979 [25] 0.919 [26] 1.1 [27] | |
131I | ||
111In | 0.2 [22] 1.39 [23] 3.5 [28] 1.3 [29] | |
89Zr | ||
64Cu | 0.171 [30] 0.19 [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchanan, C.M.J.; Aboagye, E.O.; Evitts, L.J.; Rushton, M.J.D.; Smith, T.A.D. Modelling Potential Candidates for Targeted Auger Therapy. Biophysica 2024, 4, 711-723. https://doi.org/10.3390/biophysica4040046
Buchanan CMJ, Aboagye EO, Evitts LJ, Rushton MJD, Smith TAD. Modelling Potential Candidates for Targeted Auger Therapy. Biophysica. 2024; 4(4):711-723. https://doi.org/10.3390/biophysica4040046
Chicago/Turabian StyleBuchanan, Conor M. J., Eric O. Aboagye, Lee J. Evitts, Michael J. D. Rushton, and Tim A. D. Smith. 2024. "Modelling Potential Candidates for Targeted Auger Therapy" Biophysica 4, no. 4: 711-723. https://doi.org/10.3390/biophysica4040046
APA StyleBuchanan, C. M. J., Aboagye, E. O., Evitts, L. J., Rushton, M. J. D., & Smith, T. A. D. (2024). Modelling Potential Candidates for Targeted Auger Therapy. Biophysica, 4(4), 711-723. https://doi.org/10.3390/biophysica4040046