Supramolecular Adhesives Inspired by Nature: Concept and Applications
<p>(<b>a</b>) Catechol-based molecular robust adhesives inspired by nature. Catechol forms a bidentate H-bonding network to form adhesion. H-bonding interaction and hydrophobicity make catechol groups protected from oxidation [<a href="#B28-biomimetics-10-00087" class="html-bibr">28</a>]. (Reproduced with permission from the American Chemical Society). (<b>b</b>) β-cyclodextrin (CD)- and 2,2’-bipyridyl (bpy)-based adhesive. The host–guest interaction provides stable adhesion, whereas the metal ion coordination site makes the adhesion dynamic. The dynamic nature also endows the gels with stimuli responsiveness (adapted from [<a href="#B29-biomimetics-10-00087" class="html-bibr">29</a>]).</p> "> Figure 2
<p>(<b>a</b>) Appending ionic liquid-like motifs can provide significant electrostatic interaction sites for an adhesive. PMBT, (poly(1–[2–methacryloylethyl]–3–methylimidazolium bis(trifluoromethane)-sulfonamide)), is a nice example of such a moiety where H-bond is hampered at the cost of electrostatic gain. The adhesion is stable at a higher temperature range (adapted from [<a href="#B35-biomimetics-10-00087" class="html-bibr">35</a>]). (<b>b</b>) Incorporating positive or negative charges into PHEMA-based adhesive on quartz (PEI to blue quartz; PAA to red quartz), and the molecular self-assembly produces a strong adhesion in the adhered solids [<a href="#B36-biomimetics-10-00087" class="html-bibr">36</a>]. (reproduced with permission from the American Chemical Society) (<b>c</b>) π–π stacking interaction between graphene and polydopamine provides adhesion in conductive composite hydrogels [<a href="#B37-biomimetics-10-00087" class="html-bibr">37</a>] (reproduced with permission from the American Chemical Society).</p> "> Figure 3
<p>Underwater adhesive hydrogels. (<b>a</b>) Schematic illustration of the fabrication of the underwater adhesive hydrogels. The hydrogel (PAM-C-M) created from MBAA-crosslinked poly(acrylamideco-C18) was immersed in an aqueous Fe<sup>3+</sup> solution followed by a water-washing process to obtain a hydrogel (Fe-PAM-C-M) with a hydrophobic surface. DI water was used, and MBAA is N,N′-methylenebisacrylamide. (<b>b</b>) Schematic illustration of the self-hydrophobization process for the formation of firm underwater adhesion between the hydrogel and substrate. When the hydrogel is compressed to achieve contact with the substrate underwater, the hydrophobic interactions form and grow at the interface and repel water away from the interface. (<b>c</b>) Demonstration of underwater adhesion. The as-prepared hydrophilic PAM-C-M hydrogel was nonadhesive and slipped away from the metal block surface underwater, while the hydrophobic Fe-PAM-C-M hydrogel firmly adhered to the metal block surface and was able to lift the block (200 g) up underwater. (<b>d</b>) Photograph showing that the adhesion between the hydrogel and substrate is strong enough to resist water blasting for 10 s (adapted from reference [<a href="#B40-biomimetics-10-00087" class="html-bibr">40</a>]). (<b>e</b>) Crown ether-appended hydrophobic moisture-proof adhesive, formation of glassy appearance upon heating and cooling with moldable shape formation properties (right side upper panel), and macroscopic adhesion with different substances with strong adhesion value (right lower panel) [<a href="#B41-biomimetics-10-00087" class="html-bibr">41</a>] (reproduced with permission from the American Chemical Society).</p> "> Figure 4
<p>Modification of the carboxylic acid end with the acylhydrazine group increases the H-bonding interaction in thioctic acid, branched bonding interaction (lower left panel); (<b>A</b>–<b>C</b>) show the mechanism of robust adhesion (adapted from [<a href="#B43-biomimetics-10-00087" class="html-bibr">43</a>]).</p> "> Figure 5
<p>Photopolymerization of a Fe<sup>3+</sup>-coordinated catechol-based dynamic hydrogel. Healing of the stretched hydrogel holds potential promise for bioadhesion (right panel) [<a href="#B47-biomimetics-10-00087" class="html-bibr">47</a>] (reproduced with permission from the American Chemical Society).</p> "> Figure 6
<p>(<b>a</b>) PDMAPS-co-PMA-Ade/chitosan hydrogel as a wound dressing in a full-thickness skin defect. The left panel shows molecular structures and the right panel shows photographs of wounds treated by the control, gauze, PDMAPS-co-PMA-Ade (Gel 1), and PDMAPS-co-PMA-Ade/chitosan (Gel 2) hydrogel samples on days 0, 3, 7, 10, and 14 [<a href="#B39-biomimetics-10-00087" class="html-bibr">39</a>] (reproduced with permission from the American Chemical Society). (<b>b</b>) Illustration of preparing HA-PG hydrogel patches incorporated with inorganic particles (HAP, WKT) and BMP-2 and intermolecular complex formation through the coordination of oxidized PG moieties with ions released from HAP and WKT particles [<a href="#B55-biomimetics-10-00087" class="html-bibr">55</a>] (reproduced with permission from Elsevier).</p> ">
Abstract
:1. Introduction
2. Mechanistic Feature of Design
2.1. H-Bonding
2.2. Host–Guest Interaction
2.3. Metal Coordination
2.4. Electrostatic Interactions
2.5. π–π Stacking
2.6. Hydrophobic Effects
3. Applications
3.1. Robust Supramolecular Adhesives
3.2. Stimuli-Responsive Adhesives
3.3. Biologically Relevant Adhesives
4. Advantages, Current Challenges, and Prospects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Az | Azobenzene |
bpy | 2,2’-bipyridyl |
CB | Cucurbit[n]uril |
CD | Cyclodextrin |
DES | Deep eutectic solvents |
DMA | Dopamine methacrylamide |
DOPA | Dihydroxyphenylalanine |
GO | Graphene oxide |
PAA | Polyacrylic acid |
PDAP | Poly(diaminopyridine acrylamide |
PEGSD | Poly(glycerolsebacate)-co-poly(ethylene glycol)-g-catechol |
PEI | Polyethyleneimine |
PHEMA | Poly(2-hydroxyethyl methacrylate) |
PMBT | Poly(1-[2-methacryloylethyl]-3-methylimidazolium bis(trifluoromethane)-sulfonamide) |
PMMA | Poly(methyl methacrylate) |
PTFE | Polytetrafluoroethylene |
pThy | Poly(thymine) |
SDS | Sodium dodecyl sulfate |
tBu | tert-butyl |
TMCS | Tetramethylcyclotetrasiloxane |
UPy | Ureidopyrimidinone |
References
- Flammang, P.; Santos, R. Biological adhesives: From biology to biomimetics. Interface Focus 2015, 5, 20140086. [Google Scholar] [CrossRef]
- Wang, C.S.; Stewart, R.J. Multipart copolyelectrolyte adhesive of the sandcastle worm, Phragmatopoma californica (Fewkes): Catechol oxidase catalyzed curing through peptidyl-DOPA. Biomacromolecules 2013, 14, 1607–1617. [Google Scholar] [CrossRef]
- Waite, J.H. Mussel adhesion–essential footwork. J. Exp. Biol. 2017, 220, 517–530. [Google Scholar] [CrossRef]
- Giuri, D.; Ravarino, P.; Tomasini, C. L-Dopa in small peptides: An amazing functionality to form supramolecular materials. Org. Biomol. Chem. 2021, 19, 4622–4636. [Google Scholar] [CrossRef]
- Moulay, S. Dopa/catechol-tethered polymers: Bioadhesives and biomimetic adhesive materials. Polym. Rev. 2014, 54, 436–513. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, L.; Li, B.; Zhao, K.; Wang, Z.; Zhou, Y.; Ma, C.; Li, J.; Zhang, H.; Herrmann, A.; et al. Genetically engineered polypeptide adhesive coacervates for surgical applications. Angew. Chem. Int. Ed. 2021, 60, 23687–23694. [Google Scholar] [CrossRef]
- Ahn, Y.; Jang, Y.; Selvapalam, N.; Yun, G.; Kim, K. Supramolecular velcro for reversible underwater adhesion. Angew. Chem. Int. Ed. 2013, 52, 3140–3144. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; An, Z.; Wang, Z.; Wang, S. Chemical Design of Supramolecular Reversible Adhesives for Promising Applications. Chem.-Eur. J. 2024, 30, e202304349. [Google Scholar] [CrossRef]
- Liu, J.; Tan, C.S.Y.; Scherman, O.A. Dynamic interfacial adhesion through cucurbit [n] uril molecular recognition. Angew. Chem. Int. Ed. 2018, 57, 8854–8858. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Wang, H.; Xiao, F.; Lu, X.; Shang, W.; Deng, X.; Song, H.; Xu, Z.; Cao, J.; Gan, T.; et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 2022, 13, 358. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Q.; Liu, H.; Zhao, Q.; Niu, Y.; Zhao, D. Adhesion mechanism and application progress of hydrogels. Eur. Polym. J. 2022, 173, 111277. [Google Scholar] [CrossRef]
- Yao, H.; Wu, M.; Lin, L.; Wu, Z.; Bae, M.; Park, S.; Wang, S.; Zhang, W.; Gao, J.; Wang, D.; et al. Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: Status and trends. Mater. Today Bio 2022, 16, 100429. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, S.; Ren, X.; Zhang, J.; Lin, Q.; Zhao, Y. Supramolecular adhesive hydrogels for tissue engineering applications. Chem. Rev. 2022, 122, 5604–5640. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, R.; Sun, Z.; Zhu, X.; Zhao, Q.; Zhang, T.; Cholewinski, A.; Yang, F.K.; Zhao, B.; Pinnaratip, R.; et al. Catechol-functionalized hydrogels: Biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 2020, 49, 433–464. [Google Scholar] [CrossRef]
- Han, L.; Lu, X.; Liu, K.; Wang, K.; Fang, L.; Weng, L.T.; Zhang, H.; Tang, Y.; Ren, F.; Zhao, C.; et al. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 2017, 11, 2561–2574. [Google Scholar] [CrossRef]
- Su, X.; Wang, H.; Tian, Z.; Duan, X.; Chai, Z.; Feng, Y.; Wang, Y.; Fan, Y.; Huang, J. A solvent co-cross-linked organogel with fast self-healing capability and reversible adhesiveness at extreme temperatures. ACS Appl. Mater. Interfaces 2020, 12, 29757–29766. [Google Scholar] [CrossRef]
- Sun, T.L.; Kurokawa, T.; Kuroda, S.; Ihsan, A.B.; Akasaki, T.; Sato, K.; Haque, M.A.; Nakajima, T.; Gong, J.P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 2013, 12, 932–937. [Google Scholar] [CrossRef]
- Burattini, S.; Greenland, B.W.; Merino, D.H.; Weng, W.; Seppala, J.; Colquhoun, H.M.; Hayes, W.; Mackay, M.E.; Hamley, I.W.; Rowan, S.J. A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 2010, 132, 12051–12058. [Google Scholar] [CrossRef]
- Hou, Y.; Song, Y.; Sun, X.; Jiang, Y.; He, M.; Li, Y.; Chen, X.; Zhang, L. Multifunctional composite hydrogel bolus with combined self-healing, antibacterial and adhesive functions for radiotherapy. J. Mater. Chem. B 2020, 8, 2627–2635. [Google Scholar] [CrossRef]
- Wang, Y.; Garcia, C.R.; Ding, Z.; Gabrilska, R.; Rumbaugh, K.P.; Wu, J.; Liu, Q.; Li, W. Adhesive, self-healing, and antibacterial chitosan hydrogels with tunable two-layer structures. ACS Sustain. Chem. Eng. 2020, 8, 18006–18014. [Google Scholar] [CrossRef]
- Lahiri, H.; Basu, K. Supramolecular Sensing Platforms: Techniques for In Vitro Biosensing. ChemEngineering 2024, 8, 66. [Google Scholar] [CrossRef]
- Jeffrey, G.A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Cheng, S.; Zhang, M.; Dixit, N.; Moore, R.B.; Long, T.E. Nucleobase self-assembly in supramolecular adhesives. Macromolecules 2012, 45, 805–812. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Gao, G. Bioinspired adhesive hydrogels tackified by nucleobases. Adv. Funct. Mater. 2017, 27, 1703132. [Google Scholar] [CrossRef]
- Feula, A.; Tang, X.; Giannakopoulos, I.; Chippindale, A.M.; Hamley, I.W.; Greco, F.; Buckley, C.P.; Siviour, C.R.; Hayes, W. An adhesive elastomeric supramolecular polyurethane healable at body temperature. Chem. Sci. 2016, 7, 4291–4300. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, D.; Xu, L.; Zhang, A. A supramolecular polymer with ultra-stretchable, notch-insensitive, rapid self-healing and adhesive properties. Polym. Chem. 2021, 12, 660–669. [Google Scholar] [CrossRef]
- Wu, S.; Cai, C.; Li, F.; Tan, Z.; Dong, S. Supramolecular adhesive materials from natural acids and sugars with tough and organic solvent-resistant adhesion. CCS Chem. 2021, 3, 1690–1700. [Google Scholar] [CrossRef]
- Zhu, H.; Demirci, A.; Liu, Y.; Gong, J.; Mitsuishi, M. Robust, reusable, and antioxidative supramolecular adhesive to inorganic surfaces based on water-stimulated hydrogen bonding. ACS Appl. Polym. Mater. 2022, 4, 1586–1594. [Google Scholar] [CrossRef]
- Nakamura, T.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H.; Harada, A. A metal–ion-responsive adhesive material via switching of molecular recognition properties. Nat. Commun. 2014, 5, 4622. [Google Scholar] [CrossRef]
- Roling, O.; Stricker, L.; Voskuhl, J.; Lamping, S.; Ravoo, B.J. Supramolecular surface adhesion mediated by azobenzene polymer brushes. Chem. Commun. 2016, 52, 1964–1966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, T.; Duan, A.; Dong, S.; Zhao, W.; Stang, P.J. Formation of a supramolecular polymeric adhesive via water–participant hydrogen bond formation. J. Am. Chem. Soc. 2019, 141, 8058–8063. [Google Scholar] [CrossRef]
- Chan, M.H.Y.; Yam, V.W.W. Toward the design and construction of supramolecular functional molecular materials based on metal–metal interactions. J. Am. Chem. Soc. 2022, 144, 22805–22825. [Google Scholar] [CrossRef]
- Sun, P.; Mei, S.; Xu, J.F.; Zhang, X. A Bio-Based Supramolecular Adhesive: Ultra-High Adhesion Strengths at both Ambient and Cryogenic Temperatures and Excellent Multi-Reusability. Adv. Sci. 2022, 9, 2203182. [Google Scholar] [CrossRef]
- Deng, Q.; Han, S.; Wu, Y.; Chen, Y.; Zhang, Y.; Zhao, Y.; Chen, S.; Zhu, J. Robust and Reversible Thermal/Electro-Responsive Supramolecular Polymeric Adhesives via Synergistic Hydrogen-Bonds and Ionic Junctions. Angew. Chem. Int. Ed. 2025, 64, e202415386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, W.; Zhang, Y.; Wei, Q.; Han, F.; Dong, S.; Liu, D.; Zhang, S. Small-molecule ionic liquid-based adhesive with strong room-temperature adhesion promoted by electrostatic interaction. Nat. Commun. 2022, 13, 5214. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, R.; Li, S.; Xue, X.; Zhang, Q.; Shi, F.; Cheng, M. Robust electrostatically interactive hydrogel coatings for macroscopic supramolecular assembly via rapid wet adhesion. ACS Appl. Mater. Interfaces 2023, 15, 21640–21650. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Xie, J.; Zheng, Y.; Wei, D.; Yao, D.; Zhang, J.; Zhang, T. Antibacterial, self-adhesive, recyclable, and tough conductive composite hydrogels for ultrasensitive strain sensing. ACS Appl. Mater. Interfaces 2020, 12, 22225–22236. [Google Scholar] [CrossRef]
- Yang, B.; Song, J.; Jiang, Y.; Li, M.; Wei, J.; Qin, J.; Peng, W.; López Lasaosa, F.; He, Y.; Mao, H.; et al. Injectable adhesive self-healing multicross-linked double-network hydrogel facilitates full-thickness skin wound healing. ACS Appl. Mater. Interfaces 2020, 12, 57782–57797. [Google Scholar] [CrossRef]
- Yan, J.; Ji, Y.; Huang, M.; Li, T.; Liu, Y.; Lu, S.; Liu, M. Nucleobase-inspired self-adhesive and inherently antibacterial hydrogel for wound dressing. ACS Mater. Lett. 2020, 2, 1375–1380. [Google Scholar] [CrossRef]
- Han, L.; Wang, M.; Prieto-López, L.O.; Deng, X.; Cui, J. Self-hydrophobization in a dynamic hydrogel for creating nonspecific repeatable underwater adhesion. Adv. Funct. Mater. 2020, 30, 1907064. [Google Scholar] [CrossRef]
- Li, X.; Deng, Y.; Lai, J.; Zhao, G.; Dong, S. Tough, long-term, water-resistant, and underwater adhesion of low-molecular-weight supramolecular adhesives. J. Am. Chem. Soc. 2020, 142, 5371–5379. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, K.; Li, J.; Zhang, Y.; Liu, J.; Zhang, K.; Cui, Y.; Wang, M.; Liu, C.S. Low-molecular-weight supramolecular adhesives based on non-covalent self-assembly of a small molecular gelator. Mater. Horizons 2022, 9, 1700–1707. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Q.; Shi, C.; Toyoda, R.; Qu, D.H.; Tian, H.; Feringa, B.L. Acylhydrazine-based reticular hydrogen bonds enable robust, tough, and dynamic supramolecular materials. Sci. Adv. 2022, 8, eabk3286. [Google Scholar] [CrossRef]
- Pethrick, R. Composite to metal bonding in aerospace and other applications. In Welding and Joining of Aerospace Materials; Elsevier: Amsterdam, The Netherlands, 2012; pp. 288–319. [Google Scholar]
- Sun, P.; Li, Y.; Qin, B.; Xu, J.F.; Zhang, X. Super strong and multi-reusable supramolecular epoxy hot melt adhesives. ACS Mater. Lett. 2021, 3, 1003–1009. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Liu, P.; Wang, Z.; Yao, H.; Yao, X. Supramolecular silicone coating capable of strong substrate bonding, readily damage healing, and easy oil sliding. Sci. Adv. 2019, 5, eaaw5643. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Ma, P.X. Stimuli-responsive supramolecular hydrogels with high extensibility and fast self-healing via precoordinated mussel-inspired chemistry. Chem. Mater. 2015, 27, 7627–7635. [Google Scholar] [CrossRef]
- Zhao, X.; Liang, Y.; Huang, Y.; He, J.; Han, Y.; Guo, B. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 2020, 30, 1910748. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Z.; Li, Q.; Yang, L.; Liu, H.; Yan, R.; Xiao, L.; Liu, H.; Wang, J.; Yang, B.; et al. Transparent conductive supramolecular hydrogels with stimuli-responsive properties for on-demand dissolvable diabetic foot wound dressings. Macromol. Rapid Commun. 2020, 41, 2000441. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, L.; Xiao, H.; Cong, H.; Wang, S. A reversible underwater glue based on photo-and thermo-responsive dynamic covalent bonds. Mater. Horizons 2020, 7, 282–288. [Google Scholar] [CrossRef]
- Ramesh, M.; Kumar, L.R. Bioadhesives. In Green Adhesives: Preparation, Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 145–164. [Google Scholar]
- Hagemann, M.J.; Chadwick, L.; Drake, M.J.; Hill, D.J.; Baker, B.C.; Faul, C.F. High-Performance Dopamine-Based Supramolecular Bio-Adhesives. Macromol. Rapid Commun. 2024, 45, 2400345. [Google Scholar] [CrossRef]
- Chen, B.; Wang, W.; Yan, X.; Li, S.; Jiang, S.; Liu, S.; Ma, X.; Yu, X. Highly Tough, Stretchable, Self-Adhesive and Strain-Sensitive DNA-Inspired Hydrogels for Monitoring Human Motion. Chem.-Eur. J. 2020, 26, 11604–11613. [Google Scholar] [CrossRef]
- Zhou, L.; Ge, J.; Wang, M.; Chen, M.; Cheng, W.; Ji, W.; Lei, B. Injectable muscle-adhesive antioxidant conductive photothermal bioactive nanomatrix for efficiently promoting full-thickness skeletal muscle regeneration. Bioact. Mater. 2021, 6, 1605–1617. [Google Scholar] [CrossRef]
- Choi, S.; Lee, J.S.; Shin, J.; Lee, M.S.; Kang, D.; Hwang, N.S.; Lee, H.; Yang, H.S.; Cho, S.W. Osteoconductive hybrid hyaluronic acid hydrogel patch for effective bone formation. J. Control. Release 2020, 327, 571–583. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Mu, J.; Chen, J.; Zhang, C.; Cao, H.; Gao, J. Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury. Nano Lett. 2020, 20, 4298–4305. [Google Scholar] [CrossRef]
- Nagase, K.; Hatakeyama, Y.; Shimizu, T.; Matsuura, K.; Yamato, M.; Takeda, N.; Okano, T. Hydrophobized thermoresponsive copolymer brushes for cell separation by multistep temperature change. Biomacromolecules 2013, 14, 3423–3433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.H.; Li, C.H.; Zuo, J.L. A variable stiffness adhesive enabled by joule heating effect. Chem. Eng. J. 2022, 433, 133840. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, J.; Huang, Z.; Ronson, T.K.; Zhao, F.; Wang, Y.; Li, B.; Feng, C.; Yu, Y.; Cheng, Y.; et al. Hierarchical self-assembly of adhesive and conductive gels with anion-coordinated triple helicate junctions. Angew. Chem. Int. Ed. 2022, 61, e202201793. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Duan, L.; Gao, G. Bioinspired nucleobase-driven nonswellable adhesive and tough gel with excellent underwater adhesion. ACS Appl. Mater. Interfaces 2019, 11, 6644–6651. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, W.; Jia, Z.; Wang, P.; Shao, Q.; Shen, H.; Li, J.; Chen, Q.; Chi, B. A Biodegradable Supramolecular Adhesive with Robust Instant Wet Adhesion for Urgent Hemostasis and Wound Repair. Adv. Funct. Mater. 2024, 34, 2401529. [Google Scholar] [CrossRef]
- Li, X.J.; Wen, Y.F.; Wang, Y.; Peng, H.Y.; Zhou, X.P.; Xie, X.L. CO2-based Biodegradable Supramolecular Polymers with Well-tunable Adhesive Properties. Chin. J. Polym. Sci. 2022, 40, 47–55. [Google Scholar] [CrossRef]
- Sands, J.M.; Fink, B.K.; McKnight, S.H.; Newton, C.H.; Gillespie, J.W., Jr.; Palmese, G.R. Environmental issues for polymer matrix composites and structural adhesives. Clean Prod. Process. 2001, 2, 228–235. [Google Scholar] [CrossRef]
- Sun, P.; Qin, B.; Xu, J.F.; Zhang, X. High-performance Supramolecular Adhesives. Macromol. Chem. Phys. 2023, 224, 2200332. [Google Scholar] [CrossRef]
- Mulcahy, K.R.; Kilpatrick, A.F.; Harper, G.D.; Walton, A.; Abbott, A.P. Debondable adhesives and their use in recycling. Green Chem. 2022, 24, 36–61. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baral, A.; Basu, K. Supramolecular Adhesives Inspired by Nature: Concept and Applications. Biomimetics 2025, 10, 87. https://doi.org/10.3390/biomimetics10020087
Baral A, Basu K. Supramolecular Adhesives Inspired by Nature: Concept and Applications. Biomimetics. 2025; 10(2):87. https://doi.org/10.3390/biomimetics10020087
Chicago/Turabian StyleBaral, Abhishek, and Kingshuk Basu. 2025. "Supramolecular Adhesives Inspired by Nature: Concept and Applications" Biomimetics 10, no. 2: 87. https://doi.org/10.3390/biomimetics10020087
APA StyleBaral, A., & Basu, K. (2025). Supramolecular Adhesives Inspired by Nature: Concept and Applications. Biomimetics, 10(2), 87. https://doi.org/10.3390/biomimetics10020087