Sulfated and Phosphorylated Agarose as Biomaterials for a Biomimetic Paradigm for FGF-2 Release
<p>(<b>A</b>) Chemical structure of the repeat unit of native agarose (NA), carboxylated agarose (CA), sulfated agarose (SA), and phosphorylated agarose (PA). (<b>B</b>) Comparison of the FTIR absorbance spectra of NA and SA. The black arrow points to the vibration of S-O (ν<sub>S = O</sub>) in SA. (<b>C</b>) Comparison of the FTIR absorbance spectra of native agarose (NA) and phosphorylated agarose (PA). The black arrow points to vibrations of POC (ν<sub>POC</sub>) and PO (ν<sub>PO</sub>) in PA. The IR bands at 1158 and 1071 cm<sup>−1</sup> correspond to –C–O–C– and glycosidic linkage [<a href="#B45-biomimetics-10-00012" class="html-bibr">45</a>], while the maxima around 1650 cm<sup>−1</sup> is attributed to polymer-bound water [<a href="#B46-biomimetics-10-00012" class="html-bibr">46</a>].</p> "> Figure 2
<p>Cumulative H-bond number during the molecular dynamic simulation. Graphs (<b>A</b>–<b>D</b>) show a comparison between H-bonds calculated between two polysaccharide strands and the number of H-bonds between the polysaccharide strands and surrounding water molecules. Graphs (<b>E</b>,<b>F</b>) show a comparison between the interaction potential between strands of the modified agaroses in comparison to native agarose, and how these inter-strand interactions impact H-bonding between the strand and water. Simulations were carried out using the TIP3P water model.</p> "> Figure 3
<p>(<b>A</b>) Circular dichroism (CD) of 0.1% <span class="html-italic">w</span>/<span class="html-italic">v</span> solution of native agarose (NA), carboxylated agarose (CA), phosphorylated agarose (PA), and sulfonated agarose (SA). (<b>B</b>) Shear modulus (G′) of 2% <span class="html-italic">w</span>/<span class="html-italic">v</span> hydrogels of native agarose (NA), carboxylated agarose (CA), phosphorylated agarose (PA), and sulfated agarose (SA). (<b>C</b>) Scanning electron micrographs of freeze-dried gels prepared from 2% <span class="html-italic">w</span>/<span class="html-italic">v</span> solutions.</p> "> Figure 4
<p>Mechanism of gelation of the NA (<b>left</b>) depicting the formation of helical bundles due to strong inter-strand H-bond in comparison to SA and PA (<b>right</b>) where the disruption of the helical structures lead to diminished polymer strand interactions and promote H-bonding with water molecules (red) resulting in weak gels.</p> "> Figure 5
<p>(<b>A</b>) FGF-2 release profile as measured by ELISA from the various modified agarose hydrogels (SA: sulfated agarose; PA: phosphate agarose, CA: carboxylated agarose) showing sustained release for a duration exceeding 1-week with appreciable differences in temporal and cumulative release in comparison to native agarose (NA) (** (<span class="html-italic">p</span> ≤ 0.01)). Data points represent average values with standard deviation (SD). SD bars are only visible in those that exceed size of the size of the symbol. One absorbance unit is 626 pg. All values beyond 10-h were found to be statistically significant with <span class="html-italic">p</span> values of ≤ 0.01 or ≤ 0.001 (see <a href="#biomimetics-10-00012-f0A5" class="html-fig">Figure A5</a> for <span class="html-italic">p</span>-values between various groups and time points) (<b>B</b>) Release profiles during the initial 10-h clearly showing the ability of these hydrogels to sequester FGF-2 to various degree. Release from PA beyond 2 h was found to be statistically significant, from all other conditions, and release from SA was statistically significantly different from CA and NA. (see <a href="#biomimetics-10-00012-f0A5" class="html-fig">Figure A5</a> for <span class="html-italic">p</span>-values between various groups and time points) (<b>C</b>) Release profile beyond 10 h showing linear behavior with similar slop from all hydrogels, suggesting that steady state release of FGF-2 is not impacted by charges characteristic of the hydrogels, implying that dissociation of the FGF-2 from polymer network is the limiting step. (<b>D</b>) The postulated release mechanism of FGF-2 from modified agarose hydrogels. In NA hydrogels (top cartoon) the dense polymer network due to strong interactions between agarose chain limits diffusion, while in the highly charged SA and PA hydrogels (bottom carton) electrostatic sequestration and expulsion dominate.</p> "> Figure 6
<p>(<b>A</b>) Photographs of vasculature around the different hydrogel on the chorioallantoic membrane (CAM) of a chick egg. (<b>B</b>) Quantification of blood vessels formed around the different hydrogels (native agarose (NA), carboxylated agarose (CA), phosphorylated agarose (PA), and sulfonated agarose (SA)) loaded with FGF-2 and positioned on the CAM over a gelatin mesh. (<b>C</b>–<b>E</b>) Temporal changes in blood vessel numbers showing a higher propensity around SA hydrogels loaded with FGF-2 in comparison to CA and NA, and a similar propensity in comparison to PA hydrogels despite a higher release of FGF-2 from PA hydrogels, suggesting a possible role for sulfonate groups in SA hydrogel in stabilizing FGF-2.</p> "> Figure A1
<p>FTR spectra of native agarose (NA) and carboxylated agarose (CA). The green arrow indicates the absorption bands at 1158 and 1071 cm<sup>−1</sup> corresponding to –C–O–C– and glycosidic linkage, the peak at 1650 cm<sup>−1</sup> denoted by the black arrow denotes polymer-bound water, and the shoulder at 1750 cm<sup>−1</sup> denoted by the red arrow corresponds to the carbonyl stretching in the carboxylic acid moieties in CA.</p> "> Figure A2
<p>Visualization of the molecular dynamic simulation at the beginning of the experiment (t = 0 ns) compared to the conformation of the polysaccharide strands at the end of the experiment (t = 15 ns).</p> "> Figure A3
<p>Zeta potential of the 0.1% <span class="html-italic">w</span>/<span class="html-italic">v</span> solution of native agarose (NA), carboxylated agarose (CA), phosphorylated agarose (PA), and sulfonated agarose (SA).</p> "> Figure A4
<p>Paired comparison of the FGF-2 release profile over the first 10-h from SA (sulfated agarose) with that from PA (phosphate agarose) (<b>A</b>), CA (carboxylated agarose) (<b>B</b>), and NA (native agarose) (<b>C</b>) hydrogels as measured by ELISA. The plot shows cumulative absorbance as a function of time and the data points represent average values with standard deviation. (* <span class="html-italic">p</span> ≤ 0.05, ** <span class="html-italic">p</span> ≤ 0.01).</p> "> Figure A5
<p><span class="html-italic">p</span>-values for the cumulative release of FGF-2 at various time points between the various hydrogel groups. Significance was assessed using a student’s <span class="html-italic">t</span>-test (paired, one-tailed). A <span class="html-italic">p</span>-value of ≤0.05 was considered statistically significant (* (<span class="html-italic">p</span> ≤ 0.05), ** (<span class="html-italic">p</span> ≤ 0.01), *** (<span class="html-italic">p</span> ≤ 0.001) and **** (<span class="html-italic">p</span> ≤ 0.0001). Gray boxes represent comparisons that were not statistically significant.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Synthesis of Carboxylated Agarose (CA)
2.3. Synthesis of Sulfated Agarose (SA)
2.4. Synthesis of Phosphorylated Agarose (PA)
2.5. Fourier-Transformed Infra-Red Spectroscopy (FTIR)
2.6. Molecular Dynamic (MD) Simulations
2.7. Electronic Circular Dichroism (CD)
2.8. Zeta Potential
2.9. Rheology
2.10. Environmental Scanning Electron Microscopy (ESEM)
2.11. Enzyme-Linked Immunosorbent Assay (ELISA)
2.12. Chorioallantoic Membrane Assay (CAM Assay)
2.13. Statistical Analysis
3. Results and Discussion
3.1. Sulfated and Phosphorylated Agarose
3.2. SA and PA Polysaccharides Do Not Form Inter-Strand Bonds
3.3. SA and PA Exhibit Secondary Structures Similar to That of NA
3.4. SA and PA Hydrogels Exhibit Similar Mechanical Properties to CA Hydrogels
3.5. Modification of the Agarose Backbone Impacts the Hydrogel Fiber Organization
3.6. Proposed Polysaccharide Strand Organization for SA and PA
3.7. Charge Characteristics of SA and PA
3.8. Functionalization of Agarose Influences FGF-2 Release
3.9. Postulated Mechanism for FGF-2 Release
3.10. The FGF-2 Released Is Biologically Active, Induces Angiogenesis in a CAM Assay, and Shows Dependence on Agarose Modification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Yue, B. Biology of the Extracellular Matrix: An Overview. J. Glaucoma 2014, 23, S20–S23. [Google Scholar] [CrossRef] [PubMed]
- Haylock-Jacobs, S.; Keough, M.B.; Lau, L.; Yong, V.W. Chondroitin Sulphate Proteoglycans: Extracellular Matrix Proteins that Regulate Immunity of the Central Nervous System. Autoimmun. Rev. 2011, 10, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Aspberg, A. The Different Roles of Aggrecan Interaction Domains. J. Histochem. Cytochem. 2012, 60, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.M.; Melrose, J. Proteoglycans in Normal and Healing Skin. Adv. Wound Care 2015, 4, 152–173. [Google Scholar] [CrossRef]
- Marikovsky, M.; Breuing, K.; Liu, P.Y.; Eriksson, E.; Higashiyama, S.; Farber, P.; Abraham, J.; Klagsbrun, M. Appearance of Heparin-Binding Egf-Like Growth Factor in Wound Fluid as a Response to Injury. Proc. Natl. Acad. Sci. USA 1993, 90, 3889–3893. [Google Scholar] [CrossRef]
- Vlodavsky, I.; Bar-Shavit, R.; Ishai-Michaeli, R.; Bashkin, P.; Fuks, Z. Extracellular Sequestration and Release of Fibroblast Growth Factor: A Regulatory Mechanism? Trends Biochem. Sci. 1991, 16, 268–271. [Google Scholar] [CrossRef]
- Ornitz, D.M. FGFs, Heparan Sulfate and FGFRs: Complex Interactions Essential for Development. Bioessays 2000, 22, 108–112. [Google Scholar] [CrossRef]
- Poole, T.J.; Finkelstein, E.B.; Cox, C.M. The Role of FGF and VEGF in Angioblast Induction and Migration During Vascular Development. Dev. Dyn. 2001, 220, 1–17. [Google Scholar] [CrossRef]
- Dace, R.; McBride, E.; Brooks, K.; Gander, J.; Buszko, M.; Doctor, V.M. Comparison of the Anticoagulant Action of Sulfated and Phosphorylated Polysaccharides. Thromb. Res. 1997, 87, 113–121. [Google Scholar] [CrossRef]
- Lyon, M.; Rushton, G.; Gallagher, J.T. The Interaction of the Transforming Growth Factor-Betas with Heparin/Heparan Sulfate Is Isoform-Specific. J. Biol. Chem. 1997, 272, 18000–18006. [Google Scholar] [CrossRef]
- McCaffrey, T.A.; Falcone, D.J.; Du, B. Transforming Growth Factor-Beta 1 Is a Heparin-Binding Protein: Identification of Putative Heparin-Binding Regions And isolation of Heparins with Varying Affinity for TGF-Beta 1. J. Cell Physiol. 1992, 152, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.Q.; Ishai-Michaeli, R.; Atzmon, R.; Peretz, T.; Vlodavsky, I. Sulfate Moieties in the Subendothelial Extracellular Matrix Are Involved in Basic Fibroblast Growth Factor Sequestration, Dimerization, and Stimulation of Cell Proliferation. J. Biol. Chem. 1996, 271, 4879–4886. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, U. Heparan Sulfate-Protein Interactions-A Concept for Drug Design? Thromb. Haemost. 2007, 98, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Gospodarowicz, D.; Cheng, J. Heparin Protects Basic and Acidic FGF from Inactivation. J. Cell. Physiol. 1986, 128, 475–484. [Google Scholar] [CrossRef]
- Tibbitt, M.W.; Anseth, K.S. Hydrogels as Extracellular Matrix Mimics for 3d Cell Culture. Biotechnol. Bioeng. 2009, 103, 655–663. [Google Scholar] [CrossRef]
- Saraswathibhatla, A.; Indana, D.; Chaudhuri, O. Cell-Extracellular Matrix Mechanotransduction in 3d. Nat. Rev. Mol. Cell Biol. 2023, 24, 495–516. [Google Scholar] [CrossRef]
- Thomas, W.E.; Discher, D.E.; Prasad Shastri, V. Mechanical Regulation of Cells by Materials and Tissues. MRS Bull. 2010, 35, 578–583. [Google Scholar] [CrossRef]
- Acerbi, I.; Cassereau, L.; Dean, I.; Shi, Q.; Au, A.; Park, C.; Chen, Y.Y.; Liphardt, J.; Hwang, E.S.; Weaver, V.M. Human Breast Cancer Invasion and Aggression Correlates with ECM Stiffening and Immune Cell Infiltration. Integr. Biol. 2015, 7, 1120–1134. [Google Scholar] [CrossRef]
- Hayward, M.K.; Muncie, J.M.; Weaver, V.M. Tissue Mechanics in Stem Cell Fate, Development, and Cancer. Dev. Cell 2021, 56, 1833–1847. [Google Scholar] [CrossRef]
- Barkovskaya, A.; Buffone, A., Jr.; Zidek, M.; Weaver, V.M. Proteoglycans as Mediators of Cancer Tissue Mechanics. Front. Cell Dev. Biol. 2020, 8, 569377. [Google Scholar] [CrossRef]
- Beaumont, M.; Tran, R.; Vera, G.; Niedrist, D.; Rousset, A.; Pierre, R.; Shastri, V.P.; Forget, A. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules 2021, 22, 1027–1052. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, L.; Forget, A.; Shastri, V.P. Modulation of Short-Term Delivery of Proteins from Hydrogels. ACS Appl. Mater. Interfaces 2024, 16, 64568–64578. [Google Scholar] [CrossRef] [PubMed]
- Ruther, A.; Forget, A.; Roy, A.; Carballo, C.; Miessmer, F.; Dukor, R.K.; Nafie, L.A.; Johannessen, C.; Shastri, V.P.; Ludeke, S. Unravelling a Direct Role for Polysaccharide Beta-Strands in the Higher Order Structure of Physical Hydrogels. Angew. Chem. Int. Ed. Engl. 2017, 56, 4603–4607. [Google Scholar] [CrossRef] [PubMed]
- Forget, A.; Christensen, J.; Lüdeke, S.; Kohler, E.; Tobias, S.; Matloubi, M.; Thomann, R.; Shastri, V.P. Polysaccharide Hydrogels with Tunable Stiffness and Provasculogenic Properties via Alpha-Helix to Beta-Sheet Switch in Secondary Structure. Proc. Natl. Acad. Sci. USA 2013, 110, 12887–12892. [Google Scholar] [CrossRef]
- Forget, A.; Gianni-Barrera, R.; Uccelli, A.; Sarem, M.; Kohler, E.; Fogli, B.; Muraro, M.G.; Bichet, S.; Aumann, K.; Banfi, A.; et al. Mechanically Defined Microenvironment Promotes Stabilization of Microvasculature, Which Correlates with the Enrichment of a Novel Piezo-1(+) Population of Circulating CD11b(+)/CD115(+) Monocytes. Adv. Mater. 2019, 31, e1808050. [Google Scholar] [CrossRef]
- Forget, A.; Blaeser, A.; Miessmer, F.; Kopf, M.; Campos, D.F.D.; Voelcker, N.H.; Blencowe, A.; Fischer, H.; Shastri, V.P. Mechanically Tunable Bioink for 3d Bioprinting of Human Cells. Adv. Healthc. Mater. 2017, 6, 1700255. [Google Scholar] [CrossRef]
- Gu, Y.; Schwarz, B.; Forget, A.; Barbero, A.; Martin, I.; Shastri, V.P. Advanced Bioink for 3D Bioprinting of Complex Free-Standing Structures with High Stiffness. Bioengineering 2020, 7, 141. [Google Scholar] [CrossRef]
- Kuzucu, M.; Vera, G.; Beaumont, M.; Fischer, S.; Wei, P.; Shastri, V.P.; Forget, A. Extrusion-Based 3D Bioprinting of Gradients of Stiffness, Cell Density, and Immobilized Peptide Using Thermogelling Hydrogels. ACS Biomater. Sci. Eng. 2021, 7, 2192–2197. [Google Scholar] [CrossRef]
- Arya, N.; Forget, A.; Sarem, M.; Shastri, V.P. RGDSP Functionalized Carboxylated Agarose as Extrudable Carriers for Chondrocyte Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 103–111. [Google Scholar] [CrossRef]
- Ahrens, L.; Tanaka, S.; Vonwil, D.; Christensen, J.; Iber, D.; Shastri, V.P. Generation of 3d Soluble Signal Gradients in Cell-Laden Hydrogels Using Passive Diffusion. Adv. Biosyst. 2019, 3, e1800237. [Google Scholar] [CrossRef]
- Oegema, T.R.; Kraft, E.L.; Jourdian, G.W.; Valen, T.R. Phosphorylation of Chondroitin Sulfate in Proteoglycans from the Swarm Rat Chondrosarcoma. J. Biol. Chem. 1984, 259, 1720–1726. [Google Scholar] [CrossRef] [PubMed]
- Saliba, M.J. Heparin in the Treatment of Burns: A Review. Burns 2001, 27, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Ueno, M.; Yamada, S.; Zako, M.; Bernfield, M.; Sugahara, K. Structural Characterization of Heparan Sulfate and Chondroitin Sulfate of Syndecan-1 Purified from Normal Murine Mammary Gland Epithelial Cells. Common Phosphorylation of Xylose and Differential Sulfation of Ga Lactose in the Protein Linkage Region Tetrasa. J. Biol. Chem. 2001, 276, 29134–29140. [Google Scholar] [CrossRef] [PubMed]
- Seghezzi, G.; Patel, S.; Ren, C.J.; Gualandris, A.; Pintucci, G.; Robbins, E.S.; Shapiro, R.L.; Galloway, A.C.; Rifkin, D.B.; Mignatti, P. Fibroblast Growth Factor-2 (FGF-2) Induces Vascular Endothelial Growth Factor (VEGF) Expression in the Endothelial Cells of Forming Capillaries: An Autocrine Mechanism Contributing to Angiogenesis. J. Cell Biol. 1998, 141, 1659–1673. [Google Scholar] [CrossRef]
- Ribatti, D.; Nico, B.; Vacca, A.; Presta, M. The Gelatin Sponge-Chorioallantoic Membrane Assay. Nat. Protoc. 2006, 1, 85–91. [Google Scholar] [CrossRef]
- Ribatti, D.; Nico, B.; Vacca, a.; Roncali, L.; Burri, P.H.; Djonov, V. Chorioallantoic Membrane Capillary Bed: A Useful Target for Studying Angiogenesis and Anti-Angiogenesis In Vivo. Anat. Rec. 2001, 264, 317–324. [Google Scholar] [CrossRef]
- Honke, K.; Taniguchi, N. Sulfotransferases and Sulfated Oligosaccharides. Med. Res. Rev. 2002, 22, 637–654. [Google Scholar] [CrossRef]
- Xia, S.; Zhai, Y.; Wang, X.; Fan, Q.; Dong, X.; Chen, M.; Han, T. Phosphorylation of Polysaccharides: A Review on the Synthesis and Bioactivities. Int. J. Biol. Macromol. 2021, 184, 946–954. [Google Scholar] [CrossRef]
- Al-Horani, R.A.; Desai, U.R. Chemical Sulfation of Small Molecules—Advances and Challenges. Tetrahedron 2010, 66, 2907–2918. [Google Scholar] [CrossRef]
- Jie, Y.; Zhang, L.; Chen, P.; Mao, X.; Tang, S. Preparation of Agarose Sulfate and Its Antithrombogenicity. J. Wuhan Univ. Technol. 2012, 27, 110–114. [Google Scholar] [CrossRef]
- Rajalaxmi, D.; Jiang, N.; Leslie, G.; Ragauskas, A.J. Synthesis of Novel Water-Soluble Sulfonated Cellulose. Carbohydr. Res. 2010, 345, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Suflet, D.M.; Chitanu, G.C.; Desbrières, J. Phosphorylated Polysaccharides. 2. Synthesis and Properties of Phosphorylated Dextran. Carbohydr. Polym. 2010, 82, 1271–1277. [Google Scholar] [CrossRef]
- Suflet, D.M.; Chitanu, G.C.; Popa, V.I. Phosphorylation of Polysaccharides: New Results on Synthesis and Characterisation of Phosphorylated Cellulose. React. Funct. Polym. 2006, 66, 1240–1249. [Google Scholar] [CrossRef]
- Whistler, R.L.; Towle, G.A. Preparation and Characterization of Polysaccharide Phosphates. Arch. Biochem. Biophys. 1969, 135, 396–401. [Google Scholar] [CrossRef]
- Christiaen, D.; Bodard, M. Spectroscopie Infrarouge de Films D‘agar de Gracilaria verrucosa (Huds.) Papenfuss. Bot. Mar. 1983, 26, 425–428. [Google Scholar] [CrossRef]
- Prasad, K.; Mehta, G.; Meena, R.; Siddhanta, A.K. Hydrogel-Forming Agar-Graft-PVP and κ-Carrageenan-Graft-PVP Blends: Rapid Synthesis and Characterization. J. Appl. Polym. Sci. 2006, 102, 3654–3663. [Google Scholar] [CrossRef]
- Arnott, S.; Fulmer, A.; Scott, W.E.; Dea, I.C.; Moorhouse, R.; Rees, D.A. The Agarose Double Helix and Its Function in Agarose Gel Structure. J. Mol. Biol. 1974, 90, 269–284. [Google Scholar] [CrossRef]
- Tako, M.; Nakamura, S. Gelation Mechanism Of Agarose*. Carbohydr. Res. 1988, 180, 277–284. [Google Scholar] [CrossRef]
- Hobbie, E.K.; Wang, H.; Kim, H.; Lin-Gibson, S.; Grulke, E.A. Orientation of Carbon Nanotubes in a Sheared Polymer Melt. Phys. Fluids 2003, 15, 1196–1202. [Google Scholar] [CrossRef]
- Herbert, S.P.; Stainier, D.Y.R. Molecular Control of Endothelial Cell Behaviour During Blood Vessel Morphogenesis. Nat. Rev. Mol. Cell Biol. 2011, 12, 551–564. [Google Scholar] [CrossRef]
- Kottakis, F.; Polytarchou, C.; Foltopoulou, P.; Sanidas, I.; Kampranis, S.C.; Tsichlis, P.N. FGF-2 Regulates Cell Proliferation, Migration, and Angiogenesis Through an NDY1/KDM2B-miR-101-EZH2 Pathway. Mol. Cell 2011, 43, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Presta, M.; Dell’Era, P.; Mitola, S.; Moroni, E.; Ronca, R.; Rusnati, M. Fibroblast Growth Factor/Fibroblast Growth Factor Receptor System in Angiogenesis. Cytokine Growth Factor. Rev. 2005, 16, 159–178. [Google Scholar] [CrossRef]
- Beenken, A.; Mohammadi, M. The FGF Family: Biology, Pathophysiology and Therapy. Nat. Rev. Drug Discov. 2009, 8, 235–253. [Google Scholar] [CrossRef]
- Nugent, M.A.; Edelman, E.R. Kinetics of Basic Fibroblast Growth Factor Binding to Its Receptor and Heparan Sulfate Proteoglycan: A Mechanism for Cooperactivity. Biochemistry 1992, 31, 8876–8883. [Google Scholar] [CrossRef]
- Zomer Volpato, F.; Almodóvar, J.; Erickson, K.; Popat, K.C.; Migliaresi, C.; Kipper, M.J. Preservation of FGF-2 Bioactivity Using Heparin-Based Nanoparticles, and Their Delivery from Electrospun Chitosan Fibers. Acta Biomater. 2012, 8, 1551–1559. [Google Scholar] [CrossRef]
- Jones, J.I.; Gockerman, a.; Busby, W.H.; Camacho-Hubner, C.; Clemmons, D.R. Extracellular Matrix Contains Insulin-Like Growth Factor Binding Protein-5: Potentiation of the Effects of IGF-I. J. Cell Biol. 1993, 121, 679–687. [Google Scholar] [CrossRef]
- Tran, K.T.; Griffith, L.; Wells, A. Extracellular Matrix Signaling Through Growth Factor Receptors During Wound Healing. Wound Repair. Regen. 2004, 12, 262–268. [Google Scholar] [CrossRef]
- Sakiyama-Elbert, S.E.; Hubbell, J.A. Development of Fibrin Derivatives for Controlled Release of Heparin-Binding Growth Factors. J. Control Release 2000, 65, 389–402. [Google Scholar] [CrossRef]
- Elliott, T.S.; Slowey, A.; Ye, Y.; Conway, S.J. The Use of Phosphate Bioisosteres in Medicinal Chemistry and Chemical Biology. MedChemComm 2012, 3, 735–751. [Google Scholar] [CrossRef]
- Guthrie, J.P. Hydrolysis of Esters of Oxy Acids—Pka Values for Strong Acids—Bronsted Relationship for Attack of Water at Methyl—Free-Energies of Hydrolysis of Esters of Oxy Acids—And a Linear Relationship between Free-Energy of Hydrolysis and Pka Holding over a Range of 20 Pk Units. Can. J. Chem. 1978, 56, 2342–2354. [Google Scholar]
- Azzarello, J.; Ihnat, M.a.; Kropp, B.P.; Warnke, L.a.; Lin, H.-K. Assessment of Angiogenic Properties of Biomaterials Using the Chicken Embryo Chorioallantoic Membrane Assay. Biomed. Mater. 2007, 2, 55–61. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forget, A.; Shastri, V.P. Sulfated and Phosphorylated Agarose as Biomaterials for a Biomimetic Paradigm for FGF-2 Release. Biomimetics 2025, 10, 12. https://doi.org/10.3390/biomimetics10010012
Forget A, Shastri VP. Sulfated and Phosphorylated Agarose as Biomaterials for a Biomimetic Paradigm for FGF-2 Release. Biomimetics. 2025; 10(1):12. https://doi.org/10.3390/biomimetics10010012
Chicago/Turabian StyleForget, Aurelien, and V. Prasad Shastri. 2025. "Sulfated and Phosphorylated Agarose as Biomaterials for a Biomimetic Paradigm for FGF-2 Release" Biomimetics 10, no. 1: 12. https://doi.org/10.3390/biomimetics10010012
APA StyleForget, A., & Shastri, V. P. (2025). Sulfated and Phosphorylated Agarose as Biomaterials for a Biomimetic Paradigm for FGF-2 Release. Biomimetics, 10(1), 12. https://doi.org/10.3390/biomimetics10010012