Lunarminer Framework for Nature-Inspired Swarm Robotics in Lunar Water Ice Extraction
<p>Landing sites near Shackleton Crater on the lunar south pole, marked with blue squares, and highlighting the geological formations near Shackleton Crater [<a href="#B41-biomimetics-09-00680" class="html-bibr">41</a>].</p> "> Figure 2
<p>Bio-inspired design concepts for the Lunarminer framework. The orange boxes represent specific tasks, i.e. task allocation and material handling (inspired by leafcutter ants), and recruitment and fault tolerance (inspired by fireflies),which contribute to broader goals stated in the green boxes, such as efficient navigation, swarm automation, and resource handling.</p> "> Figure 3
<p>RASSOR 2.0 computer-aided design [<a href="#B14-biomimetics-09-00680" class="html-bibr">14</a>].</p> "> Figure 4
<p>Simulated virtual lunar environment. ROS simulation of Shackleton Crater’s floor (gray areas) with a central hub for collection (black circles), maintenance (yellow squares), base stations (green squares), processing (blue squares), mining (green areas), and transportation (blue areas). The robot fleet includes 4 orange explorers, 2 green excavators, 4 yellow haulers, and 2 blue transporters.</p> "> Figure 5
<p>Lunarminer finite state machine.</p> "> Figure 6
<p>(<b>a</b>) Strip search and piecewise tracking function for resource prospecting. The green arrows indicate the strip search path, while the red arrow highlights a prioritized direction or specific target location within the search area. Blue-shaded areas represent zones covered by individual units as they scan for resources; (<b>b</b>) fireflies’ bioluminescent function inspired recruitment protocol, where light beacons are placed at ore locations to signal and attract other units to ore locations.</p> "> Figure 7
<p>(<b>a</b>) Selection of the mining site based on light proximity and intensity, with red arrows indicating sensed skylight directions guiding site selection; (<b>b</b>) mining excavation process showing ore block detection and hauler positioning system, with light beacon areas representing operational zones.; and (<b>c</b>) division of labor in transporting ore blocks: yellow arrows indicate transport paths from the mine site to the central hub, and green arrows show paths from the central hub to the processing plant.</p> "> Figure 8
<p>(<b>a</b>) A red-light signal emitted by a malfunctioning robot, inspired by the flashing behavior of fireflies, with blue shaded areas representing the communication range of each robot; (<b>b</b>) activation of the fault-tolerance protocol to replace the malfunctioning robot, indicated by red arrows guiding the replacement robot toward its target within the blue communication zones. The base station and maintenance site are shown in green and yellow, respectively, facilitating the coordination of the replacement process.</p> "> Figure 9
<p>Highlights of various stages of the Lunarminer mining process from the exploration stage to the recovery stage.</p> "> Figure 10
<p>(<b>a</b>) Resource extraction time and (<b>b</b>) energy distribution across different scenarios.</p> "> Figure 11
<p>Fault tolerance and system robustness across three scenarios, i.e., normal, with failure, and with recovery settings.</p> "> Figure 12
<p>Lunarminer framework classification.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. State-of-the-Art in ISRU Technology
2.2. Comparative Analysis of ISRU Technologies and the Lunarminer Framework
3. Theoretical Framework
3.1. Mining Site Selection: Case Study of Shackleton Crater
3.2. Water Ice Extraction Process
3.3. Constraints and Assumption
4. Bio-Inspired Strategies and System Design
4.1. Biomimicry in Swarm Robotics: Case Study
4.1.1. Leafcutter Ants—Division of Labor
4.1.2. Fireflies—Synchronized Flashing Behavior
4.2. Lunarminer Bio-Inspired Concept
4.2.1. Leafcutter Ants: Division of Labor and Task Allocation
4.2.2. Firefly Bioluminescence: Recruitment Task and Fault-Tolerance Protocol
4.3. Applicability of Other Social Animal Behavaiors
4.4. Swarm Robotic System Development
5. Virtual Environment and Simulation
5.1. Virtual Lunar Environment Development
5.2. Lunarminer Mining Lifecycle
5.2.1. Resource Prospecting and Localization
5.2.2. Mineral Excavation and Transportation
5.2.3. Maintenance and Sustainability
6. Results and Discussion
6.1. Simulation Outcomes
6.2. Comparative Analysis
6.3. Environmental Condition Analysis
6.4. System Performance Within Current Robot Limitations
6.5. Lunarminer Framework Integration
6.6. Validation of the Lunarminer Framework
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crawford, I.A. Lunar resources: A review. Prog. Phys. Geogr. 2015, 39, 137–167. [Google Scholar] [CrossRef]
- Sanders, G.B.; Larson, W.E. Progress made in lunar in situ resource utilization under NASA’s exploration technology and development program. J. Aerosp. Eng. 2013, 26, 5–17. [Google Scholar] [CrossRef]
- Ellis, T. Reds in Space: American Perceptions of the Soviet Space Programme from Apollo to Mir 1967–1991. Doctoral Dissertation, University of Southampton, Southampton, UK, 2018. [Google Scholar]
- Harland, D.M.; Harvey, B. Space Exploration 2008; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Colaprete, A.; Schultz, P.; Heldmann, J.; Wooden, D.; Shirley, M.; Ennico, K.; Hermalyn, B.; Marshall, W.; Ricco, A.; Elphic, R.C.; et al. Detection of water in the LCROSS ejecta plume. Science 2010, 330, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Sanders, G.B.; Romig, K.A.; Larson, W.E.; Johnson, R.; Rapp, D.; Johnson, K.R.; Sacksteder, K.; Linne, D.; Curreri, P.; Duke, M.; et al. Results from the NASA capability roadmap team for in-situ resource utilization (ISRU). In Proceedings of the International Lunar Conference 2005, No. KSC-2005-116, Toronto, ON, Canada, 18–23 September 2005. [Google Scholar]
- Bezruchko, K.A. Review of potential sources for obtaining energy carriers and mineral raw materials in outer space. Geoeh.meh. 2022, 163, 140–154. [Google Scholar] [CrossRef]
- Heiken, G.; Vaniman, D.; French, B.M. (Eds.) Lunar Sourcebook: A User’s Guide to the Moon (No. 1259); Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Liu, H. An overview of the space robotics progress in China. Syst. (ConeXpress ORS) 2014, 14, 15. [Google Scholar]
- Sowers, G.F. A cislunar transportation system fueled by lunar resources. Space Policy 2016, 37, 103–109. [Google Scholar] [CrossRef]
- Cui, Q.; Wang, T.; Gu, G.; Zhang, R.; Zhao, T.; Huang, Z.; Wang, G.; Chen, F. Ultraviolet and thermal dual-curing assisted extrusion-based additive manufacturing of lunar regolith simulant for in-site construction on the Moon. Constr. Build. Mater. 2024, 425, 136010. [Google Scholar] [CrossRef]
- Satish, H.; Radziszewski, P.; Ouellet, J. Design issues and challenges in lunar/Martian mining applications. Min. Technol. 2005, 114, 107–117. [Google Scholar] [CrossRef]
- Zacny, K.; Chu, P.; Paulsen, G.; Avanesyan, A.; Craft, J.; Osborne, L. Mobile in-situ water extractor (MISWE) for Mars, Moon, and Asteroids in situ resource utilization. In Proceedings of the AIAA SPACE 2012 Conference & Exposition, Pasadena, CA, USA, 11–13 September 2012; p. 5168. [Google Scholar]
- Mueller, R.P.; Smith, J.D.; Schuler, J.M.; Nick, A.J.; Gelino, N.J.; Leucht, K.W.; Townsend, I.I.; Dokos, A.G. Design of an excavation robot: Regolith advanced surface systems operations robot (RASSOR) 2.0. In Proceedings of the 15th Biennial ASCE Conference on Engineering, Science, Construction, and Operations in Challenging Environments, Orlando, FL, USA, 11–15 April 2016; American Society of Civil Engineers: Reston, VA, USA, 2016; pp. 163–174. [Google Scholar]
- Arvidson, R.E.; Ashley, J.W.; Bell III, J.F.; Chojnacki, M.; Cohen, J.; Economou, T.E.; Farrand, W.H.; Fergason, R.; Fleischer, I.; Geissler, P.; et al. Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater. J. Geophys. Res. Planets 2011, 116. [Google Scholar] [CrossRef]
- Wilcox, B.; Nguyen, T. Sojourner on Mars and Lessons Learned for Future Planetary Rovers (No. 981695); SAE Technical Paper: Warrendale, PA, USA, 1998. [Google Scholar]
- Rankin, A.; Patel, N.; Graser, E.; Wang, J.K.F.; Rink, K. March. Assessing Mars Curiosity rover wheel damage. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–19. [Google Scholar]
- Dyke, S.J.; Sharma, A.; Mount, E.M.; Bobet, A.; Ramirez, J.A. Establishing Standards for Lunar ISRU Structural Materials. Available online: https://www.purdue.edu/rethi/files/LunarStandards_2024_03_22_Preprint.pdf (accessed on 18 July 2024).
- Schlüter, L.; Cowley, A. Review of techniques for In-Situ oxygen extraction on the moon. Planet. Space Sci. 2020, 181, 104753. [Google Scholar] [CrossRef]
- Zhang, P.; Dai, W.; Niu, R.; Zhang, G.; Liu, G.; Liu, X.; Bo, Z.; Wang, Z.; Zheng, H.; Liu, C.; et al. Overview of the Lunar In Situ Resource Utilization Techniques for Future Lunar Missions. Space Sci. Technol. 2023, 3, 0037. [Google Scholar] [CrossRef]
- Clark, P.; MacDowall, R.; Farrell, W.; Brambora, C.; Lunsford, A.; Hurford, T.; Folta, D.; Malphrus, B.; Grubb, M.; Wilzcewski, S.; et al. Nature of and lessons learned from Lunar Ice Cube and the first deep space cubesat’cluster’. In CubeSats and NanoSats for Remote Sensing II; SPIE: St Bellingham, WA, USA, 2018; Volume 10769, pp. 114–126. [Google Scholar] [CrossRef]
- Andrews, D.; Viper: Pathfinding In-Situ Resource Utilization. Viper: Pathfinding In-Situ Resource Utilization. European Lunar Symposium (ELS). NASA. Available online: https://ntrs.nasa.gov/citations/20205000864 (accessed on 30 October 2024).
- Lara, L.M.; Leger, G.; Duffard, R.D.; González Gómez, I.; Prieto-Ballesteros, O.; Ceballos-Cáceres, J.; Funke, B.; Altadill, D.; Benavides-Piccione, R.; Medina, F.J.; et al. White Paper 12: Our Future? Space Colonization and Exploration. CSIC Scienific Challenges: Towards 2030, Volume 12. Available online: https://digital.csic.es/handle/10261/272520 (accessed on 30 October 2024).
- Clarke, J.; Willson, D.; Cooper, D. In-situ resource utilisation through water extraction from hydrated minerals–relevance to Mars missions and an Australian analogue. In Proceedings of the 6th Australian Mars Exploration Conference, Mars Society Australia, Victorian Space Science Education Centre, Melbourne, Australian; 2006; pp. 1–16. [Google Scholar]
- Khoshnevis, B.; Carlson, A.; Thangavelu, M. ISRU-Based Robotic Construction Technologies for Lunar and Martian Infrastructures (No. HQ-E-DAA-TN41353); NIAC Phase II Final Report, University of Southern Californi; NASA. Available online: https://ntrs.nasa.gov/api/citations/20170004640/downloads/20170004640.pdf (accessed on 30 October 2024).
- Isachenkov, M.; Chugunov, S.; Akhatov, I.; Shishkovsky, I. Regolith-based additive manufacturing for sustainable development of lunar infrastructure–An overview. Acta Astronaut. 2021, 180, 650–678. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, L.; Li, Y.; Sun, Q.; Sun, M.; Huang, Y.; Li, Z.; Tang, D.; Wang, Y.; Xiao, L. In-situ utilization of regolith resource and future exploration of additive manufacturing for lunar/martian habitats: A review. Appl. Clay Sci. 2022, 229, 106673. [Google Scholar] [CrossRef]
- Werkheiser, N.; Ching, M.; Galica, C.; Sanchez, A.J.; Payne, S. NASA’s Lunar Surface Innovation Initiative: Ensuring a Cohesive, Executable Strategy for Technology Development. In Proceedings of the AIAA Aviation Forum and Ascend 2024, Las Vegas, NV, USA, 29 July–2 August 2024; p. 4841. [Google Scholar]
- Landis, M.E.; Hayne, P.O.; Williams, J.P.; Greenhagen, B.T.; Paige, D.A. Spatial distribution and thermal diversity of surface volatile cold traps at the lunar poles. Planet. Sci. J. 2022, 3, 39. [Google Scholar] [CrossRef]
- Spudis, P.D.; Bussey, B.; Plescia, J.; Josset, J.L.; Beauvivre, S. Geology of Shackleton Crater and the south pole of the Moon. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Haruyama, J.; Ohtake, M.; Matsunaga, T.; Morota, T.; Honda, C.; Yokota, Y.; Pieters, C.M.; Hara, S.; Hioki, K.; Saiki, K.; et al. Lack of exposed ice inside lunar south pole Shackleton crater. Science 2008, 322, 938–939. [Google Scholar] [CrossRef] [PubMed]
- Pugacheva, S.G.; Feoktistova, E.A.; Shevchenko, V.V. On the nature of the impactor that formed the Shackleton crater on the Moon. Earth Moon Planets 2016, 118, 27–50. [Google Scholar] [CrossRef]
- Wagner, R.V.; Robinson, M.S.; Speyerer, E.J.; Mahanti, P. Topography of 20-km Diameter Craters on the Moon. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2013; Volume 44, p. 2924. [Google Scholar]
- Vasavada, A.R.; Paige, D.A.; Wood, S.E. Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus 1999, 141, 179–193. [Google Scholar] [CrossRef]
- Halim, S.H.; Barrett, N.; Boazman, S.J.; Gawronska, A.J.; Gilmour, C.M.; McCanaan, K.; Satyakumar, A.V.; Shah, J.; Kring, D.A. Numerical modeling of the formation of Shackleton crater at the lunar south pole. Icarus 2021, 354, 113992. [Google Scholar] [CrossRef]
- Thomson, B.J.; Bussey, D.B.J.; Neish, C.D.; Cahill, J.T.S.; Heggy, E.; Kirk, R.L.; Patterson, G.W.; Raney, R.K.; Spudis, P.D.; Thompson, T.W.; et al. An upper limit for ice in Shackleton crater as revealed by LRO Mini-RF orbital radar. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Gertsch, L.; Gustafson, R.; Gertsch, R. Effect of water ice content on excavatability of lunar regolith. In AIP conference proceedings. Am. Inst. Phys. 2006, 813, 1093–1100. [Google Scholar]
- McKay, D.S.; Heiken, G.; Basu, A.; Blanford, G.; Simon, S.; Reedy, R.; French, B.M.; Papike, J. The lunar regolith. Lunar Sourceb. 1991, 567, 285–356. [Google Scholar]
- Ambrose, W.A. The significance of lunar water ice and other mineral resources for rocket propellants and human settlement of the Moon. In Energy Resources for Human Settlement in the Solar System and Earth’s Future in Space: AAPG Memoir; Ambrose, W.A., II, J.F.R., Peters, D.C., Eds.; GeoScienceWorld: McLean, VA, USA, 2013; Volume 101, pp. 7–31. [Google Scholar] [CrossRef]
- Paschall, S.C.; Brady, T.; Cohanim, B.E.; Sostaric, R. A self contained method for safe & precise lunar landing. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MN, USA, 23–26 September 2008; pp. 1–12. [Google Scholar]
- Act-React QuickMap, (n.d.). LROC QuickMap. Available online: https://quickmap.lroc.asu.edu/?prjExtent=-1737400%2C-1887947.5409836%2C1737400%2C1887947.5409836&layers=NrBsFYBoAZIRnpEBmZcAsjYIHYFcAbAyAbwF8BdC0yioA&proj=10 (accessed on 18 July 2024).
- Metzger, P.T.; Sapkota, D.; Fox, J.; Bennett, N. Aqua Factorem: Ultra Low Energy Lunar Water Extraction; No. Grant Number 80NSSC 20K1022; NASA Innovative Advanced Concepts (NIAC) Phase I, United States. 2021. Available online: https://ntrs.nasa.gov/api/citations/20230008775/downloads/NIAC_2020_PhI_Metzger_AquaFactorem.pdf (accessed on 18 July 2024).
- Rabagliati, L.; Devecchi, M.; Lovagnini, A.; Pino, P.; Thirion, G. Regolith Mining in Shackleton Crater on the Moon: Propellant, Building Materials and Vital Resources Production for a Long Duration Manned Mission. Int. J. Astronaut. Aeronaut. Eng. 2021, 6. [Google Scholar]
- Li, S.; Lucey, P.G.; Milliken, R.E.; Hayne, P.O.; Fisher, E.; Williams, J.P.; Hurley, D.M.; Elphic, R.C. Direct evidence of surface exposed water ice in the lunar polar regions. Proc. Natl. Acad. Sci. USA 2018, 115, 8907–8912. [Google Scholar] [CrossRef]
- Cole, J.D.; Lim, S.; Sargeant, H.M.; Sheridan, S.; Anand, M.; Morse, A. Water extraction from icy lunar simulants using low power microwave heating. Acta Astronaut. 2023, 209, 95–103. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Pang, Y.; Wang, Q.; Zhao, Z.; Lin, T.; Wang, Z.; Shen, T.; Liu, S.; Song, J.; et al. Water extraction from icy lunar regolith by drilling-based thermal method in a pilot-scale unit. Acta Astronaut. 2023, 202, 386–399. [Google Scholar] [CrossRef]
- Guadagno, M.; Wavrunek, T.; van Susante, P.; Goddu, A.; Cobb, E.; McGillivray, H.; Miller, C.; VanHorn, E.; Gronda, T. Testing and Development of the Tethered-Permanently Shadowed Region EXplorer: A Rover Designed to Lay Superconducting Tether into Lunar Permanently Shaded Regions. New Space 2022, 10, 205–223. [Google Scholar] [CrossRef]
- Berngardt, O.I. Space weather impact on radio device operation. Sol.-Terr. Phys. 2017, 3, 37–53. [Google Scholar]
- Bi, J.; Jin, A.; Chen, C.; Ying, S. Enhanced Interactive Rendering for Rovers of Lunar Polar Region and Martian Surface. Remote Sens. 2024, 16, 1270. [Google Scholar] [CrossRef]
- Lordos, G.C.; Amy, C.; Browder, B.; Chan, M.; Dawson, C.; do Vale Pereira, P.; Dolan, S.I.; Hank, T.; Hinterman, E.D.; Martell, B.; et al. Autonomously deployable tower infrastructure for exploration and communication in lunar permanently shadowed regions. In Proceedings of the ASCEND 2020, Online, 16–18 November 2020; p. 4109. [Google Scholar]
- Primrose, S.B. Biomimetics: Nature-Inspired Design and Innovation; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Schranz, M.; Umlauft, M.; Sende, M.; Elmenreich, W. Swarm robotic behaviors and current applications. Front. Robot. AI 2020, 7, 36. [Google Scholar] [CrossRef]
- Sivolella, D. Space Mining and Manufacturing: Off-World Resources and Revolutionary Engineering Techniques; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) II. The ergonomic optimization of leaf cutting. Behav. Ecol. Sociobiol. 1980, 7, 157–165. [Google Scholar] [CrossRef]
- Hölldobler, B.; Wilson, E.O. The Leafcutter Ants: Civilization by Instinct; WW Norton & Company: New York, NY, USA, 2010. [Google Scholar]
- Swanson, A.C.; Schwendenmann, L.; Allen, M.F.; Aronson, E.L.; Artavia-León, A.; Dierick, D.; Fernandez-Bou, A.S.; Harmon, T.C.; Murillo-Cruz, C.; Oberbauer, S.F.; et al. Welcome to the Atta world: A framework for understanding the effects of leaf-cutter ants on ecosystem functions. Funct. Ecol. 2019, 33, 1386–1399. [Google Scholar] [CrossRef]
- Labella, T.H.; Dorigo, M.; Deneubourg, J.L. Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Trans. Auton. Adapt. Syst. (TAAS) 2006, 1, 4–25. [Google Scholar] [CrossRef]
- Labella, T.H. Division of Labour in Groups of Robots; Universite Libre de Bruxelles: Brussels, Belgium, 2007. [Google Scholar]
- Ferrante, E.; Turgut, A.E.; Duéñez-Guzmán, E.; Dorigo, M.; Wenseleers, T. Evolution of self-organized task specialization in robot swarms. PLoS Comput. Biol. 2015, 11, e1004273. [Google Scholar] [CrossRef]
- Lee, W.; Vaughan, N.; Kim, D. Task allocation into a foraging task with a series of subtasks in swarm robotic system. IEEE Access 2020, 8, 107549–107561. [Google Scholar] [CrossRef]
- Tan, J.; Melkoumian, N.; Harvey, D.; Akmeliawati, R. Evaluating Swarm Robotics for Mining Environments: Insights into Model Performance and Application. Appl. Sci. 2024, 14, 8876. [Google Scholar] [CrossRef]
- Brutschy, A.; Pini, G.; Pinciroli, C.; Birattari, M.; Dorigo, M. Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Auton. Agents Multi-Agent Syst. 2014, 28, 101–125. [Google Scholar] [CrossRef]
- Di Pietro, V.; Govoni, P.; Chan, K.H.; Oliveira, R.C.; Wenseleers, T.; van den Berg, P. Evolution of self-organised division of labour driven by stigmergy in leaf-cutter ants. Sci. Rep. 2022, 12, 21971. [Google Scholar] [CrossRef]
- Van Diggelen, F.; De Carlo, M.; Cambier, N.; Ferrante, E.; Eiben, A.E. Emergence of specialized Collective Behaviors in Evolving Heterogeneous Swarms. arXiv 2024, arXiv:2402.04763. [Google Scholar]
- Yang, X.S.; He, X. Firefly algorithm: Recent advances and applications. Int. J. Swarm Intell. 2013, 1, 36–50. [Google Scholar] [CrossRef]
- Fister, I.; Fister Jr, I.; Yang, X.S.; Brest, J. A comprehensive review of firefly algorithms. Swarm Evol. Comput. 2013, 13, 34–46. [Google Scholar] [CrossRef]
- Christensen, A.L.; O’Grady, R.; Dorigo, M. Synchronization and fault detection in autonomous robots. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 4139–4140. [Google Scholar]
- Christensen, A.L.; OGrady, R.; Dorigo, M. From fireflies to fault-tolerant swarms of robots. IEEE Trans. Evol. Comput. 2009, 13, 754–766. [Google Scholar] [CrossRef]
- Prignano, L.; Sagarra, O.; Gleiser, P.M.; Diaz-Guilera, A. Synchronization of moving integrate and fire oscillators. Int. J. Bifurc. Chaos 2012, 22, 1250179. [Google Scholar] [CrossRef]
- Wang, Y.; Núñez, F.; Doyle, F.J. Mobility induced network evolution speeds up synchronization of wireless sensor networks. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 3553–3558. [Google Scholar]
- Wang, J.; Xu, C.; Feng, J.; Chen, M.Z.; Wang, X.; Zhao, Y. Synchronization in moving pulse-coupled oscillator networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 2544–2554. [Google Scholar] [CrossRef]
- Perez Diaz, F. Firefly-Inspired Synchronization in Swarms of Mobile Agents. Doctoral Dissertation, University of Sheffield, Sheffield, UK, 2016. [Google Scholar]
- Palmieri, N.; Marano, S. Discrete firefly algorithm for recruiting task in a swarm of robots. In Nature-Inspired Computation in Engineering; Springer: Berlin/Heidelberg, Germany, 2016; pp. 133–150. [Google Scholar]
- Maxseiner, A.B.; Lofaro, D.M.; Sofge, D.A. Visible light communications with inherent agent localization and simultaneous message receiving capabilities for robotic swarms. In Proceedings of the 2021 18th International Conference on Ubiquitous Robots (UR), Gangneung, Republic of Korea, 12–14 July 2021; pp. 633–639. [Google Scholar]
- Tan, J.; Melkoumian, N.; Harvey, D.; Akmeliawati, R.; 2024. Classifying Nature-Inspired Swarm Algorithms for Sustainable Autonomous Mining. Insights Min. Sci. Technol. 2024, 4, 555636. [Google Scholar] [CrossRef]
- Mueller, R.P.; Cox, R.E.; Ebert, T.; Smith, J.D.; Schuler, J.M.; Nick, A.J. Regolith advanced surface systems operations robot (RASSOR). In Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2013; pp. 1–12. [Google Scholar]
- Cannon, K.M.; Mueller, R.P.; Deutsch, A.N.; Van Susante, P.; Tarnas, J.D.; Colaprete, A.C.; Sowers, G.; Dreyer, C.B.; Li, S.; Sercel, J.; et al. The Snow Badger Mission Concept: Trenching for Ice with Humans and Robots. In Proceedings of the Lunar Surface Science Workshop, Denver, CO, USA, 28–30 April 2020; Volume 2241, p. 5108. [Google Scholar]
- Hugo, A. ESA Molten Salt Electrolysis Plant to Study Oxygen Extraction from Regolith, The Space Resource. 2020. Available online: https://www.thespaceresource.com/news/2020/1/esa-molten-salt-electrolysis-plant-to-study-oxygen-extraction-from-regolith (accessed on 18 July 2024).
- Ewert, M.; Stromgren, C. Astronaut mass balance for long duration missions. In Proceedings of the 49th International Conference on Environmental Systems, Boston, MA, USA, 7–11 July 2019. [Google Scholar]
- Hurley, D.M.; Lawrence, D.J.; Bussey, D.B.J.; Vondrak, R.R.; Elphic, R.C.; Gladstone, G.R. Two-dimensional distribution of volatiles in the lunar regolith from space weathering simulations. Geophys. Res. Lett. 2012, 39, L09203. [Google Scholar] [CrossRef]
- Battsengel, G.; Melkoumian, N.; Harvey, D.; Akmeliawati, R. Designing Mining Robot for Swarm Rover Fleet Carrying out Water Extraction on Moon. In Proceedings of the ICIUS Conference Proceeding, Adelaide, South Australia, 5–7 July 2023. [Google Scholar]
- Just, G.H.; Smith, K.; Joy, K.H.; Roy, M.J. Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilisation (ISRU) and recommendations for future excavation experiments. Planet Space Sci. 2020, 180, 104746. [Google Scholar] [CrossRef]
- Clark, D.L.; Patterson, R.R.; Wurts, D.W. A novel approach to planetary regolith collection: The bucket drum soil excavator. In Proceedings of the AIAA space 2009 Conference & Exposition, Pasadena, CA, USA, 14–17 September 2009; p. 6430. [Google Scholar]
- Caruso, J.; Spina, D.; Greer, L.; John, W.; Michele, C. Excavation on the moon: Regolith collection for oxygen production and outpost site preparation. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008; p. 808. [Google Scholar]
- Greer, L.C.; Krasowski, M.J.; Prokop, N.F.; Spina, D.C. Cratos: The Evolution of a Robotic Vehicle; No. E-18618; NASA, United States. Available online: https://ntrs.nasa.gov/citations/20130010983 (accessed on 18 July 2024).
- Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm robotics: A review from the swarm engineering perspective. Swarm Intell. 2013, 7, 1–41. [Google Scholar] [CrossRef]
Technology | Water (L)/Regolith (kg) Extraction Rate | Energy Efficiency (Watts/Liter or Regolith) | Fault Tolerance | Scalability | Notes |
---|---|---|---|---|---|
Lunarminer Framework | 181 L/day 2640 kg/day | 4.2 watts/L | Up to 20% robot failure | High (Decentralized control) | Achieves superior water extraction with significant energy savings and fault tolerance. |
RASSOR | 800 kg/day | 4.1 watts/kg | Limited mechanical resilience | Medium (Single unit) | Designed primarily for regolith excavation, it consumes more energy for large-scale excavation. |
MISWE | 4.8 L/day | Not specified | High energy consumption per unit | Low (Single unit, low tolerance) | Limited by low extraction rates, scaling to 12 units yields 57.6 L/day. |
Mining Lifecycle Phase | Leafcutter Ants | Fireflies |
---|---|---|
Mine Exploration and Assessment | No | Yes |
Mine Planning and Design | Yes | Yes |
Mine Operation and Construction | Yes | Yes |
Mining Phase | Metric | Value | Notes |
---|---|---|---|
Mine Exploration | Area covered per robot per Earth day | 0.46 km2 | A total of 15 robots were used to fully explore Shackelton crater’s 32.7 km2 floor in 72 Earth days. |
Regolith Excavation | Total blocks excavated per day | 33 blocks (2640 kg of regolith) | Daily excavation of 2640 kg of regolith. |
Time per block excavation | 42 min | Time to excavate one block of 80 kg regolith. | |
Water Extraction | Water extraction rate | 181 L/day | Water produced per day from excavated regolith with 5.6 wt% water ice composition. |
Energy Efficiency | Energy savings | 31% energy reduction | Energy savings in high ore block quantities. |
Operational Time Efficiency | Time reduction in extraction | Up to 40% reduction | Time savings achieved through optimized task allocation. |
System Resilience | Robot failure tolerance | Up to 20% failure rate | The system operates efficiently even with a 20% robot failure rate. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.; Melkoumian, N.; Harvey, D.; Akmeliawati, R. Lunarminer Framework for Nature-Inspired Swarm Robotics in Lunar Water Ice Extraction. Biomimetics 2024, 9, 680. https://doi.org/10.3390/biomimetics9110680
Tan J, Melkoumian N, Harvey D, Akmeliawati R. Lunarminer Framework for Nature-Inspired Swarm Robotics in Lunar Water Ice Extraction. Biomimetics. 2024; 9(11):680. https://doi.org/10.3390/biomimetics9110680
Chicago/Turabian StyleTan, Joven, Noune Melkoumian, David Harvey, and Rini Akmeliawati. 2024. "Lunarminer Framework for Nature-Inspired Swarm Robotics in Lunar Water Ice Extraction" Biomimetics 9, no. 11: 680. https://doi.org/10.3390/biomimetics9110680
APA StyleTan, J., Melkoumian, N., Harvey, D., & Akmeliawati, R. (2024). Lunarminer Framework for Nature-Inspired Swarm Robotics in Lunar Water Ice Extraction. Biomimetics, 9(11), 680. https://doi.org/10.3390/biomimetics9110680