Magnetically Driven Quadruped Soft Robot with Multimodal Motion for Targeted Drug Delivery
<p>Schematic representation of the two motion modes and targeted drug delivery of a magnetically driven quadruped soft robot.</p> "> Figure 2
<p>Preparation and assembly of magnetic quadruped soft robot. (<b>A</b>) Preparation of magnetic quadruped soft robot. (<b>B</b>) Assembly of magnetic quadruped soft robot.</p> "> Figure 3
<p>Material parameters and magnetic field properties and magnetically actuated deformation of magnetic quadruped soft robot. (<b>A</b>) Material parameters of N52 NdFeB magnetic particles. (<b>B</b>) Simulation of ENS in COMSOL with multi-cut magnetic field distribution. (<b>C</b>) Simulation of ENS in COMSOL with magnetic field distribution in the work plane. (<b>D</b>) Deformation effect of the robot in response to ENS actuation.</p> "> Figure 4
<p>Manipulation of two motion modes. (<b>A</b>) Manipulation signal and motion decomposition diagrams for two motion modes, (a) tumbling and (b) crawling. (<b>B</b>) Experimental screenshot of tumbling motion. (<b>C</b>) Experimental screenshot of crawling motion.</p> "> Figure 5
<p>Deformation response of the magnetically driven quadruped soft robot. (<b>A</b>) Bending response of the robot’s feet. (<b>B</b>) Response of the robot to tumbling deformation. (<b>C</b>) Conversion of magnetic field input current of solenoid coil versus magnetic field strength. (<b>D</b>) Driving effect of magnetic field strength on foot bending and top cover deformation.</p> "> Figure 6
<p>Kinematic characteristics of magnetically driven quadruped soft robot and its ability to traverse obstacles. (<b>A</b>) Effect of magnetic field strength and frequency on the robot’s crawling kinematic speed. (<b>B</b>) Effect of magnetic field strength and frequency on the robot’s tumbling kinematic speed. (<b>C</b>) The robot crawling through an obstacle. (<b>D</b>) The robot tumbling through an obstacle. (<b>E</b>) Performance comparison with reported robots.</p> "> Figure 7
<p>The magnetic quadruped soft robot transporting and releasing cargo. (<b>A</b>) Schematic diagram of the robot transporting and releasing cargo using tumbling and swinging motions. (<b>B</b>) Screenshots of experiments of the robot transporting and releasing cargo using tumbling and swinging motions.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Design and Fabrication of Magnetically Driven Quadruped Soft Robot
2.2. Magnetic Field Properties and Magnetic Drive Bending Model
2.3. Two Motion Modes for Magnetically Driven Quadruped Soft Robot
3. Results and Discussion
3.1. Deformation Response of the Magnetically Driven Quadruped Soft Robot
3.2. Kinematic Characterization of the Magnetically Driven Quadruped Soft Robot
3.3. Transportation and Release of Cargo by the Magnetically Driven Quadruped Soft Robot
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Go, G.; Yoo, A.; Nguyen, K.T.; Nan, M.; Darmawan, B.A.; Zheng, S.; Kang, B.; Kim, C.-S.; Bang, D.; Lee, S.; et al. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer. Sci. Adv. 2022, 8, eabq8545. [Google Scholar] [CrossRef] [PubMed]
- Nauber, R.; Goudu, S.R.; Goeckenjan, M.; Bornhäuser, M.; Ribeiro, C.; Medina-Sánchez, M. Medical microrobots in reproductive medicine from the bench to the clinic. Nat. Commun. 2023, 14, 728. [Google Scholar] [CrossRef] [PubMed]
- Iacovacci, V.; Diller, E.; Ahmed, D.; Menciassi, A. Medical Microrobots. Annu. Rev. Biomed. Eng. 2024, 26, 561–591. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, X.; Chen, Z.; Zuo, Z.; Tang, X.; Huang, Q.; Arai, T. Magnetically Driven Soft Continuum Microrobot for Intravascular Operations in Microscale. Cyborg Bionic Syst. 2022, 2022, 9850832. [Google Scholar] [CrossRef] [PubMed]
- Gardi, G.; Ceron, S.; Wang, W.; Petersen, K.; Sitti, M. Microrobot collectives with reconfigurable morphologies, behaviors, and functions. Nat. Commun. 2022, 13, 2239. [Google Scholar] [CrossRef]
- Liang, X.; Chen, Z.; Deng, Y.; Liu, D.; Liu, X.; Huang, Q.; Arai, T. Field-Controlled Microrobots Fabricated by Photopolymerization. Cyborg Bionic Syst. 2023, 4, 0009. [Google Scholar] [CrossRef]
- Abbasi, S.A.; Ahmed, A.; Noh, S.; Gharamaleki, N.L.; Kim, S.; Chowdhury, A.M.M.B.; Kim, J.-Y.; Pané, S.; Nelson, B.J.; Choi, H. Autonomous 3D positional control of a magnetic microrobot using reinforcement learning. Nat. Mach. Intell. 2024, 6, 92–105. [Google Scholar] [CrossRef]
- Wang, M.; Wu, T.; Liu, R.; Zhang, Z.; Liu, J. Selective and Independent Control of Microrobots in a Magnetic Field: A Review. Engineering 2023, 24, 21–38. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, H.; Fu, R.; Wang, X.; Yu, J.; Zhang, S.; Huang, Q.; Sun, Y.; Fukuda, T. A review on microrobots driven by optical and magnetic fields. Lab A Chip 2023, 23, 848–868. [Google Scholar] [CrossRef]
- Li, N.; Fei, P.; Tous, C.; Rezaei Adariani, M.; Hautot, M.-L.; Ouedraogo, I.; Hadjadj, A.; Dimov, I.P.; Zhang, Q.; Lessard, S.; et al. Human-scale navigation of magnetic microrobots in hepatic arteries. Sci. Robot. 2024, 9, eadh8702. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, Y.; Yang, Y.; Tang, Y.; Wang, B.; Yan, Q.; Chen, X.; Cai, J.; Fang, L.; Xiong, Z.; et al. Magnetically Manipulated Optoelectronic Hybrid Microrobots for Optically Targeted Non-Genetic Neuromodulation. Adv. Mater. 2024, 36, 2305632. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xin, C.; Zhu, J.; Xia, N.; Hao, B.; Liu, X.; Tan, Y.; Yang, S.; Wang, X.; Xue, J.; et al. Insect-Scale Biped Robots Based on Asymmetrical Friction Effect Induced by Magnetic Torque. Adv. Mater. 2024, 36, 2312655. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Cui, H.; Xu, T.; Huang, C.; Wang, Y.; Zhao, Q.; Xu, Y.; Wu, X. Reconfiguration, Camouflage, and Color-Shifting for Bioinspired Adaptive Hydrogel-Based Millirobots. Adv. Funct. Mater. 2020, 30, 1909202. [Google Scholar] [CrossRef]
- Hu, W.; Lum, G.Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81–85. [Google Scholar] [CrossRef]
- Soon, R.H.; Yin, Z.; Dogan, M.A.; Dogan, N.O.; Tiryaki, M.E.; Karacakol, A.C.; Aydin, A.; Esmaeili-Dokht, P.; Sitti, M. Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications. Nat. Commun. 2023, 14, 3320. [Google Scholar] [CrossRef]
- Huang, C.; Lai, Z.; Wu, X.; Xu, T. Multimodal Locomotion and Cargo Transportation of Magnetically Actuated Quadruped Soft Microrobots. Cyborg Bionic Syst. 2022, 2022, 0004. [Google Scholar] [CrossRef]
- Hong, S.; Um, Y.; Park, J.; Park, H.-W. Agile and versatile climbing on ferromagnetic surfaces with a quadrupedal robot. Sci. Robot. 2022, 7, eadd1017. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Ma, Y.; Weng, D.; Wang, Z.; Zhang, X.; Wang, J. Multi-physics coupling simulation and design of magnetic field-driven soft microrobots in liquid environments. Int. J. Mech. Sci. 2024, 272, 109136. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Zhang, Y.; Wei, L.; Yu, C.; Wang, Z.; Yang, Z. T-phage inspired piezoelectric microrobot. Int. J. Mech. Sci. 2022, 231, 107596. [Google Scholar] [CrossRef]
- He, Y.; Dong, S.; Wang, L.; Rong, W.; Sun, L. Bipedal microwalkers actuated by oscillating magnetic fields. Soft Matter 2020, 16, 7927–7934. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Shi, Q.; Zheng, Z.; Cui, J.; Sun, T.; Ferraro, P.; Huang, Q.; Fukuda, T. Biped Walking of Magnetic Microrobot in Oscillating Field for Indirect Manipulation of Non-Magnetic Objects. IEEE Trans. Nanotechnol. 2020, 19, 21–24. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, J.; Fang, Q.; Xiang, P.; Xue, Y.; Wang, Y.; Xiong, R.; Lu, H. Analysis and control for a bioinspired multi-legged soft robot. Biomim. Intell. Robot. 2022, 2, 100030. [Google Scholar] [CrossRef]
- Han, B.; Ma, Z.-C.; Zhang, Y.-L.; Zhu, L.; Fan, H.; Bai, B.; Chen, Q.-D.; Yang, G.-Z.; Sun, H.-B. Reprogrammable Soft Robot Actuation by Synergistic Magnetic and Light Fields. Adv. Funct. Mater. 2022, 32, 2110997. [Google Scholar] [CrossRef]
- Li, Q.; Chen, T.; Chen, Y.; Wang, Z. An underwater bionic crab soft robot with multidirectional controllable motion ability. Ocean Eng. 2023, 278, 114412. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Teng, X.; Qiao, Z.; Yang, W.; Zou, B. Magnetically Driven Quadruped Soft Robot with Multimodal Motion for Targeted Drug Delivery. Biomimetics 2024, 9, 559. https://doi.org/10.3390/biomimetics9090559
Liu H, Teng X, Qiao Z, Yang W, Zou B. Magnetically Driven Quadruped Soft Robot with Multimodal Motion for Targeted Drug Delivery. Biomimetics. 2024; 9(9):559. https://doi.org/10.3390/biomimetics9090559
Chicago/Turabian StyleLiu, Huibin, Xiangyu Teng, Zezheng Qiao, Wenguang Yang, and Bentao Zou. 2024. "Magnetically Driven Quadruped Soft Robot with Multimodal Motion for Targeted Drug Delivery" Biomimetics 9, no. 9: 559. https://doi.org/10.3390/biomimetics9090559
APA StyleLiu, H., Teng, X., Qiao, Z., Yang, W., & Zou, B. (2024). Magnetically Driven Quadruped Soft Robot with Multimodal Motion for Targeted Drug Delivery. Biomimetics, 9(9), 559. https://doi.org/10.3390/biomimetics9090559