Dexamethasone Conjugates: Synthetic Approaches and Medical Prospects
<p>Chemical structure of dexamethasone (<b>A</b>) and dexamethasone sodium phosphate (<b>B</b>). Essential structures for pharmacological activity are highlighted in red (anti-inflammatory), in green (carbohydrate regulation), in blue (adrenocorticosteroid function), in light blue (Na<sup>+</sup> retention), and in violet (Na<sup>+</sup> elimination) [<a href="#B22-biomedicines-09-00341" class="html-bibr">22</a>,<a href="#B23-biomedicines-09-00341" class="html-bibr">23</a>].</p> "> Figure 2
<p>Dexamethasone action models: genomic effect (<b>A</b>) and non-genomic effect (<b>B</b>) [<a href="#B44-biomedicines-09-00341" class="html-bibr">44</a>].</p> "> Figure 3
<p>Methods for the synthesis of dexamethasone conjugates.</p> "> Figure 4
<p>Scheme of conjugation of dexamethasone by carbodiimide chemistry.</p> "> Figure 5
<p>Scheme of the solid-phase synthesis of dexamethasone-peptoid conjugate [<a href="#B82-biomedicines-09-00341" class="html-bibr">82</a>].</p> "> Figure 6
<p>Scheme of the synthesis of dexamethasone-(hydroxypropyl)methacrylamide conjugate by reversible addition fragmentation-chain transfer polymerization [<a href="#B84-biomedicines-09-00341" class="html-bibr">84</a>].</p> "> Figure 7
<p>Scheme for the synthesis of a dexamethasone conjugate with acetylene polyethylene glycol by Cu(I)-catalyzed 1,3-dipolar cycloaddition.</p> "> Figure 8
<p>Scheme for the synthesis of a dexamethasone conjugate with N<sub>3</sub>-polyethylene glycol-polylactic acid copolymer by Cu(II)-catalyzed cycloaddition [<a href="#B87-biomedicines-09-00341" class="html-bibr">87</a>].</p> "> Figure 9
<p>Scheme for the synthesis of a dexamethasone conjugate with hyaluronic acid maleimide by Diels–Alder cycloaddition [<a href="#B91-biomedicines-09-00341" class="html-bibr">91</a>].</p> "> Figure 10
<p>Scheme for the synthesis of dexamethasone -NH<sub>2</sub> by 2-iminothiolane (Traut’s reagent) chemistry [<a href="#B22-biomedicines-09-00341" class="html-bibr">22</a>].</p> ">
Abstract
:1. Introduction
2. DEX as a Pharmaceutical Substance: Chemical, Pharmacological, and Biopharmaceutical Properties
3. Methods for the Synthesis of DEX Conjugates
3.1. Carbodiimide Reaction
3.2. Solid-Phase Synthesis
3.3. RAFT Polymerization
3.4. Click Reactions
3.5. Diels–Alder Reaction
3.6. Traut’s Reaction
4. Dexamethasone Conjugates as Delivery Systems with Modified Release
4.1. Ocular Delivery Systems
4.2. Intra-Articular Delivery Systems
4.3. Kidney Delivery Systems
4.4. Antitumor Delivery Systems
4.5. Antigen-Drug Conjugates
4.6. Gene Delivery Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chan, E.D.; Chan, M.M.; Chan, M.M.; Marik, P.E. Use of glucocorticoids in the critical care setting: Science and clinical evidence. Pharmacol. Ther. 2020, 206, 107428. [Google Scholar] [CrossRef] [PubMed]
- Fung, A.T.; Tran, T.; Lim, L.L.; Samarawickrama, C.; Arnold, J.; Gillies, M.; Catt, C.; Mitchell, L.; Symons, A.; Buttery, R. Local delivery of corticosteroids in clinical ophthalmology: A review. Clin. Exp. Ophthalmol. 2020, 48, 366–401. [Google Scholar] [CrossRef] [PubMed]
- Florance, J.; Hemke, R.; Chang, C.Y.; Torriani, M.; Bredella, M.A. Effects of intra-articular corticosteroid injections on lumbar trabecular density. Skelet. Radiol. 2019, 49, 787–793. [Google Scholar] [CrossRef]
- Petta, I.; Peene, I.; Elewaut, D.; Vereecke, L.; De Bosscher, K. Risks and benefits of corticosteroids in arthritic diseases in the clinic. Biochem. Pharmacol. 2019, 165, 112–125. [Google Scholar] [CrossRef]
- Grayson, J.W.; Harvey, R.J. Topical Corticosteroid Irrigations in Chronic Rhinosinusitis. Int. Forum Allergy Rhinol. 2019, 9, S9–S15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agusti, A.; Fabbri, L.M.; Singh, D.; Vestbo, J.; Celli, B.; Franssen, F.M.; Rabe, K.F.; Papi, A. Inhaled corticosteroids in copd: Friend or foe? Eur. Respir. J. 2018, 52, 1801219. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, J.R.; Villanueva, L.R.; Navarro, M.G. Pharmaceutical technology can turn a traditional drug, dexamethasone into a first-line ocular medicine. A global perspective and future trends. Int. J. Pharm. 2017, 516, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Reynaud, F.; Lorscheider, M.; Tsapis, N.; Fattal, E. Nanomedicines for the delivery of glucocorticoids and nucleic acids as potential alternatives in the treatment of rheumatoid arthritis. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1630. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; He, L.; Fan, D.; Liang, W.; Fang, J. Improving the anti-inflammatory efficacy of dexamethasone in the treatment of rheumatoid arthritis with polymerized stealth liposomes as a delivery vehicle. J. Mater. Chem. B 2020, 8, 1841–1851. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, L.; Fang, L.; Cao, F. Multifunctional carboxymethyl chitosan derivatives-layered double hydroxide hybrid nanocomposites for efficient drug delivery to the posterior segment of the eye. Acta Biomater. 2020, 104, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, L.; Zhou, L.; Cheng, Y.; Cao, F. Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr. Polym. 2020, 227, 115356. [Google Scholar] [CrossRef]
- Dubashynskaya, N.; Poshina, D.; Raik, S.; Urtti, A.; Skorik, Y.A. Polysaccharides in ocular drug delivery. Pharmaceutics 2020, 12, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubashynskaya, N.V.; Golovkin, A.S.; Kudryavtsev, I.V.; Prikhodko, S.S.; Trulioff, A.S.; Bokatyi, A.N.; Poshina, D.N.; Raik, S.V.; Skorik, Y.A. Mucoadhesive cholesterol-chitosan self-assembled particles for topical ocular delivery of dexamethasone. Int. J. Biol. Macromol. 2020, 158, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Berezin, A.; Lomkova, E.; Skorik, Y.A. Chitosan conjugates with biologically active compounds: Design strategies, properties, and targeted drug delivery. Russ. Chem. Bull. 2012, 61, 781–795. [Google Scholar] [CrossRef]
- Urbańska, J.; Karewicz, A.; Nowakowska, M. Polymeric delivery systems for dexamethasone. Life Sci. 2014, 96, 1–6. [Google Scholar] [CrossRef] [PubMed]
- London, N.J.; Chiang, A.; Haller, J.A. The dexamethasone drug delivery system: Indications and evidence. Adv. Ther. 2011, 28, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Ban, J.; Zhang, Y.; Du, Y.; Wen, Y.; Huang, X.; Xie, Q.; Shen, L.; Zhang, S.; Deng, H. Nanostructured lipid carriers-based thermosensitive eye drops for enhanced, sustained delivery of dexamethasone. Nanomedicine 2018, 13, 1239–1253. [Google Scholar] [CrossRef]
- Czock, D.; Keller, F.; Rasche, F.M.; Häussler, U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin. Pharmacokinet. 2005, 44, 61–98. [Google Scholar] [CrossRef] [PubMed]
- Spahn, J.D. Glucocorticoid pharmacokinetics. Immunol. Allergy Clin. N. Am. 1999, 19, 709–723. [Google Scholar] [CrossRef]
- Saviola, G.; Bonazzi, S.; Comini, L.; Abdi-Ali, L. Dexamethasone is an “essential, medicine”. It is time to consider this drug in the treatment of rheumatic diseases. A narrative review. Acta Med. Mediterr. 2020, 36, 107–114. [Google Scholar]
- WHO Model Lists of Essential Medicines. Available online: https://www.who.int/medicines/publications/essentialmedicines/en/ (accessed on 25 March 2021).
- Gruneich, J.; Price, A.; Zhu, J.; Diamond, S. Cationic corticosteroid for nonviral gene delivery. Gene Ther. 2004, 11, 668–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, L.S. Goodman and Gilman’s the Pharmacological Basis of Therapeutics; McGraw-Hill: New York, NY, USA, 1996; Volume 1549. [Google Scholar]
- Salt, A.N.; Plontke, S.K. Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications. Hear. Res. 2018, 368, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Moore, G.A.; Jensen, B.P.; Begg, E.J.; Bird, P.A. Determination of dexamethasone and dexamethasone sodium phosphate in human plasma and cochlear perilymph by liquid chromatography/tandem mass spectrometry. J. Chromatogr. B 2011, 879, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, A.E.; Chapman, K.E. Pmcid: Pmc3047790. Mol. Cell. Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Zen, M.; Canova, M.; Campana, C.; Bettio, S.; Nalotto, L.; Rampudda, M.; Ramonda, R.; Iaccarino, L.; Doria, A. The kaleidoscope of glucorticoid effects on immune system. Autoimmun. Rev. 2011, 10, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Buttgereit, F.; Da Silva, J.; Boers, M.; Burmester, G.; Cutolo, M.; Jacobs, J.; Kirwan, J.; Köhler, L.; van Riel, P.; Vischer, T. Standardized nomenclature for glucocorticoid treatment regimens: Current questions and tentative answers in rheumatology. Ann. Rheum. Dis. 2002, 61, 718–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, R.S.; Raza, K.; Cooper, M.S. Therapeutic glucocorticoids: Mechanisms of actions in rheumatic diseases. Nat. Rev. Rheumatol. 2020, 16, 133–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Gimple, R.C.; Yang, Z.; Wei, Y.; Gustafsson, J.-Å.; Zhou, S. Immunoregulatory functions of nuclear receptors: Mechanisms and therapeutic implications. Trends Endocrinol. Metab. 2020, 31, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Ehrchen, J.M.; Roth, J.; Barczyk-Kahlert, K. More than suppression: Glucocorticoid action on monocytes and macrophages. Front. Immunol. 2019, 10, 2028. [Google Scholar] [CrossRef] [Green Version]
- Cannarile, L.; Delfino, D.V.; Adorisio, S.; Riccardi, C.; Ayroldi, E. Implicating the role of gilz in glucocorticoid modulation of t-cell activation. Front. Immunol. 2019, 10, 1823. [Google Scholar] [CrossRef] [PubMed]
- Strehl, C.; Ehlers, L.; Gaber, T.; Buttgereit, F. Glucocorticoids–all-rounders tackling the versatile players of the immune system. Front. Immunol. 2019, 10, 1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, G.; Petrillo, M.G.; Giani, T.; Marrani, E.; Filippeschi, C.; Oranges, T.; Simonini, G.; Cimaz, R. Clinical use and molecular action of corticosteroids in the pediatric age. Int. J. Mol. Sci. 2019, 20, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnstone, W.M., III; Honeycutt, J.L.; Deck, C.A.; Borski, R.J. Nongenomic glucocorticoid effects and their mechanisms of action in vertebrates. Int. Rev. Cell Mol. Biol. 2019, 346, 51–96. [Google Scholar] [PubMed]
- Panettieri, R.A.; Schaafsma, D.; Amrani, Y.; Koziol-White, C.; Ostrom, R.; Tliba, O. Non-genomic effects of glucocorticoids: An updated view. Trends Pharmacol. Sci. 2019, 40, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Balthazart, J.; Choleris, E.; Remage-Healey, L. Steroids and the brain: 50 years of research, conceptual shifts and the ascent of non-classical and membrane-initiated actions. Horm. Behav. 2018, 99, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vandewalle, J.; Luypaert, A.; De Bosscher, K.; Libert, C. Therapeutic mechanisms of glucocorticoids. Trends Endocrinol. Metab. 2018, 29, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.D.; Kogan, J.F.; Marrocco, J.; McEwen, B.S. Genomic and epigenomic mechanisms of glucocorticoids in the brain. Nat. Rev. Endocrinol. 2017, 13, 661. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.-L.; Liu, L.; Tasker, J.G. Why do we need nongenomic glucocorticoid mechanisms? Front. Neuroendocrinol. 2014, 35, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Lee, A.S. Yy1 as a regulator of replication-dependent hamster histone h3. 2 promoter and an interactive partner of ap-2. J. Biol. Chem. 2001, 276, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croxtall, J.D.; Van Hal, P.T.W.; Choudhury, Q.; Gilroy, D.W.; Flower, R.J. Different glucocorticoids vary in their genomic and non-genomic mechanism of action in a549 cells. Br. J. Pharmacol. 2002, 135, 511–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buttgereit, F. Views on glucocorticoid therapy in rheumatology: The age of convergence. Nat. Rev. Rheumatol. 2020, 16, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Kim, H.K.; Youm, J.B.; Dizon, L.A.; Song, I.S.; Jeong, S.H.; Seo, D.Y.; Ko, K.S.; Rhee, B.D.; Kim, N. Non-genomic effect of glucocorticoids on cardiovascular system. Pflügers Arch. Eur. J. Physiol. 2012, 464, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M. Hormone therapy in rheumatic diseases. Curr. Opin. Rheumatol. 2010, 22, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Mager, D.E.; Jusko, W.J. Quantitative structure–pharmacokinetic/pharmacodynamic relationships of corticosteroids in man. J. Pharm. Sci. 2002, 91, 2441–2451. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Ichikawa, Y.; Homma, M. Differences in metabolic properties among cortisol, prednisolone, and dexamethasone in liver and renal diseases: Accelerated metabolism of dexamethasone in renal failure. J. Clin. Endocrinol. Metab. 1985, 60, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Hare, L.; Yeh, K.; Ditzler, C.; McMahon, F.; Duggan, D. Bioavailability of dexamethasone; ii. Dexamethasone phosphate. Clin. Pharmacol. Ther. 1975, 18, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Duggan, D.; Yeh, K.; Matalia, N.; Ditzler, C.; McMahon, F. Bioavailability of oral dexamethasone. Clin. Pharmacol. Ther. 1975, 18, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Rohdewald, P.; Möllmann, H.; Barth, J.; Rehder, J.; Derendorf, H. Pharmacokinetics of dexamethasone and its phosphate ester. Biopharm. Drug Dispos. 1987, 8, 205–212. [Google Scholar] [CrossRef] [PubMed]
- McGhee, C. Pharmacokinetics of ophthalmic corticosteroids. Br. J. Ophthalmol. 1992, 76, 681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waga, J.; Ehinger, B. Passage of drugs through different intraocular microdialysis membranes. Graefe’s Arch. Clin. Exp. Ophthalmol. 1995, 233, 31–37. [Google Scholar] [CrossRef]
- Sekiyama, A.; Gon, Y.; Terakado, M.; Takeshita, I.; Kozu, Y.; Maruoka, S.; Matsumoto, K.; Hashimoto, S. Glucocorticoids enhance airway epithelial barrier integrity. Int. Immunopharmacol. 2012, 12, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Cázares-Delgadillo, J.; Ganem-Rondero, A.; Merino, V.; Kalia, Y.N. Controlled transdermal iontophoresis for poly-pharmacotherapy: Simultaneous delivery of granisetron, metoclopramide and dexamethasone sodium phosphate in vitro and in vivo. Eur. J. Pharm. Sci. 2016, 85, 31–38. [Google Scholar] [CrossRef]
- Drugs@fda: Fda-Approved Drugs. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm (accessed on 25 March 2021).
- Sarzi-Puttini, P.; Ceribelli, A.; Marotto, D.; Batticciotto, A.; Atzeni, F. Systemic rheumatic diseases: From biological agents to small molecules. Autoimmun. Rev. 2019, 18, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Baschant, U.; Lane, N.E.; Tuckermann, J. The multiple facets of glucocorticoid action in rheumatoid arthritis. Nat. Rev. Rheumatol. 2012, 8, 645. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.M.; Cripps, A.; West, N.; Cox, A. Modulation of allergic inflammation in the nasal mucosa of allergic rhinitis sufferers with topical pharmaceutical agents. Front. Pharmacol. 2019, 10, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronchetti, S.; Migliorati, G.; Bruscoli, S.; Riccardi, C. Defining the role of glucocorticoids in inflammation. Clin. Sci. 2018, 132, 1529–1543. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H. Mechanisms of glucocorticoid action in chronic rhinosinusitis. Allergyasthma Immunol. Res. 2015, 7, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Morley, K.W.; Dinulos, J.G. Update on topical glucocorticoid use in children. Curr. Opin. Pediatr. 2012, 24, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, I.A.C.; Pierre, P.V.; Berglin, C.E. Improving clinical outcomes in cochlear implantation using glucocorticoid therapy: A review. Ear Hear. 2020, 41, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, S.W.; Cross, E.; Campbell, S.; Villa-Roel, C.; Rowe, B.H. Intramuscular versus oral corticosteroids to reduce relapses following discharge from the emergency department for acute asthma. Cochrane Database Syst. Rev. 2018. [Google Scholar] [CrossRef] [PubMed]
- Roujeau, J.-C. Pulse glucocorticoid therapy: The’big shot’revisited. Arch. Dermatol. 1996, 132, 1499–1502. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.W.; Wong, T.T. Posterior segment drug delivery for the treatment of exudative age-related macular degeneration and diabetic macular oedema. Br. J. Ophthalmol. 2019, 103, 1356–1360. [Google Scholar] [CrossRef]
- Meng, T.; Kulkarni, V.; Simmers, R.; Brar, V.; Xu, Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov. Today 2019, 24, 1524–1538. [Google Scholar] [CrossRef] [PubMed]
- Behar-Cohen, F. Recent advances in slow and sustained drug release for retina drug delivery. Expert Opin. Drug Deliv. 2019, 16, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Bailey, C.; Loewenstein, A.; Massin, P. Intravitreal corticosteroids in diabetic macular edema: Pharmacokinetic considerations. Retina 2015, 35, 2440. [Google Scholar] [CrossRef] [PubMed]
- Mehta, H.; Gillies, M.; Fraser-Bell, S. Perspective on the role of ozurdex (dexamethasone intravitreal implant) in the management of diabetic macular oedema. Ther. Adv. Chronic Dis. 2015, 6, 234–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustin, A.J. Upcoming therapeutic advances in diabetic macular edema: An intravitreal dexamethasone drug delivery system. Expert Opin. Drug Deliv. 2011, 8, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Lin, W.V.; Rodriguez, S.M.; Chen, A.; Loya, A.; Weng, C.Y. Treatment of diabetic macular edema. Curr. Diabetes Rep. 2019, 19, 68. [Google Scholar] [CrossRef] [PubMed]
- Sangar, M.L.C.; Girard, E.J.; Hopping, G.; Yin, C.; Pakiam, F.; Brusniak, M.-Y.; Nguyen, E.; Ruff, R.; Gewe, M.M.; Byrnes-Blake, K. A potent peptide-steroid conjugate accumulates in cartilage and reverses arthritis without evidence of systemic corticosteroid exposure. Sci. Transl. Med. 2020, 12, eaay1041. [Google Scholar] [CrossRef] [PubMed]
- Bajpayee, A.G.; Quadir, M.A.; Hammond, P.T.; Grodzinsky, A.J. Charge based intra-cartilage delivery of single dose dexamethasone using avidin nano-carriers suppresses cytokine-induced catabolism long term. Osteoarthr. Cartil. 2016, 24, 71–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, M.D.; Ponta, A.; Eckman, A.; Jay, M.; Bae, Y. Polymer micelles with hydrazone-ester dual linkers for tunable release of dexamethasone. Pharm. Res. 2011, 28, 2435–2446. [Google Scholar] [CrossRef]
- Numpilai, T.; Witoon, T.; Chareonpanich, M.; Limtrakul, J. Impact of physicochemical properties of porous silica materials conjugated with dexamethasone via ph-responsive hydrazone bond on drug loading and release behavior. Appl. Surf. Sci. 2017, 396, 504–514. [Google Scholar] [CrossRef]
- Yavuz, B.; Bozdağ Pehlivan, S.; Sümer Bolu, B.; Nomak Sanyal, R.; Vural, İ.; Ünlü, N. Dexamethasone–pamam dendrimer conjugates for retinal delivery: Preparation, characterization and in vivo evaluation. J. Pharm. Pharmacol. 2016, 68, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Song, W.; Xu, Y.; Si, X.; Zhang, D.; Lv, S.; Yang, C.; Ma, L.; Tang, Z.; Chen, X. Neutralizing tumor-promoting inflammation with polypeptide-dexamethasone conjugate for microenvironment modulation and colorectal cancer therapy. Biomaterials 2020, 232, 119676. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Zhang, C.; Vedadghavami, A.; Mehta, S.; Clark, H.A.; Porter, R.M.; Bajpayee, A.G. Multi-arm avidin nano-construct for intra-cartilage delivery of small molecule drugs. J. Control. Release 2020, 318, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.Y.; Kang, M.L.; Park, J.W.; Im, G.I. Dual functional nanoparticles containing sox duo and angpt4 shrna for osteoarthritis treatment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 234–242. [Google Scholar] [CrossRef]
- Bae, S.; Lee, H.-J.; Lee, J.S.; Webb, K. Cell-mediated dexamethasone release from semi-ipns stimulates osteogenic differentiation of encapsulated mesenchymal stem cells. Biomacromolecules 2015, 16, 2757–2765. [Google Scholar] [CrossRef]
- Wang, C.; Hou, H.; Nan, K.; Sailor, M.J.; Freeman, W.R.; Cheng, L. Intravitreal controlled release of dexamethasone from engineered microparticles of porous silicon dioxide. Exp. Eye Res. 2014, 129, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.; Choi, J.; Kim, A.; Lee, Y.; Kwon, Y.-U. Efficient solid-phase synthesis of a series of cyclic and linear peptoid− dexamethasone conjugates for the cell permeability studies. J. Comb. Chem. 2010, 12, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Kodadek, T. Investigation of the relative cellular permeability of DNA-binding pyrrole-imidazole polyamides. J. Med. Chem. 2009, 52, 4604–4612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.-M.; Quan, L.-D.; Tian, J.; Alnouti, Y.; Fu, K.; Thiele, G.M.; Wang, D. Synthesis and evaluation of a well-defined hpma copolymer–dexamethasone conjugate for effective treatment of rheumatoid arthritis. Pharm. Res. 2008, 25, 2910–2919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kritchenkov, A.; Skorik, Y.A. Click reactions in chitosan chemistry. Russ. Chem. Bull. 2017, 66, 769–781. [Google Scholar] [CrossRef]
- Liu, X.-M.; Thakur, A.; Wang, D. Efficient synthesis of linear multifunctional poly (ethylene glycol) by copper (i)-catalyzed huisgen 1, 3-dipolar cycloaddition. Biomacromolecules 2007, 8, 2653–2658. [Google Scholar] [CrossRef] [PubMed]
- Karandish, F.; Mamnoon, B.; Feng, L.; Haldar, M.K.; Xia, L.; Gange, K.N.; You, S.; Choi, Y.; Sarkar, K.; Mallik, S. Nucleus-targeted, echogenic polymersomes for delivering a cancer stemness inhibitor to pancreatic cancer cells. Biomacromolecules 2018, 19, 4122–4132. [Google Scholar] [CrossRef] [PubMed]
- Kiani, M.; Bagherzadeh, M.; Meghdadi, S.; Fadaei-Tirani, F.; Babaie, M.; Schenk-Joß, K. Synthesis, characterisation and crystal structure of a new cu (ii)-carboxamide complex and cuo nanoparticles as new catalysts in the cuaac reaction and investigation of their antibacterial activity. Inorg. Chim. Acta 2020, 506, 119514. [Google Scholar] [CrossRef]
- Pickens, C.J.; Christopher, M.A.; Leon, M.A.; Pressnall, M.M.; Johnson, S.N.; Thati, S.; Sullivan, B.P.; Berkland, C. Antigen-drug conjugates as a novel therapeutic class for the treatment of antigen-specific autoimmune disorders. Mol. Pharm. 2019, 16, 2452–2461. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Quan, L.D.; Tian, J.; Laquer, F.C.; Ciborowski, P.; Wang, D. Syntheses of click PEG− dexamethasone conjugates for the treatment of rheumatoid arthritis. Biomacromolecules 2010, 11, 2621–2628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Y.; Fan, M.; Chen, H.; Miao, Y.; Xing, L.; Jiang, B.; Cheng, Q.; Liu, D.; Bao, W.; Qian, B. Magnetic hyaluronic acid nanospheres via aqueous diels–alder chemistry to deliver dexamethasone for adipose tissue engineering. J. Colloid Interface Sci. 2015, 458, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Mi Bae, Y.; Choi, H.; Lee, S.; Ho Kang, S.; Tae Kim, Y.; Nam, K.; Sang Park, J.; Lee, M.; Sig Choi, J. Dexamethasone-conjugated low molecular weight polyethylenimine as a nucleus-targeting lipopolymer gene carrier. Bioconjug. Chem. 2007, 18, 2029–2036. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, H.A.; Bae, Y.M.; Choi, J.S.; Lee, M. Dexamethasone-conjugated polyethylenimine as an efficient gene carrier with an anti-apoptotic effect to cardiomyocytes. J. Gene Med. Cross-Discip. J. Res. Sci. Gene Transf. Clin. Appl. 2009, 11, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.A.; Park, J.H.; Lee, S.; Choi, J.S.; Rhim, T.; Lee, M. Combined delivery of dexamethasone and plasmid DNA in an animal model of lps-induced acute lung injury. J. Control. Release 2011, 156, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.A.; Park, J.H.; Yi, N.; Lee, M. Delivery of hypoxia and glioma dual-specific suicide gene using dexamethasone conjugated polyethylenimine for glioblastoma-specific gene therapy. Mol. Pharm. 2014, 11, 938–950. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Gu, J.; Lee, M.; Rhim, T. A new combination therapy for asthma using dual-function dexamethasone-conjugated polyethylenimine and vitamin d binding protein sirna. Gene Ther. 2017, 24, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Malaekeh-Nikouei, B.; Rezaee, M.; Gholami, L.; Behzad, M.; Mohajeri, M.; Oskuee, R.K. Dexamethasone conjugated polyallylamine: Synthesis, characterization, and in vitro transfection and cytotoxicity. J. Drug Deliv. Sci. Technol. 2017, 40, 172–179. [Google Scholar] [CrossRef]
- Malaekeh-Nikouei, B.; Gholami, L.; Asghari, F.; Askarian, S.; Barzegar, S.; Rezaee, M.; Oskuee, R.K. Viral vector mimicking and nucleus targeted nanoparticles based on dexamethasone polyethylenimine nanoliposomes: Preparation and evaluation of transfection efficiency. Colloids Surf. B Biointerfaces 2018, 165, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Malaekeh-Nikouei, B.; Rezaee, M.; Gholami, L.; Sanjar Mousavi, N.; Kazemi Oskuee, R. Synthesis, characterization and evaluation of transfection efficiency of dexamethasone conjugated poly (propyleneimine) nanocarriers for gene delivery#. Pharm. Biol. 2018, 56, 519–527. [Google Scholar]
- Zacchigna, M.; Cateni, F.; Di Luca, G.; Voinovich, D.; Perissutti, B.; Drioli, S.; Bonora, G. Synthesis of a new mpeg-dexamethasone conjugate and preliminary bioavailability studies in rabbits. J. Drug Deliv. Sci. Technol. 2008, 18, 155–159. [Google Scholar] [CrossRef]
- Zacchigna, M.; Cateni, F.; Voinivich, D.; Grassi, M.; Drioli, S.; Bonora, G. New multidrug (dexamethasone and theophylline) peg-conjugate: Synthesis, in vitro release studies and intestinal permeability. J. Drug Deliv. Sci. Technol. 2009, 19, 177–184. [Google Scholar] [CrossRef]
- Campaner, P.; Bonora, G.M.; Drioli, S. An efficient and selective end-modification of high-molecular weight poly(ethylene glycol)s. Lett. Org. Chem. 2006, 3, 773–779. [Google Scholar] [CrossRef]
- Keely, S.; Ryan, S.M.; Haddleton, D.M.; Limer, A.; Mantovani, G.; Murphy, E.P.; Colgan, S.P.; Brayden, D.J. Dexamethasone–pdmaema polymeric conjugates reduce inflammatory biomarkers in human intestinal epithelial monolayers. J. Control. Release 2009, 135, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Choksi, A.; Sarojini, K.; Vadnal, P.; Dias, C.; Suresh, P.; Khandare, J. Comparative anti-inflammatory activity of poly (amidoamine)(pamam) dendrimer–dexamethasone conjugates with dexamethasone-liposomes. Int. J. Pharm. 2013, 449, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Letham, D.S.; John, P.C.; Zhang, R. Synthesis of a cytokinin linked by a spacer to dexamethasone and biotin: Conjugates to detect cytokinin-binding proteins. Molecules 2016, 21, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Zhang, R.; Lei, L.; Song, Q.; Li, X. High drug payload nanoparticles formed from dexamethasone-peptide conjugates for the treatment of endotoxin-induced uveitis in rabbit. Int. J. Nanomed. 2019, 14, 591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Naeem, M.; Noh, J.-K.; Lee, E.H.; Yoo, J.-W. Dexamethasone phosphate-loaded folate-conjugated polymeric nanoparticles for selective delivery to activated macrophages and suppression of inflammatory responses. Macromol. Res. 2015, 23, 485–492. [Google Scholar] [CrossRef]
- Saliba, J.B.; Vieira, L.; Fernandes-Cunha, G.M.; Da Silva, G.R.; Fialho, S.L.; Silva-Cunha, A.; Bousquet, E.; Naud, M.-C.; Ayres, E.; Oréfice, R.L. Anti-inflammatory effect of dexamethasone controlled released from anterior suprachoroidal polyurethane implants on endotoxin-induced uveitis in rats. Investig. Ophthalmol. Vis. Sci. 2016, 57, 1671–1679. [Google Scholar] [CrossRef] [Green Version]
- McGhee, C.N.; Dean, S.; Danesh-Meyer, H. Locally administered ocular corticosteroids. Drug Saf. 2002, 25, 33–55. [Google Scholar] [CrossRef] [PubMed]
- Subrizi, A.; del Amo, E.M.; Korzhakov-Vlakh, V.; Tennikova, T.; Ruponen, M.; Urtti, A. Design principles of ocular drug delivery systems: Importance of drug payload, release rate, and material properties. Drug Discov. Today 2019, 24, 1446–1457. [Google Scholar] [CrossRef]
- Kompella, U.B.; Domb, A.; Urtti, A.; Jayagopal, A.; Wilson, C.G.; Tang-Liu, D. Isopt clinical hot topic panel discussion on ocular drug delivery. J. Ocul. Pharmacol. Ther. 2019, 35, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.C.; Andrew, J.S.; Buyanin, A.; Kinsella, J.M.; Sailor, M.J. Suitability of porous silicon microparticles for the long-term delivery of redox-active therapeutics. Chem. Commun. 2011, 47, 5699–5701. [Google Scholar] [CrossRef]
- Formica, F.A.; Barreto, G.; Zenobi-Wong, M. Cartilage-targeting dexamethasone prodrugs increase the efficacy of dexamethasone. J. Control. Release 2019, 295, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Li, F.; Zhao, G.; Chhonker, Y.S.; Averill, C.; Galdamez, J.; Purdue, P.E.; Wang, X.; Fehringer, E.V.; Garvin, K.L. Pharmacokinetic and biodistribution studies of hpma copolymer conjugates in an aseptic implant loosening mouse model. Mol. Pharm. 2017, 14, 1418–1428. [Google Scholar] [CrossRef] [Green Version]
- Quan, L.; Zhang, Y.; Dusad, A.; Ren, K.; Purdue, P.E.; Goldring, S.R.; Wang, D. The evaluation of the therapeutic efficacy and side effects of a macromolecular dexamethasone prodrug in the collagen-induced arthritis mouse model. Pharm. Res. 2016, 33, 186–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, K.; Dusad, A.; Yuan, F.; Yuan, H.; Purdue, P.E.; Fehringer, E.V.; Garvin, K.L.; Goldring, S.R.; Wang, D. Macromolecular prodrug of dexamethasone prevents particle-induced peri-implant osteolysis with reduced systemic side effects. J. Control. Release 2014, 175, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, L.-D.; Yuan, F.; Liu, X.-M.; Huang, J.-G.; Alnouti, Y.; Wang, D. Pharmacokinetic and biodistribution studies of n-(2-hydroxypropyl) methacrylamide copolymer-dexamethasone conjugates in adjuvant-induced arthritis rat model. Mol. Pharm. 2010, 7, 1041–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Miller, S.C.; Liu, X.-M.; Anderson, B.; Wang, X.S.; Goldring, S.R. Novel dexamethasone-hpma copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res. Ther. 2007, 9, R2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.-B.; Kang, X.-Q.; Liang, J.; Wang, X.-J.; Xu, X.-L.; Yang, P.; Ying, X.-Y.; Jiang, S.-P.; Du, Y.-Z. E-selectin-targeted sialic acid-peg-dexamethasone micelles for enhanced anti-inflammatory efficacy for acute kidney injury. Theranostics 2017, 7, 2204. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Nelson, R.K.; Tabor, D.E.; Zhang, Y.; Akhter, M.P.; Gould, K.A.; Wang, D. Dexamethasone prodrug treatment prevents nephritis in lupus-prone (nzb× nzw) f1 mice without causing systemic side effects. Arthritis Rheum. 2012, 64, 4029–4039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, K.; Purdue, P.E.; Burton, L.; Quan, L.-D.; Fehringer, E.V.; Thiele, G.M.; Goldring, S.R.; Wang, D. Early detection and treatment of wear particle-induced inflammation and bone loss in a mouse calvarial osteolysis model using hpma copolymer conjugates. Mol. Pharm. 2011, 8, 1043–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bort, G.; Lux, F.; Dufort, S.; Crémillieux, Y.; Verry, C.; Tillement, O. Epr-mediated tumor targeting using ultrasmall-hybrid nanoparticles: From animal to human with theranostic aguix nanoparticles. Theranostics 2020, 10, 1319. [Google Scholar] [CrossRef]
- Hobbs, S.K.; Monsky, W.L.; Yuan, F.; Roberts, W.G.; Griffith, L.; Torchilin, V.P.; Jain, R.K. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 1998, 95, 4607–4612. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Chen, L.; Cao, S.; Liang, Y.; Xu, Y. Warburg effects in cancer and normal proliferating cells: Two tales of the same name. Genom. Proteom. Bioinform. 2019, 17, 273–286. [Google Scholar] [CrossRef]
- Orang, A.V.; Petersen, J.; McKinnon, R.A.; Michael, M.Z. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol. Metab. 2019, 23, 98. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ren, X.; Yuan, Y.; Shan, Y.; Li, L.; Chen, X.; Zhang, L.; Takahashi, Y.; Yang, J.; Han, B. Eef-2 kinase is a critical regulator of warburg effect through controlling pp2a-a synthesis. Oncogene 2016, 35, 6293–6308. [Google Scholar] [CrossRef] [PubMed]
- Tran Thi, N.V.; Hwang, H.S.; Kim, Y.; Kang, H.C.; Huh, K.M. Reduction-responsive poly (ethylene glycol)-dexamethasone biarm conjugate and its self-assembled nanomicelles: Preparation, physicochemical characterization, and thiol-triggered drug release. Polym. Adv. Technol. 2019, 30, 2993–3002. [Google Scholar] [CrossRef]
- Hyun, S.; Lee, G.; Kim, D.; Kim, H.; Lee, S.; Nam, D.; Jeong, Y.; Kim, S.; Yeom, S.; Kang, S.; et al. Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein. Biol. Reprod. 2003, 69, 1060–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norman, A.W.; Mizwicki, M.T.; Norman, D.P. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat. Rev. Drug Discov. 2004, 3, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Shahin, V.; Albermann, L.; Schillers, H.; Kastrup, L.; Schäfer, C.; Ludwig, Y.; Stock, C.; Oberleithner, H. Steroids dilate nuclear pores imaged with atomic force microscopy. J. Cell. Physiol. 2005, 202, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Y.; Bai, H.; Shen, J.; Chen, X.; Ping, Y.; Tang, G. A cooperative dimensional strategy for enhanced nucleus-targeted delivery of anticancer drugs. Adv. Funct. Mater. 2017, 27, 1700339. [Google Scholar] [CrossRef]
- Wheler, J.J.; Janku, F.; Naing, A.; Li, Y.; Stephen, B.; Zinner, R.; Subbiah, V.; Fu, S.; Karp, D.; Falchook, G.S. Cancer therapy directed by comprehensive genomic profiling: A single center study. Cancer Res. 2016, 76, 3690–3701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovesdy, C.P.; Anderson, J.E.; Kalantar-Zadeh, K. Paradoxical association between body mass index and mortality in men with ckd not yet on dialysis. Am. J. Kidney Dis. 2007, 49, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Tiruthani, K.; Wang, Y.; Shen, L.; Hu, M.; Dorosheva, O.; Qiu, K.; Kinghorn, K.A.; Liu, R.; Huang, L. Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis. Adv. Mater. 2018, 30, 1805007. [Google Scholar] [CrossRef] [PubMed]
- Edge, L. Macrophage diversity enhances tumor. Cell 2010, 141, G2010. [Google Scholar]
- Kim, H.; Chung, H.; Kim, J.; Choi, D.H.; Shin, Y.; Kang, Y.G.; Kim, B.M.; Seo, S.U.; Chung, S.; Seok, S.H. Macrophages-triggered sequential remodeling of endothelium-interstitial matrix to form pre-metastatic niche in microfluidic tumor microenvironment. Adv. Sci. 2019, 6, 1900195. [Google Scholar] [CrossRef] [PubMed]
- Chaikomon, K.; Chattong, S.; Chaiya, T.; Tiwawech, D.; Sritana-Anant, Y.; Sereemaspun, A.; Manotham, K. Doxorubicin-conjugated dexamethasone induced mcf-7 apoptosis without entering the nucleus and able to overcome mdr-1-induced resistance. Drug Des. Dev. Ther. 2018, 12, 2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sau, S.; Banerjee, R. Cationic lipid-conjugated dexamethasone as a selective antitumor agent. Eur. J. Med. Chem. 2014, 83, 433–447. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, F.; Ge, L.; Liu, X.; Kong, F. A promising targeted gene delivery system: Folate-modified dexamethasone-conjugated solid lipid nanoparticles. Pharm. Biol. 2014, 52, 1039–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Zhou, F.; Ge, L.; Liu, X.; Kong, F. Transferrin-peg-pe modified dexamethasone conjugated cationic lipid carrier mediated gene delivery system for tumor-targeted transfection. Int. J. Nanomed. 2012, 7, 2513. [Google Scholar]
- Kostková, H.; Etrych, T.; Říhová, B.; Ulbrich, K. Synergistic effect of hpma copolymer-bound doxorubicin and dexamethasone in vivo on mouse lymphomas. J. Bioact. Compat. Polym. 2011, 26, 270–286. [Google Scholar] [CrossRef]
- Krakovičová, H.; Etrych, T.; Ulbrich, K. Hpma-based polymer conjugates with drug combination. Eur. J. Pharm. Sci. 2009, 37, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Kritchenkov, A.S.; Andranovitš, S.; Skorik, Y.A. Chitosan and its derivatives: Vectors in gene therapy. Russ. Chem. Rev. 2017, 86, 231. [Google Scholar] [CrossRef]
- Corbett, A.H.; Mills, K.R.; Lange, B.A.; Stewart, M.; Devine, E.E.; Lange, J. Classical nuclear localization signals: Definition, function, and interaction with importin alpha. J. Biol. Chem. 2007, 282, 5101–5105. [Google Scholar]
- Ma, K.; Hu, M.; Xie, M.; Shen, H.; Qiu, L.; Fan, W.; Sun, H.; Chen, S.; Jin, Y. Investigation of polyethylenimine-grafted-triamcinolone acetonide as nucleus-targeting gene delivery systems. J. Gene Med. 2010, 12, 669–680. [Google Scholar] [CrossRef]
- Wang, T.; Upponi, J.R.; Torchilin, V.P. Design of multifunctional non-viral gene vectors to overcome physiological barriers: Dilemmas and strategies. Int. J. Pharm. 2012, 427, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Rebuffat, A.; Bernasconi, A.; Ceppi, M.; Wehrli, H.; Verca, S.B.; Ibrahim, M.; Frey, B.M.; Frey, F.J.; Rusconi, S. Selective enhancement of gene transfer by steroid-mediated gene delivery. Nat. Biotechnol. 2001, 19, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Lee, M.; Rhim, T. Dexamethasone-conjugated polyethylenimine/mif sirna complex regulation of particulate matter-induced airway inflammation. Biomaterials 2013, 34, 7453–7461. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Zou, W.; Ito, Y.; Kim, S.Y.; Chappel, J.; Ross, F.P.; Teitelbaum, S.L. Src-like adaptor protein regulates osteoclast generation and survival. J. Cell. Biochem. 2010, 110, 201–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.S.; Ko, K.S.; Park, J.S.; Kim, Y.-H.; Kim, S.W.; Lee, M. Dexamethasone conjugated poly (amidoamine) dendrimer as a gene carrier for efficient nuclear translocation. Int. J. Pharm. 2006, 320, 171–178. [Google Scholar] [CrossRef]
- Young Kim, J.; Ryu, J.H.; Hyun, H.; Kim, H.A.; Sig Choi, J.; Yun Lee, D.; Rhim, T.; Park, J.H.; Lee, M. Dexamethasone conjugation to polyamidoamine dendrimers g1 and g2 for enhanced transfection efficiency with an anti-inflammatory effect. J. Drug Target. 2012, 20, 667–677. [Google Scholar] [CrossRef]
- Jeon, P.; Choi, M.; Oh, J.; Lee, M. Dexamethasone-conjugated polyamidoamine dendrimer for delivery of the heme oxygenase-1 gene into the ischemic brain. Macromol. Biosci. 2015, 15, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubashynskaya, N.V.; Bokatyi, A.N.; Skorik, Y.A. Dexamethasone Conjugates: Synthetic Approaches and Medical Prospects. Biomedicines 2021, 9, 341. https://doi.org/10.3390/biomedicines9040341
Dubashynskaya NV, Bokatyi AN, Skorik YA. Dexamethasone Conjugates: Synthetic Approaches and Medical Prospects. Biomedicines. 2021; 9(4):341. https://doi.org/10.3390/biomedicines9040341
Chicago/Turabian StyleDubashynskaya, Natallia V., Anton N. Bokatyi, and Yury A. Skorik. 2021. "Dexamethasone Conjugates: Synthetic Approaches and Medical Prospects" Biomedicines 9, no. 4: 341. https://doi.org/10.3390/biomedicines9040341
APA StyleDubashynskaya, N. V., Bokatyi, A. N., & Skorik, Y. A. (2021). Dexamethasone Conjugates: Synthetic Approaches and Medical Prospects. Biomedicines, 9(4), 341. https://doi.org/10.3390/biomedicines9040341