Amino Acid Deprivation in Glioblastoma: The Role in Survival and the Tumour Microenvironment—A Narrative Review
<p>Schematics of the physiological role of glutamine and some pathways which are suspected to be affected by its deprivation in glioblastoma (see text for more details). GLS—Glutaminase; CR—Cystine Reductase; GCL—Glutamine–Cysteine Ligase. Picture created with BioRender.com.</p> "> Figure 2
<p>Conflicting effects of methionine deprivation in glioblastoma (see text for more details). The reduced expression of IL1RN, an antagonist of the IL1 receptor, causes cell cycle arrest and reduced proliferation. However, methionine deprivation also causes increased expression of CXCL8, which theoretically should attract neutrophils but also increases glycerophospholipid metabolism, giving a survival advantage to the cancer cells under stress conditions. Picture created with BioRender.com.</p> ">
Abstract
:1. Introduction
1.1. Glioblastoma: The Therapeutic Landscape
1.2. Oncometabolites and Glioblastoma
2. Metabolism of Amino Acids in Glioblastoma and the Effects of Specific Amino Acid Deprivation
2.1. Arginine
2.2. Glutamine and Glutamate
2.3. Methionine and Cysteine
2.4. Other Amino Acids
3. The Effect of Amino Acid Deprivation on the Tumour Microenvironment and Immunomodulation
4. Conclusions and Future Perspectives
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Weller, J.; Potthoff, A.; Zeyen, T.; Schaub, C.; Duffy, C.; Schneider, M.; Herrlinger, U. Current status of precision oncology in adult glioblastoma. Mol. Oncol. 2024; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, R.; Odia, Y.; Khosla, A.A.; Ahluwalia, M.S. Key clinical principles in the management of glioblastoma. JCO Oncol. Pract. 2023, 19, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; Van Den Bent, M.; Hopkins, K.; Tonn, J.C.; Stupp, R.; Falini, A.; Cohen-Jonathan-Moyal, E.; Frappaz, D.; Henriksson, R.; Balana, C. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014, 15, e395–e403. [Google Scholar] [CrossRef]
- Kreisl, T.N.; Kim, L.; Moore, K.; Duic, P.; Royce, C.; Stroud, I.; Garren, N.; Mackey, M.; Butman, J.A.; Camphausen, K. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 2009, 27, 740–745. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.; Gorlia, T.; Hamou, M.; De Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; Van Den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Walker, M.D.; Alexander, E.; Hunt, W.E.; MacCarty, C.S.; Mahaley, M.S.; Mealey, J.; Norrell, H.A.; Owens, G.; Ransohoff, J.; Wilson, C.B. Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas: A cooperative clinical trial. J. Neurosurg. 1978, 49, 333–343. [Google Scholar] [CrossRef]
- Weller, M.; Le Rhun, E. How did lomustine become standard of care in recurrent glioblastoma? Cancer Treat. Rev. 2020, 87, 102029. [Google Scholar] [CrossRef]
- Diaz, R.J.; Ali, S.; Qadir, M.G.; De La Fuente, M.I.; Ivan, M.E.; Komotar, R.J. The role of bevacizumab in the treatment of glioblastoma. J. Neurooncol. 2017, 133, 455–467. [Google Scholar] [CrossRef]
- Omuro, A.; Vlahovic, G.; Lim, M.; Sahebjam, S.; Baehring, J.; Cloughesy, T.; Voloschin, A.; Ramkissoon, S.H.; Ligon, K.L.; Latek, R. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: Results from exploratory phase I cohorts of CheckMate 143. Neuro-Oncol. 2018, 20, 674–686. [Google Scholar] [CrossRef]
- Migliorini, D.; Dietrich, P.; Stupp, R.; Linette, G.P.; Posey, A.D., Jr.; June, C.H. CAR T-cell therapies in glioblastoma: A first look. Clin. Cancer Res. 2018, 24, 535–540. [Google Scholar] [CrossRef] [PubMed]
- McMahon, D.J.; Gleeson, J.P.; O’Reilly, S.; Bambury, R.M. Management of newly diagnosed glioblastoma multiforme: Current state of the art and emerging therapeutic approaches. Med. Oncol. 2022, 39, 129. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska, A.; Nandhu, M.S.; Behera, P.; Chiocca, E.A.; Viapiano, M.S. Strategies in gene therapy for glioblastoma. Cancers 2013, 5, 1271–1305. [Google Scholar] [CrossRef]
- Poljsak, B.; Kovac, V.; Dahmane, R.; Levec, T.; Starc, A. Cancer etiology: A metabolic disease originating from life’s major evolutionary transition? Oxidative Med. Cell. Longev. 2019, 2019, 7831952. [Google Scholar] [CrossRef]
- Tapp, Z.M.; Rajappa, P.; Hambardzumyan, D. Glioblastoma microenvironment—From biology to therapy. Genes Dev. 2024. [Google Scholar]
- Poteet, E.; Choudhury, G.R.; Winters, A.; Li, W.; Ryou, M.; Liu, R.; Tang, L.; Ghorpade, A.; Wen, Y.; Yuan, F. Reversing the Warburg effect as a treatment for glioblastoma. J. Biol. Chem. 2013, 288, 9153–9164. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, X.; Liu, M.; Yang, Z.; Bi, Y.; Zou, H.; Wu, J.; Che, H.; Li, C.; Wang, X. XBP1 silencing decreases glioma cell viability and glycolysis possibly by inhibiting HK2 expression. J. Neurooncol. 2016, 126, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.L.; Chkheidze, R. The Role of Glucose Transporter-1 (GLUT-1) in Malignant Gliomas. In Tumors of the Central Nervous System, Volume 1: Gliomas: Glioblastoma (Part 1); Springer Nature: Berlin/Heidelberg, Germany, 2011; pp. 99–108. [Google Scholar]
- Trejo-Solís, C.; Serrano-García, N.; Castillo-Rodríguez, R.A.; Robledo-Cadena, D.X.; Jimenez-Farfan, D.; Marín-Hernández, Á; Silva-Adaya, D.; Rodríguez-Pérez, C.E.; Gallardo-Pérez, J.C. Metabolic dysregulation of tricarboxylic acid cycle and oxidative phosphorylation in glioblastoma. Rev. Neurosci. 2024, 35, 813–838. [Google Scholar] [CrossRef]
- N Mustafa, D.A.; Swagemakers, S.M.; Buise, L.; van der Spek, P.J.; Kros, J.M. Metabolic alterations due to IDH1 mutation in glioma: Opening for therapeutic opportunities? Acta Neuropathol. Commun. 2014, 2, 6. [Google Scholar] [CrossRef]
- Sesen, J.; Dahan, P.; Scotland, S.J.; Saland, E.; Dang, V.; Lemarié, A.; Tyler, B.M.; Brem, H.; Toulas, C.; Cohen-Jonathan Moyal, E. Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response. PLoS ONE 2015, 10, e0123721. [Google Scholar] [CrossRef]
- Seliger, C.; Genbrugge, E.; Gorlia, T.; Chinot, O.; Stupp, R.; Nabors, B.; Weller, M.; Hau, P.; EORTC Brain Tumor Group. Use of metformin and outcome of patients with newly diagnosed glioblastoma: Pooled analysis. Int. J. Cancer 2020, 146, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Mecca, C.; Giambanco, I.; Donato, R.; Arcuri, C. Targeting mTOR in glioblastoma: Rationale and preclinical/clinical evidence. Dis. Markers 2018, 2018, 9230479. [Google Scholar] [CrossRef] [PubMed]
- Duzgun, Z.; Eroglu, Z.; Avci, C.B. Role of mTOR in glioblastoma. Gene 2016, 575, 187–190. [Google Scholar] [CrossRef]
- Sakellakis, M. Why metformin should not Be used as an oxidative phosphorylation inhibitor in cancer patients. Chemotherapy 2023, 68, 185–189. [Google Scholar] [CrossRef] [PubMed]
- El Khayari, A.; Bouchmaa, N.; Taib, B.; Wei, Z.; Zeng, A.; El Fatimy, R. Metabolic rewiring in glioblastoma cancer: EGFR, IDH and beyond. Front. Oncol. 2022, 12, 901951. [Google Scholar] [CrossRef]
- Rodriguez, S.M.B.; Kamel, A.; Ciubotaru, G.V.; Onose, G.; Sevastre, A.; Sfredel, V.; Danoiu, S.; Dricu, A.; Tataranu, L.G. An overview of EGFR mechanisms and their implications in targeted therapies for glioblastoma. Int. J. Mol. Sci. 2023, 24, 11110. [Google Scholar] [CrossRef]
- Masui, K.; Cavenee, W.K.; Mischel, P.S.; Shibata, N. The metabolomic landscape plays a critical role in glioma oncogenesis. Cancer Sci. 2022, 113, 1555–1563. [Google Scholar] [CrossRef]
- Pearl, H.; Fleischer, C.C. Association between altered metabolism and genetic mutations in human glioma. Cancer Rep. 2023, 6, e1799. [Google Scholar] [CrossRef]
- Tamas, C.; Tamas, F.; Kovecsi, A.; Cehan, A.; Balasa, A. Metabolic Contrasts: Fatty Acid Oxidation and Ketone Bodies in Healthy Brains vs. Glioblastoma Multiforme. Int. J. Mol. Sci. 2024, 25, 5482. [Google Scholar] [CrossRef]
- Ahmad, F.; Patrick, S.; Sheikh, T.; Sharma, V.; Pathak, P.; Malgulwar, P.B.; Kumar, A.; Joshi, S.D.; Sarkar, C.; Sen, E. Telomerase reverse transcriptase (TERT)-enhancer of zeste homolog 2 (EZH2) network regulates lipid metabolism and DNA damage responses in glioblastoma. J. Neurochem. 2017, 143, 671–683. [Google Scholar] [CrossRef]
- Feng, S.; Liu, Y. Metabolomics of glioma. Cancer Metabolomics Methods Appl. 2021, 261–276. [Google Scholar]
- Kirsch, W.M.; Leitner, J.W. A comparison of the anaerobic glycolysis of human brain and glioblastoma. J. Neurosurg. 1967, 27, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, W.M.; Schulz, Q.; Van Buskirk, J.; Nakane, P. Anaerobic energy metabolism in brain tumors. Prog. Exp. Tumor Res. 1972, 17, 163–191. [Google Scholar]
- Kempski, O.; Staub, F.; Schneider, G.; Weigt, H.; Baethmann, A. Swelling of C6 glioma cells and astrocytes from glutamate, high K concentrations or acidosis. Prog. Brain Res. 1992, 94, 69–75. [Google Scholar]
- Rath, M.; Müller, I.; Kropf, P.; Closs, E.I.; Munder, M. Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front. Immunol. 2014, 5, 532. [Google Scholar] [CrossRef]
- Chen, C.; Hsu, S.; Ann, D.K.; Yen, Y.; Kung, H. Arginine signaling and cancer metabolism. Cancers 2021, 13, 3541. [Google Scholar] [CrossRef] [PubMed]
- Hajji, N.; Garcia-Revilla, J.; Soto, M.S.; Perryman, R.; Symington, J.; Quarles, C.C.; Healey, D.R.; Guo, Y.; Orta-Vázquez, M.L.; Mateos-Cordero, S.; et al. Arginine deprivation alters microglial polarity and synergizes with radiation to eradicate non-arginine-auxotrophic glioblastoma tumors. J. Clin. Investig. 2022, 132, e142137. [Google Scholar] [CrossRef]
- Karatsai, O.; Shliaha, P.; Jensen, O.N.; Stasyk, O.; Rędowicz, M.J. Combinatory Treatment of Canavanine and Arginine Deprivation Efficiently Targets Human Glioblastoma Cells via Pleiotropic Mechanisms. Cells 2020, 9, 2217. [Google Scholar] [CrossRef]
- Hall, P.E.; Lewis, R.; Syed, N.; Shaffer, R.; Evanson, J.; Ellis, S.; Williams, M.; Feng, X.; Johnston, A.; Thomson, J.A.; et al. A Phase I Study of Pegylated Arginine Deiminase (Pegargiminase), Cisplatin, and Pemetrexed in Argininosuccinate Synthetase 1-Deficient Recurrent High-grade Glioma. Clin. Cancer Res. 2019, 25, 2708–2716. [Google Scholar] [CrossRef]
- Riess, C.; Del Moral, K.; Fiebig, A.; Kaps, P.; Linke, C.; Hinz, B.; Rupprecht, A.; Frank, M.; Fiedler, T.; Koczan, D.; et al. Implementation of a combined CDK inhibition and arginine-deprivation approach to target arginine-auxotrophic glioblastoma multiforme cells. Cell Death Dis. 2022, 13, 555. [Google Scholar] [CrossRef]
- Mörén, L.; Perryman, R.; Crook, T.; Langer, J.K.; Oneill, K.; Syed, N.; Antti, H. Metabolomic profiling identifies distinct phenotypes for ASS1 positive and negative GBM. BMC Cancer 2018, 18, 167. [Google Scholar] [CrossRef]
- Peixoto, J.; Janaki-Raman, S.; Schlicker, L.; Schmitz, W.; Walz, S.; Winkelkotte, A.M.; Herold-Mende, C.; Soares, P.; Schulze, A.; Lima, J. Integrated metabolomics and transcriptomics analysis of monolayer and neurospheres from established glioblastoma cell lines. Cancers 2021, 13, 1327. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 2020, 52, 1496–1516. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Sudderth, J.; Dang, T.; Bachoo, R.G.; McDonald, J.G.; DeBerardinis, R.J. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res. 2009, 69, 7986–7993. [Google Scholar] [CrossRef] [PubMed]
- Jyotsana, N.; Ta, K.T.; DelGiorno, K.E. The role of cystine/glutamate antiporter SLC7A11/xCT in the pathophysiology of cancer. Front. Oncol. 2022, 12, 858462. [Google Scholar] [CrossRef]
- Zhang, J.; Pavlova, N.N.; Thompson, C.B. Cancer cell metabolism: The essential role of the nonessential amino acid, glutamine. EMBO J. 2017, 36, 1302–1315. [Google Scholar] [CrossRef]
- Chisari, A.; Golán, I.; Campisano, S.; Gélabert, C.; Moustakas, A.; Sancho, P.; Caja, L. Glucose and amino acid metabolic dependencies linked to stemness and metastasis in different aggressive cancer types. Front. Pharmacol. 2021, 12, 723798. [Google Scholar] [CrossRef]
- Sa-Nongdej, W.; Chongthammakun, S.; Songthaveesin, C. Nutrient starvation induces apoptosis and autophagy in C6 glioma stem-like cells. Heliyon 2021, 7, e06352. [Google Scholar] [CrossRef]
- Yamashita, A.S.; da Costa Rosa, M.; Stumpo, V.; Rais, R.; Slusher, B.S.; Riggins, G.J. The glutamine antagonist prodrug JHU-083 slows malignant glioma growth and disrupts mTOR signaling. Neuro-Oncol. Adv. 2021, 3, vdaa149. [Google Scholar] [CrossRef]
- Szeliga, M.; Obara-Michlewska, M.; Matyja, E.; Łazarczyk, M.; Lobo, C.; Hilgier, W.; Alonso, F.J.; Marquez, J.; Albrecht, J. Transfection with liver-type glutaminase cDNA alters gene expression and reduces survival, migration and proliferation of T98G glioma cells. Glia 2009, 57, 1014–1023. [Google Scholar] [CrossRef]
- He, Q.; Shi, X.; Zhang, L.; Yi, C.; Zhang, X.; Zhang, X. De novo glutamine synthesis: Importance for the proliferation of glioma cells and potentials for its detection with 13N-ammonia. Mol. Imaging 2016, 15, 1536012116645440. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.M.; Huang, P.; Kar, N.; Burgett, M.; Muller-Greven, G.; Nowacki, A.S.; Distelhorst, C.W.; Lathia, J.D.; Rich, J.N.; Kappes, J.C. Lyn facilitates glioblastoma cell survival under conditions of nutrient deprivation by promoting autophagy. PLoS ONE 2013, 8, e70804. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.U.; Li, X.; Cai, Q.; Zhang, C.; Yu, Q.; Jiang, Y.; Lee, J.; Hawke, D.; Wang, Y.; Xia, Y. Phosphoglycerate kinase 1 phosphorylates Beclin1 to induce autophagy. Mol. Cell 2017, 65, 917–931.e6. [Google Scholar] [CrossRef]
- Wang, B.; Yao, X.; Dong, Q.; Wang, X.; Yin, H.; Li, Q.; Wang, X.; Liu, Y.; Pan, Y.; Yuan, G. Quantitation of macropinocytosis in glioblastoma based on high-content analysis. J. Neurosci. Methods 2023, 397, 109947. [Google Scholar] [CrossRef]
- Minchenko, D.O.; Khita, O.O.; Tsymbal, D.O.; Viletska, Y.M.; Sliusar, M.Y.; Yefimova, Y.V.; Levadna, L.O.; Krasnytska, D.A.; Minchenko, O.H. ERN1 knockdown modifies the impact of glucose and glutamine deprivations on the expression of EDN1 and its receptors in glioma cells. Endocr. Regul. 2021, 55, 72–82. [Google Scholar] [CrossRef]
- Shatokhina, H.O.; Khita, O.O.; Minchenko, D.O.; Tsymbal, D.O.; Luzina, O.R.; Danilovskyi, S.V.; Sliusar, M.Y.; Levadna, L.O.; Minchenko, O.H. ERN1 dependent impact of glutamine and glucose deprivations on the pyruvate dehydrogenase genes expression in glioma cells. Endocr. Regul. 2022, 56, 254–264. [Google Scholar] [CrossRef]
- Adams, C.J.; Kopp, M.C.; Larburu, N.; Nowak, P.R.; Ali, M.M. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front. Mol. Biosci. 2019, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Egidy, G.; Eberl, L.P.; Valdenaire, O.; Irmler, M.; Majdi, R.; Diserens, A.; Fontana, A.; Janzer, R.; Pinet, F.; Juillerat-Jeanneret, L. The endothelin system in human glioblastoma. Lab. Investig. 2000, 80, 1681–1689. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Su, J.; Zhang, J.; Liu, S.; Han, L.; Liu, M.; Sun, D. Identification and validation of a novel HOX-related classifier signature for predicting prognosis and immune microenvironment in pediatric gliomas. Front. Cell Dev. Biol. 2023, 11, 1203650. [Google Scholar] [CrossRef]
- Pan, X.; Liu, W.; Chai, Y.; Wang, J.; Zhang, Y. Genetic and clinical characterization of HOXB2 in glioma. OncoTargets Ther. 2020, 10465–10473. [Google Scholar] [CrossRef]
- Krasnytska, D.A.; Khita, O.O.; Tsymbal, D.O.; Luzina, O.Y.; Cherednychenko, A.A.; Kozynkevich, H.E.; Bezrodny, B.H.; Minchenko, D.O. The impact of glutamine deprivation on the expression of MEIS3, SPAG4, LHX1, LHX2, and LHX6 genes in ERN1 knockdown U87 glioma cells. Endocr. Regul. 2022, 56, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, X.; Wang, J.; Zhang, K.; Yuan, Y.; Guo, Y.; Yao, L.; Li, X.; Shen, L. NDRG2 inhibits pyruvate carboxylase-mediated anaplerosis and combines with glutamine blockade to inhibit the proliferation of glioma cells. Am. J. Cancer Res. 2022, 12, 3729. [Google Scholar] [PubMed]
- Tanaka, M.; Siemann, D.W. Gas6/Axl signaling pathway in the tumor immune microenvironment. Cancers 2020, 12, 1850. [Google Scholar] [CrossRef]
- Zdżalik-Bielecka, D.; Poświata, A.; Kozik, K.; Jastrzębski, K.; Schink, K.O.; Brewińska-Olchowik, M.; Piwocka, K.; Stenmark, H.; Miączyńska, M. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proc. Natl. Acad. Sci. USA 2021, 118, e2024596118. [Google Scholar] [CrossRef]
- Udutha, S.; Taglang, C.; Batsios, G.; Gillespie, A.M.; Tran, M.; Ronen, S.M.; Ten Hoeve, J.; Graeber, T.G.; Viswanath, P. Telomerase reverse transcriptase induces targetable alterations in glutathione and nucleotide biosynthesis in glioblastomas. bioRxiv 2023. bioRxiv:2023.11.14.566937. [Google Scholar]
- Koch, K.; Hartmann, R.; Suwala, A.K.; Rios, D.H.; Kamp, M.A.; Sabel, M.; Steiger, H.; Willbold, D.; Sharma, A.; Kahlert, U.D. Overexpression of cystine/glutamate antiporter xCT correlates with nutrient flexibility and ZEB1 expression in highly clonogenic glioblastoma stem-like cells (GSCs). Cancers 2021, 13, 6001. [Google Scholar] [CrossRef]
- Fu, H.; Wu, S.; Shen, H.; Luo, K.; Huang, Z.; Lu, N.; Li, Y.; Lan, Q.; Xian, Y. Glutamine Metabolism Heterogeneity in Glioblastoma Unveils an Innovative Combination Therapy Strategy. J. Mol. Neurosci. 2024, 74, 52. [Google Scholar] [CrossRef]
- De los Santos-Jiménez, J.; Rosales, T.; Ko, B.; Campos-Sandoval, J.A.; Alonso, F.J.; Márquez, J.; DeBerardinis, R.J.; Matés, J.M. Metabolic adjustments following glutaminase inhibition by CB-839 in glioblastoma cell lines. Cancers 2023, 15, 531. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jiang, J.; Shen, A.; Miao, Y.; Cao, Y.; Zhang, Y.; Cong, P.; Gao, P. Rewired Metabolism of Amino Acids and Its Roles in Glioma Pathology. Metabolites 2022, 12, 918. [Google Scholar] [CrossRef]
- Safrhansova, L.; Hlozkova, K.; Starkova, J. Chapter Two—Targeting amino acid metabolism in cancer. Int. Rev. Cell Mol. Biol. 2022, 373, 37–79. Available online: https://www.sciencedirect.com/science/article/pii/S1937644822001095 (accessed on 15 September 2022). [CrossRef]
- Upadhyayula, P.S.; Higgins, D.M.; Mela, A.; Banu, M.; Dovas, A.; Zandkarimi, F.; Patel, P.; Mahajan, A.; Humala, N.; Nguyen, T.T. Dietary restriction of cysteine and methionine sensitizes gliomas to ferroptosis and induces alterations in energetic metabolism. Nat. Commun. 2023, 14, 1187. [Google Scholar] [CrossRef] [PubMed]
- Hayashima, K.; Kimura, I.; Katoh, H. Role of ferritinophagy in cystine deprivation-induced cell death in glioblastoma cells. Biochem. Biophys. Res. Commun. 2021, 539, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Hayashima, K.; Katoh, H. Expression of gamma-glutamyltransferase 1 in glioblastoma cells confers resistance to cystine deprivation–induced ferroptosis. J. Biol. Chem. 2022, 298. [Google Scholar] [CrossRef]
- Ruiz-Rodado, V.; Dowdy, T.; Lita, A.; Kramp, T.; Zhang, M.; Jung, J.; Dios-Esponera, A.; Zhang, L.; Herold-Mende, C.C.; Camphausen, K. Cysteine is a limiting factor for glioma proliferation and survival. Mol. Oncol. 2022, 16, 1777–1794. [Google Scholar] [CrossRef]
- Park, S.Y.; Jeong, K.J.; Poire, A.; Zhang, D.; Tsang, Y.H.; Blucher, A.S.; Mills, G.B. Irreversible HER2 inhibitors overcome resistance to the RSL3 ferroptosis inducer in non-HER2 amplified luminal breast cancer. Cell Death Dis. 2023, 14, 532. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, R.; Liu, S.; Duan, T.; Zhai, L.; Zhang, M.; Han, X.; Xiang, Y.; Huang, X.; Lin, H. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front. Pharmacol. 2018, 9, 1371. [Google Scholar] [CrossRef] [PubMed]
- Wanders, D.; Hobson, K.; Ji, X. Methionine restriction and cancer biology. Nutrients 2020, 12, 684. [Google Scholar] [CrossRef]
- Wang, K.; Liu, H.; Liu, J.; Wang, X.; Teng, L.; Zhang, J.; Liu, Y.; Yao, Y.; Wang, J.; Qu, Y. IL1RN mediates the suppressive effect of methionine deprivation on glioma proliferation. Cancer Lett. 2019, 454, 146–157. [Google Scholar] [CrossRef]
- Yokogami, K.; Kikuchi, T.; Watanabe, T.; Nakatake, Y.; Yamashita, S.; Mizuguchi, A.; Takeshima, H. Methionine regulates self-renewal, pluripotency, and cell death of GIC through cholesterol—rRNA axis. BMC Cancer 2022, 22, 1351. [Google Scholar] [CrossRef]
- Pan, S.; Fan, M.; Liu, Z.; Li, X.; Wang, H. Serine, glycine and one-carbon metabolism in cancer. Int. J. Oncol. 2020, 58, 158–170. [Google Scholar] [CrossRef]
- Yun, H.J.; Li, M.; Guo, D.; Jeon, S.M.; Park, S.H.; Lim, J.S.; Lee, S.B.; Liu, R.; Du, L.; Kim, S. AMPK-HIF-1α signaling enhances glucose-derived de novo serine biosynthesis to promote glioblastoma growth. J. Exp. Clin. Cancer Res. 2023, 42, 340. [Google Scholar] [CrossRef] [PubMed]
- Platten, M.; Nollen, E.A.; Röhrig, U.F.; Fallarino, F.; Opitz, C.A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 2019, 18, 379–401. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, A.; Miska, J.; Lee-Chang, C.; Kanojia, D.; Panek, W.K.; Lopez-Rosas, A.; Zhang, P.; Han, Y.; Xiao, T.; Pituch, K.C. GCN2 is essential for CD8 T cell survival and function in murine models of malignant glioma. Cancer Immunol. Immunother. 2020, 69, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Tomek, P.; Gore, S.K.; Potts, C.L.; Print, C.G.; Black, M.A.; Hallermayr, A.; Kilian, M.; Sattlegger, E.; Ching, L. Imprinted and ancient gene: A potential mediator of cancer cell survival during tryptophan deprivation. Cell Commun. Signal. 2018, 16, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chang, C.; Wang, L.; Zhang, P.; Shu, H.G. Cyclooxygenase-2 induction by amino acid deprivation requires p38 mitogen-activated protein kinase in human glioma cells. Cancer Investig. 2017, 35, 237–247. [Google Scholar] [CrossRef]
- Canovas, B.; Nebreda, A.R. Diversity and versatility of p38 kinase signalling in health and disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 346–366. [Google Scholar] [CrossRef]
- Mohan, A.A.; Tomaszewski, W.H.; Haskell-Mendoza, A.P.; Hotchkiss, K.M.; Singh, K.; Reedy, J.L.; Fecci, P.E.; Sampson, J.H.; Khasraw, M. Targeting Immunometabolism in Glioblastoma. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Liu, Q.; Li, A.; Tian, Y.; Wu, J.D.; Liu, Y.; Li, T.; Chen, Y.; Han, X.; Wu, K. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 2016, 31, 61–71. [Google Scholar] [CrossRef]
- Chang, J.; Wang, L.; Zhou, X.; Yuan, J.; Xu, W. The CBL-LSD1-CXCL8 axis regulates methionine metabolism in glioma. Cytokine 2022, 151, 155789. [Google Scholar] [CrossRef]
Mutation | Metabolic Effect | ONCOMETABOLITES | Effects on Tumour Proliferation | |
---|---|---|---|---|
Increased Concentration | Reduced Concentration | |||
IDH [26,27,28] | Altered TCA cycle | 2-Hydroxyglutarate (2-HG) | Alanine, glutamine, glutamate | Inhibition of DNA and RNA demethylases; increased histone, DNA, and RNA methylation, leading to altered gene expression |
1p/19q codeletion [29] * | N/A | N/A | Glutamate | Associated with IDH mutations; associated to improved response to therapy |
EGFR [27,28] | Increased glycolysis | Lactate | N/A | Increased cell proliferation |
PTEN [26] | Increased glycolysis | Lactate | N/A | Enhanced PI3K/AKT signalling, driving proliferation |
mTOR [28] | Increased glycolysis | Acetyl-CoA, lactate | N/A | Upregulated biosynthesis (e.g., lipid, nucleotide synthesis) required for rapid tumour cell proliferation |
Several mutations, including HIF-1α [30] | Increased fatty acid accumulation and metabolism | Fatty acids | N/A | Associated with increased tumour proliferation and resistance to alkylating agents |
TERT [31] | Increased fatty acid accumulation and metabolism | Fatty acids | N/A | Associated with increased tumour proliferation and resistance to alkylating agents |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, K.; Grocott, L.; Anichini, G.; O’Neill, K.; Syed, N. Amino Acid Deprivation in Glioblastoma: The Role in Survival and the Tumour Microenvironment—A Narrative Review. Biomedicines 2024, 12, 2481. https://doi.org/10.3390/biomedicines12112481
Du K, Grocott L, Anichini G, O’Neill K, Syed N. Amino Acid Deprivation in Glioblastoma: The Role in Survival and the Tumour Microenvironment—A Narrative Review. Biomedicines. 2024; 12(11):2481. https://doi.org/10.3390/biomedicines12112481
Chicago/Turabian StyleDu, Keven, Leila Grocott, Giulio Anichini, Kevin O’Neill, and Nelofer Syed. 2024. "Amino Acid Deprivation in Glioblastoma: The Role in Survival and the Tumour Microenvironment—A Narrative Review" Biomedicines 12, no. 11: 2481. https://doi.org/10.3390/biomedicines12112481
APA StyleDu, K., Grocott, L., Anichini, G., O’Neill, K., & Syed, N. (2024). Amino Acid Deprivation in Glioblastoma: The Role in Survival and the Tumour Microenvironment—A Narrative Review. Biomedicines, 12(11), 2481. https://doi.org/10.3390/biomedicines12112481