Developing a Polygenic Risk Score with Age and Sex to Identify High-Risk Myopia in Taiwan
<p>Manhattan plot of the GWAS in the discovery cohort, which included 2541 individuals with high myopia and 7615 individuals with no myopia. The solid line indicates the genome-wide significance threshold of <span class="html-italic">p</span> < 5.0 × 10<sup>−8</sup>, while the dashed line indicates the suggestive significance threshold of <span class="html-italic">p</span> < 1.0 × 10<sup>−6</sup>. Different colors represented each chromosome.</p> "> Figure 2
<p>Flowchart of the study design.</p> "> Figure 3
<p>Receiver operating characteristic (ROC) curve for detecting (<b>A</b>) high, (<b>B</b>) moderate, and (<b>C</b>) mild myopia versus no myopia controls (SE > −1.0 D) with the PRS, age, and sex as predictors in participants aged >18 years; the AUC and 95% confidence interval (CI) correspond to the PRS, age, and sex models.</p> "> Figure 4
<p>ROC curve for detecting high myopia in participants aged (<b>A</b>) 7–18, (<b>B</b>) 7–13, and (<b>C</b>) ≤6 years with the PRS, age, and sex as predictors (blue line); green line represented reference line. The AUC and 95% CI correspond to the PRS, age, and sex model.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Source
2.3. Genotyping and Discovery GWAS
2.4. PRS Construction
2.5. Statistical Analysis
3. Results
3.1. Study Participants
3.2. PRS in the Replication Cohort with Participants Aged >18 Years
3.3. PRS in the Replication Cohort with Participants Aged 7–18 and ≤6 Years
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haarman, A.E.G.; Enthoven, C.A.; Tideman, J.W.L.; Tedja, M.S.; Verhoeven, V.J.M.; Klaver, C.C.W. The complications of myopia: A review and meta-analysis. Investig. Ophthalmol. Vis. Sci. 2020, 61, 49. [Google Scholar] [CrossRef]
- Bullimore, M.A.; Ritchey, E.R.; Shah, S.; Leveziel, N.; Bourne, R.R.A.; Flitcroft, D.I. The risks and benefits of myopia control. Ophthalmology 2021, 128, 1561–1579. [Google Scholar] [CrossRef] [PubMed]
- Verkicharla, P.K.; Ohno-Matsui, K.; Saw, S.M. Current and predicted demographics of high myopia and an update of its associated pathological changes. Ophthalmic Physiol. Opt. 2015, 35, 465–475. [Google Scholar] [CrossRef]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.L.; Shih, Y.F.; Hsiao, C.K.; Chen, C.J.; Lee, L.A.; Hung, P.T. Epidemiologic study of the prevalence and severity of myopia among schoolchildren in Taiwan in 2000. J. Formos. Med. Assoc. 2001, 100, 684–691. [Google Scholar] [PubMed]
- Wan, L.; Wei, C.C.; Chen, C.S.; Chang, C.Y.; Lin, C.J.; Chen, J.J.; Tien, P.T.; Lin, H.J. The synergistic effects of orthokeratology and atropine in slowing the progression of myopia. J. Clin. Med. 2018, 7, 259. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.C.; Chen, C.T.; Chang, L.C.; Niu, Y.Z.; Chen, M.L.; Liao, L.L.; Rose, K.; Morgan, I.G. Increased time outdoors is followed by reversal of the long-term trend to reduced visual acuity in Taiwan primary school students. Ophthalmology 2020, 127, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
- Yam, J.C.; Jiang, Y.; Tang, S.M.; Law, A.K.P.; Chan, J.J.; Wong, E.; Ko, S.T.; Young, A.L.; Tham, C.C.; Chen, L.J.; et al. Low-concentration atropine for myopia progression (LAMP) study: A randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control. Ophthalmology 2019, 126, 113–124. [Google Scholar] [CrossRef]
- He, M.; Xiang, F.; Zeng, Y.; Mai, J.; Chen, Q.; Zhang, J.; Smith, W.; Rose, K.; Morgan, I.G. Effect of time spent outdoors at school on the development of myopia among children in China: A randomized clinical trial. JAMA 2015, 314, 1142–1148. [Google Scholar] [CrossRef]
- Mirshahi, A.; Ponto, K.A.; Hoehn, R.; Zwiener, I.; Zeller, T.; Lackner, K.; Beutel, M.E.; Pfeiffer, N. Myopia and level of education: Results from the Gutenberg health study. Ophthalmology 2014, 121, 2047–2052. [Google Scholar] [CrossRef]
- Tedja, M.S.; Haarman, A.E.G.; Meester-Smoor, M.A.; Kaprio, J.; Mackey, D.A.; Guggenheim, J.A.; Hammond, C.J.; Verhoeven, V.J.M.; Klaver, C.C.W. IMI—Myopia genetics report. Investig. Ophthalmol. Vis. Sci. 2019, 60, M89–M105. [Google Scholar] [CrossRef] [PubMed]
- Hysi, P.G.; Choquet, H.; Khawaja, A.P.; Wojciechowski, R.; Tedja, M.S.; Yin, J.; Simcoe, M.J.; Patasova, K.; Mahroo, O.A.; Thai, K.K.; et al. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nat. Genet. 2020, 52, 401–407. [Google Scholar] [CrossRef]
- Wray, N.R.; Lin, T.; Austin, J.; McGrath, J.J.; Hickie, I.B.; Murray, G.K.; Visscher, P.M. From basic science to clinical application of polygenic risk scores: A primer. JAMA Psychiatry 2021, 78, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Mojarrad, N.G.; Plotnikov, D.; Williams, C.; Guggenheim, J.A. Association between polygenic risk score and risk of myopia. JAMA Ophthalmol. 2020, 138, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Tideman, J.W.L.; Pärssinen, O.; Haarman, A.E.G.; Khawaja, A.P.; Wedenoja, J.; Williams, K.M.; Biino, G.; Ding, X.; Kähönen, M.; Lehtimäki, T.; et al. Evaluation of shared genetic susceptibility to high and low myopia and hyperopia. JAMA Ophthalmol. 2021, 139, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Lanca, C.; Kassam, I.; Patasova, K.; Foo, L.L.; Li, J.; Ang, M.; Hoang, Q.V.; Teo, Y.Y.; Hysi, P.G.; Saw, S.M. New polygenic risk score to predict high myopia in Singapore Chinese children. Transl. Vis. Sci. Technol. 2021, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhuang, Z.; Wang, W.; Huang, T.; Liu, Z. An improved genome-wide polygenic score model for predicting the risk of type 2 diabetes. Front. Genet. 2021, 12, 632385. [Google Scholar] [CrossRef] [PubMed]
- Flitcroft, D.I.; He, M.; Jonas, J.B.; Jong, M.; Naidoo, K.; Ohno-Matsui, K.; Rahi, J.; Resnikoff, S.; Vitale, S.; Yannuzzi, L. IMI—Defining and classifying myopia: A proposed set of standards for clinical and epidemiologic studies. Investig. Ophthalmol. Vis. Sci. 2019, 60, M20–M30. [Google Scholar] [CrossRef]
- Hu, Y.; Ding, X.; Long, W.; He, M.; Yang, X. Longitudinal changes in spherical equivalent refractive error among children with preschool myopia. Investig. Ophthalmol. Vis. Sci. 2019, 60, 154–160. [Google Scholar] [CrossRef]
- Chiang, H.Y.; Liang, L.Y.; Lin, C.C.; Chen, Y.J.; Wu, M.Y.; Chen, S.H.; Wu, P.H.; Kuo, C.C.; Chi, C.Y. Electronic medical record-based deep data cleaning and phenotyping improve the diagnostic validity and mortality assessment of infective endocarditis: Medical big data initiative of CMUH. BioMedicine 2021, 11, 59–67. [Google Scholar] [CrossRef]
- Chiang, H.Y.; Lin, K.R.; Hsiao, Y.L.; Huang, H.C.; Chang, S.N.; Hung, C.H.; Chang, Y.; Wang, Y.C.; Kuo, C.C. Association between preoperative blood glucose level and hospital length of stay for patients undergoing appendectomy or laparoscopic cholecystectomy. Diabetes Care 2021, 44, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.Y.; Lin, C.F.; Wu, H.T.; Wu, Y.L.; Chen, Y.C.; Liao, C.C.; Chou, Y.P.; Chao, D.; Chang, Y.S.; Lu, H.F.; et al. Comparison of multiple imputation algorithms and verification using whole-genome sequencing in the CMUH genetic biobank. Biomedicine 2021, 11, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.L.; Liu, T.Y.; Cheng, C.F.; Chou, Y.P.; Wang, T.Y.; Chang, Y.W.; Chen, S.Y.; Tsai, F.J. Analysis of HLA variants and graves’ disease and its comorbidities using a high resolution imputation system to examine electronic medical health records. Front. Endocrinol. 2022, 13, 842673. [Google Scholar] [CrossRef] [PubMed]
- Delaneau, O.; Zagury, J.F.; Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 2013, 10, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Howie, B.; Fuchsberger, C.; Stephens, M.; Marchini, J.; Abecasis, G.R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 2012, 44, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Sudmant, P.H.; Rausch, T.; Gardner, E.J.; Handsaker, R.E.; Abyzov, A.; Huddleston, J.; Zhang, Y.; Ye, K.; Jun, G.; Fritz, M.H.; et al. An integrated map of structural variation in 2,504 human genomes. Nature 2015, 526, 75–81. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, J.; Bowler, E.; Cerezo, M.; Gil, L.; Hall, P.; Hastings, E.; Junkins, H.; McMahon, A.; Milano, A.; Morales, J.; et al. The new NHGRI-EBI catalog of published genome-wide association studies (GWAS catalog). Nucleic Acids Res. 2017, 45, D896–D901. [Google Scholar] [CrossRef]
- Choi, S.W.; O’Reilly, P.F. Prsice-2: Polygenic risk score software for biobank-scale data. Gigascience 2019, 8, giz082. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation plink: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef]
- Chen, L.J.; Li, F.F.; Lu, S.Y.; Zhang, X.J.; Kam, K.W.; Tang, S.M.; Tam, P.O.; Yip, W.W.; Young, A.L.; Tham, C.C.; et al. Association of polymorphisms in zfhx1b, kcnq5 and gjd2 with myopia progression and polygenic risk prediction in children. Br. J. Ophthalmol. 2021, 105, 1751–1757. [Google Scholar] [CrossRef]
- Cheong, K.X.; Yong, R.Y.Y.; Tan, M.M.H.; Tey, F.L.K.; Ang, B.C.H. Association of sntb1 with high myopia. Curr. Eye Res. 2021, 46, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Khor, C.C.; Miyake, M.; Chen, L.J.; Shi, Y.; Barathi, V.A.; Qiao, F.; Nakata, I.; Yamashiro, K.; Zhou, X.; Tam, P.O.; et al. Genome-wide association study identifies zfhx1b as a susceptibility locus for severe myopia. Hum. Mol. Genet. 2013, 22, 5288–5294. [Google Scholar] [CrossRef] [PubMed]
- Li, F.F.; Lu, S.Y.; Tang, S.M.; Kam, K.W.; Pancy, O.S.T.; Yip, W.W.K.; Young, A.L.; Tham, C.C.; Pang, C.P.; Yam, J.C.; et al. Genetic associations of myopia severities and endophenotypes in children. Br. J. Ophthalmol. 2021, 105, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiao, X.; Zhang, Q.; Hejtmancik, J.F. Association and interaction of myopia with SNP markers rs13382811 and rs6469937 at zfhx1b and sntb1 in Han Chinese and European populations. Mol. Vis. 2017, 23, 588–604. [Google Scholar] [PubMed]
- Shi, Y.; Gong, B.; Chen, L.; Zuo, X.; Liu, X.; Tam, P.O.; Zhou, X.; Zhao, P.; Lu, F.; Qu, J.; et al. A genome-wide meta-analysis identifies two novel loci associated with high myopia in the Han Chinese population. Hum. Mol. Genet. 2013, 22, 2325–2333. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.M.; Li, F.F.; Lu, S.Y.; Kam, K.W.; Tam, P.O.S.; Tham, C.C.; Pang, C.P.; Yam, J.C.S.; Chen, L.J. Association of the zc3h11b, zfhx1b and sntb1 genes with myopia of different severities. Br. J. Ophthalmol. 2020, 104, 1472–1476. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.T.; Wang, I.J.; Shih, Y.F.; Lin, L.L. The association of haplotype at the lumican gene with high myopia susceptibility in Taiwanese patients. Ophthalmology 2009, 116, 1920–1927. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, H.; Yamada, R.; Gotoh, N.; Hayashi, H.; Yamashiro, K.; Shimada, N.; Ohno-Matsui, K.; Mochizuki, M.; Saito, M.; Iida, T.; et al. A genome-wide association analysis identified a novel susceptible locus for pathological myopia at 11q24.1. PLoS Genet. 2009, 5, e1000660. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Jin, X.; Zhu, T.; Wang, T.; Tong, P.; Tian, L.; Peng, Y.; Sun, L.; Wan, A.; Chen, J.; et al. Slc39a5 mutations interfering with the BMP/TGF-β pathway in non-syndromic high myopia. J. Med. Genet. 2014, 51, 518–525. [Google Scholar] [CrossRef]
- Lin, H.J.; Wan, L.; Chen, W.C.; Lin, J.M.; Lin, C.J.; Tsai, F.J. Muscarinic acetylcholine receptor 3 is dominant in myopia progression. Investig. Ophthalmol. Vis. Sci. 2012, 53, 6519–6525. [Google Scholar] [CrossRef]
- Lin, H.J.; Wan, L.; Tsai, Y.; Tsai, Y.Y.; Fan, S.S.; Tsai, C.H.; Tsai, F.J. The tgfbeta1 gene codon 10 polymorphism contributes to the genetic predisposition to high myopia. Mol. Vis. 2006, 12, 698–703. [Google Scholar] [PubMed]
- Ueda, E.; Yasuda, M.; Fujiwara, K.; Hashimoto, S.; Ohno-Matsui, K.; Hata, J.; Ishibashi, T.; Ninomiya, T.; Sonoda, K.H. Trends in the prevalence of myopia and myopic maculopathy in a Japanese population: The Hisayama study. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2781–2786. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.L.; Saw, S.M. Epidemiology of pathologic myopia in Asia and worldwide. Asia Pac. J. Ophthalmol. 2016, 5, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Tailor, P.D.; Xu, T.T.; Tailor, S.; Asheim, C.; Olsen, T.W. Trends in myopia and high myopia from 1966 to 2019 in Olmsted county, Minnesota. Am. J. Ophthalmol. 2024, 259, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Morgan, I.G.; French, A.N.; Ashby, R.S.; Guo, X.; Ding, X.; He, M.; Rose, K.A. The epidemics of myopia: Aetiology and prevention. Prog. Retin. Eye Res. 2018, 62, 134–149. [Google Scholar] [CrossRef]
- Tedja, M.S.; Wojciechowski, R.; Hysi, P.G.; Eriksson, N.; Furlotte, N.A.; Verhoeven, V.J.M.; Iglesias, A.I.; Meester-Smoor, M.A.; Tompson, S.W.; Fan, Q.; et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat. Genet. 2018, 50, 834–848. [Google Scholar] [CrossRef]
- Chen, Y.; Han, X.; Guo, X.; Li, Y.; Lee, J.; He, M. Contribution of genome-wide significant single nucleotide polymorphisms in myopia prediction: Findings from a 10-year cohort of Chinese twin children. Ophthalmology 2019, 126, 1607–1614. [Google Scholar] [CrossRef]
- Verhoeven, V.J.; Wong, K.T.; Buitendijk, G.H.; Hofman, A.; Vingerling, J.R.; Klaver, C.C. Visual consequences of refractive errors in the general population. Ophthalmology 2015, 122, 101–109. [Google Scholar] [CrossRef]
- Sherwin, J.C.; Reacher, M.H.; Keogh, R.H.; Khawaja, A.P.; Mackey, D.A.; Foster, P.J. The association between time spent outdoors and myopia in children and adolescents: A systematic review and meta-analysis. Ophthalmology 2012, 119, 2141–2151. [Google Scholar] [CrossRef]
Discovery Cohort (n = 10,156) | Replication Cohort (n = 10,522) | |||||
---|---|---|---|---|---|---|
No Myopia 1 | High Myopia 2 | No Myopia 1 | High Myopia 2 | Moderate Myopia 3 | Mild Myopia 4 | |
Sample size | 7615 | 2541 | 3263 | 1089 | 3929 | 2241 |
Age (years, mean ± SD) | 63.18 ± 13.50 | 46.69 ± 14.79 ** | 63.12 ± 13.43 | 47.10 ± 14.36 ** | 47.77 ± 14.78 ** | 51.14 ± 14.96 ** |
Sex | ||||||
Male (%) | 3396 (44.6) | 997 (39.2) ** | 1398 (42.8) | 443 (40.7) | 1681 (42.8) | 905 (40.4) |
Female (%) | 4219 (55.4) | 1544 (60.8) | 1865 (57.2) | 646 (59.3) | 2248 (57.2) | 1336 (59.6) |
SE in the worse eye (D, mean ± SD) | 1.79 ± 2.72 | (−9.77 ± 4.01) ** | 1.76 ± 2.72 | (−9.70 ± 3.94) ** | (−4.34 ± 0.85) ** | (−2.03 ± 0.51) ** |
Replication Cohort | ||||||
---|---|---|---|---|---|---|
7–18 | 7–13 | ≤6 | ||||
No Myopia 1 | High Myopia 2 | No Myopia 1 | High Myopia 2 | No Myopia 3 | High Myopia 4 | |
Sample size | 1798 | 262 | 1678 | 154 | 590 | 360 |
Age (years, mean ± SD) | 6.14 ± 3.67 | 10.31 ± 5.61 ** | 5.49 ± 2.82 | 6.39 ± 3.87 * | 3.82 ± 1.29 ** | 3.14 ± 1.36 ** |
Sex | ||||||
Male (%) | 831 (46.2) | 129 (49.2) | 778 (46.4) | 77 (50.0) | 266 (45.1) | 169 (46.9) |
Female (%) | 967 (53.8) | 133 (50.8) | 900 (53.6) | 77 (50.0) | 324 (54.9) | 191 (53.1) |
SE in the worse eye (D, mean ± SD) | 0.89 ± 2.07 | (−9.28 ± 3.66) ** | 0.89 ± 2.08 | (−9.61 ± 3.90) ** | 1.68 ± 2.27 ** | (−4.98 ± 3.46) ** |
Risk | Reference | Degree of Myopia | OR (95% CI) | p-Value |
---|---|---|---|---|
Top 25% | Remaining 75% | High | 1.30 (1.09–1.55) | 0.003 |
Moderate | 1.23 (1.09–1.39) | 0.001 | ||
Mild | 1.07 (0.94–1.23) | 0.298 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.-J.; Huang, Y.-T.; Liao, W.-L.; Huang, Y.-C.; Chang, Y.-W.; Weng, A.L.; Tsai, F.-J. Developing a Polygenic Risk Score with Age and Sex to Identify High-Risk Myopia in Taiwan. Biomedicines 2024, 12, 1619. https://doi.org/10.3390/biomedicines12071619
Lin H-J, Huang Y-T, Liao W-L, Huang Y-C, Chang Y-W, Weng AL, Tsai F-J. Developing a Polygenic Risk Score with Age and Sex to Identify High-Risk Myopia in Taiwan. Biomedicines. 2024; 12(7):1619. https://doi.org/10.3390/biomedicines12071619
Chicago/Turabian StyleLin, Hui-Ju, Yu-Te Huang, Wen-Ling Liao, Yu-Chuen Huang, Ya-Wen Chang, Angel L. Weng, and Fuu-Jen Tsai. 2024. "Developing a Polygenic Risk Score with Age and Sex to Identify High-Risk Myopia in Taiwan" Biomedicines 12, no. 7: 1619. https://doi.org/10.3390/biomedicines12071619
APA StyleLin, H.-J., Huang, Y.-T., Liao, W.-L., Huang, Y.-C., Chang, Y.-W., Weng, A. L., & Tsai, F.-J. (2024). Developing a Polygenic Risk Score with Age and Sex to Identify High-Risk Myopia in Taiwan. Biomedicines, 12(7), 1619. https://doi.org/10.3390/biomedicines12071619