The Association between Antibiotic Use and the Incidence of Heart Failure: A Retrospective Case-Control Study of 162,188 Outpatients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Study Population
2.3. Study Outcomes
2.4. Statistical Analyses
3. Results
3.1. Basic Characteristics of the Study Sample
3.2. Association of Antibiotic Use with Heart Failure
3.3. Age- and Sex Stratified Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neumann, T.; Biermann, J.; Erbel, R.; Neumann, A.; Wasem, J.; Ertl, G.; Dietz, R. Heart failure: The commonest reason for hospital admission in Germany: Medical and economic perspectives. Dtsch. Arztebl. Int. 2009, 106, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Lindenfeld, J.; Albert, N.M.; Boehmer, J.P.; Collins, S.P.; Ezekowitz, J.A.; Givertz, M.M.; Katz, S.D.; Klapholz, M.; Moser, D.K.; Rogers, J.G.; et al. HFSA 2010 Comprehensive Heart Failure Practice Guideline. J. Card. Fail. 2010, 16, e1-194. [Google Scholar] [CrossRef] [PubMed]
- Braunwald, E. Heart failure. JACC Heart Fail. 2013, 1, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Mosterd, A.; Hoes, A.W. Clinical epidemiology of heart failure. Heart 2007, 93, 1137–1146. [Google Scholar] [CrossRef] [Green Version]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Wrigley, B.J.; Lip, G.Y.; Shantsila, E. The role of monocytes and inflammation in the pathophysiology of heart failure. Eur. J. Heart Fail. 2011, 13, 1161–1171. [Google Scholar] [CrossRef]
- Anker, S.D.; von Haehling, S. Inflammatory mediators in chronic heart failure: An overview. Heart 2004, 90, 464–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luedde, M.; Winkler, T.; Heinsen, F.A.; Rühlemann, M.C.; Spehlmann, M.E.; Bajrovic, A.; Lieb, W.; Franke, A.; Ott, S.J.; Frey, N. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail. 2017, 4, 282–290. [Google Scholar] [CrossRef]
- Awoyemi, A.; Mayerhofer, C.; Felix, A.S.; Hov, J.R.; Moscavitch, S.D.; Lappegård, K.T.; Hovland, A.; Halvorsen, S.; Halvorsen, B.; Gregersen, I.; et al. Rifaximin or Saccharomyces boulardii in heart failure with reduced ejection fraction: Results from the randomized GutHeart trial. EBioMedicine 2021, 70, 103511. [Google Scholar] [CrossRef]
- Meyer, K.; Aagaard, K. Microbiome: Antibiotics and the infant microflora. Nat. Microbiol. 2016, 1, 16040. [Google Scholar] [CrossRef]
- Rathmann, W.; Bongaerts, B.; Carius, H.J.; Kruppert, S.; Kostev, K. Basic characteristics and representativeness of the German Disease Analyzer database. Int. J. Clin. Pharmacol. Ther. 2018, 56, 459–466. [Google Scholar] [CrossRef]
- Niebauer, J.; Volk, H.D.; Kemp, M.; Dominguez, M.; Schumann, R.R.; Rauchhaus, M.; Poole-Wilson, P.A.; Coats, A.J.; Anker, S.D. Endotoxin and immune activation in chronic heart failure: A prospective cohort study. Lancet 1999, 353, 1838–1842. [Google Scholar] [CrossRef]
- Tang, W.H.W.; Li, D.Y.; Hazen, S.L. Dietary metabolism, the gut microbiome, and heart failure. Nat. Rev. Cardiol. 2019, 16, 137–154. [Google Scholar] [CrossRef]
- Pasini, E.; Aquilani, R.; Testa, C.; Baiardi, P.; Angioletti, S.; Boschi, F.; Verri, M.; Dioguardi, F. Pathogenic Gut Flora in Patients With Chronic Heart Failure. JACC Heart Fail. 2016, 4, 220–227. [Google Scholar] [CrossRef]
- Kummen, M.; Mayerhofer, C.C.K.; Vestad, B.; Broch, K.; Awoyemi, A.; Storm-Larsen, C.; Ueland, T.; Yndestad, A.; Hov, J.R.; Trøseid, M. Gut Microbiota Signature in Heart Failure Defined From Profiling of 2 Independent Cohorts. J. Am. Coll. Cardiol. 2018, 71, 1184–1186. [Google Scholar] [CrossRef]
- Conraads, V.M.; Jorens, P.G.; De Clerck, L.S.; Van Saene, H.K.; Ieven, M.M.; Bosmans, J.M.; Schuerwegh, A.; Bridts, C.H.; Wuyts, F.; Stevens, W.J.; et al. Selective intestinal decontamination in advanced chronic heart failure: A pilot trial. Eur. J. Heart Fail. 2004, 6, 483–491. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wang, X.; Feng, W.; Liu, Q.; Zhou, S.; Liu, Q.; Cai, L. The gut microbiota and its interactions with cardiovascular disease. Microb. Biotechnol. 2020, 13, 637–656. [Google Scholar] [CrossRef] [Green Version]
- Costanza, A.C.; Moscavitch, S.D.; Faria Neto, H.C.; Mesquita, E.T. Probiotic therapy with Saccharomyces boulardii for heart failure patients: A randomized, double-blind, placebo-controlled pilot trial. Int. J. Cardiol. 2015, 179, 348–350. [Google Scholar] [CrossRef] [Green Version]
- Sandek, A.; Bauditz, J.; Swidsinski, A.; Buhner, S.; Weber-Eibel, J.; von Haehling, S.; Schroedl, W.; Karhausen, T.; Doehner, W.; Rauchhaus, M.; et al. Altered intestinal function in patients with chronic heart failure. J. Am. Coll. Cardiol. 2007, 50, 1561–1569. [Google Scholar] [CrossRef] [Green Version]
- Neal, M.D.; Leaphart, C.; Levy, R.; Prince, J.; Billiar, T.R.; Watkins, S.; Li, J.; Cetin, S.; Ford, H.; Schreiber, A.; et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J. Immunol. 2006, 176, 3070–3079. [Google Scholar] [CrossRef]
- Charalambous, B.M.; Stephens, R.C.; Feavers, I.M.; Montgomery, H.E. Role of bacterial endotoxin in chronic heart failure: The gut of the matter. Shock 2007, 28, 15–23. [Google Scholar] [CrossRef]
- Li, X.S.; Obeid, S.; Klingenberg, R.; Gencer, B.; Mach, F.; Räber, L.; Windecker, S.; Rodondi, N.; Nanchen, D.; Muller, O.; et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: A prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur. Heart J. 2017, 38, 814–824. [Google Scholar] [CrossRef] [Green Version]
- Schiattarella, G.G.; Sannino, A.; Toscano, E.; Giugliano, G.; Gargiulo, G.; Franzone, A.; Trimarco, B.; Esposito, G.; Perrino, C. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: A systematic review and dose-response meta-analysis. Eur. Heart J. 2017, 38, 2948–2956. [Google Scholar] [CrossRef] [Green Version]
- Crisci, G.; Israr, M.Z.; Cittadini, A.; Bossone, E.; Suzuki, T.; Salzano, A. Heart failure and trimethylamine N-oxide: Time to transform a ‘gut feeling’ in a fact? ESC Heart Fail. 2022. [Google Scholar] [CrossRef]
- Abele-Horn, M.; Pitten, F.A. Nosokomiale Pneumonie—Antibiotikatherapie und hygienische Interventionsstrategien. NeuroIntensiv 2015, 30, 287–298. [Google Scholar] [CrossRef]
- Leitlinienprogramm DGU: Interdisziplinäre S3 Leitlinie: Epidemiologie, Diagnostik, Therapie, Prävention und Management Unkomplizierter, Bakterieller, Ambulant Erworbener Harnwegsinfektionen bei Erwachsenen Patienten. Langversion 1.1-2, 2017 AWMF Registernummer: 043/044. Available online: https://www.awmf.org/uploads/tx_szleitlinien/043-044l_S3_Harnwegsinfektionenpdf (accessed on 17 December 2022).
- Teng, C.; Reveles, K.R.; Obodozie-Ofoegbu, O.O.; Frei, C.R. Clostridium difficile Infection Risk with Important Antibiotic Classes: An Analysis of the FDA Adverse Event Reporting System. Int. J. Med. Sci. 2019, 16, 630–635. [Google Scholar] [CrossRef] [Green Version]
- Rupnik, M.; Wilcox, M.H.; Gerding, D.N. Clostridium difficile infection: New developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 2009, 7, 526–536. [Google Scholar] [CrossRef]
- Abt, M.C.; McKenney, P.T.; Pamer, E.G. Clostridium difficile colitis: Pathogenesis and host defence. Nat. Rev. Microbiol. 2016, 14, 609–620. [Google Scholar] [CrossRef]
- Brown, K.A.; Khanafer, N.; Daneman, N.; Fisman, D.N. Meta-analysis of antibiotics and the risk of community-associated Clostridium difficile infection. Antimicrob. Agents Chemother. 2013, 57, 2326–2332. [Google Scholar] [CrossRef] [Green Version]
- Etminan, M.; Sodhi, M.; Ganjizadeh-Zavareh, S.; Carleton, B.; Kezouh, A.; Brophy, J.M. Oral Fluoroquinolones and Risk of Mitral and Aortic Regurgitation. J. Am. Coll. Cardiol. 2019, 74, 1444–1450. [Google Scholar] [CrossRef]
- Labenz, C.; Huber, Y.; Michel, M.; Nagel, M.; Galle, P.R.; Kostev, K.; Schattenberg, J.M. Nonalcoholic Fatty Liver Disease Increases the Risk of Anxiety and Depression. Hepatol. Commun. 2020, 4, 1293–1301. [Google Scholar] [CrossRef]
- Loosen, S.H.; Kostev, K.; Luedde, M.; Luedde, T.; Roderburg, C. Low blood levels of high-density lipoprotein (HDL) cholesterol are positively associated with cancer. J. Cancer Res. Clin. Oncol. 2022, 148, 3039–3046. [Google Scholar] [CrossRef]
Variable | Proportion Affected among Patients with Heart Failure (%) N = 81,094 | Proportion Affected among Patients without Heart Failure (%) N = 81,094 | p-Value |
---|---|---|---|
Age (Mean, SD) | 74.1 (11.9) | 74.1 (11.9) | 1.000 |
Age ≤ 60 | 14.0 | 14.0 | 1.000 |
Age 61–70 | 17.8 | 17.8 | |
Age 71–80 | 34.8 | 34.8 | |
Age > 80 | 33.4 | 33.4 | |
Women | 51.4 | 51.4 | 1.000 |
Men | 48.6 | 48.6 | |
Diabetes | 31.2 | 31.2 | 1.000 |
Obesity | 10.0 | 10.0 | 1.000 |
Hypertension | 63.1 | 63.1 | 1.000 |
Ischemic heart diseases | 28.3 | 28.3 | 1.000 |
Cancer | 12.3 | 12.3 | 1.000 |
Chronic obstructive lung disease | 15.5 | 15.5 | 1.000 |
Diseases of esophagus, stomach and duodenum | 23.5 | 23.4 | 0.456 |
Antibiotic Therapy | Proportion among Patients with Heart Failure in % | Proportion among Patients without Heart Failure in % | OR (95% CI) | p-Value |
---|---|---|---|---|
Any antibiotic drug | ||||
No therapy | 64.0 | 62.9 | Reference | |
≤6000 mg | 12.7 | 14.3 | 0.87 (0.85–0.90) | <0.001 |
>6000 mg | 23.3 | 22.9 | 1.00 (0.97–1.02) | 0.797 |
Tetracyclines (J01A) | ||||
No therapy | 94.7 | 94.5 | Reference | |
≤2000 mg | 3.5 | 3.6 | 0.98 (0.93–1.03) | 0.371 |
>2000 mg | 1.8 | 1.9 | 0.93 (0.87–1.00) | 0.056 |
Penicillins (J01C) | ||||
No therapy | 88.0 | 88.3 | Reference | |
≤20,000 mg | 8.3 | 8.3 | 1.02 (0.98–1.06) | 0.280 |
>20,000 mg | 3.7 | 3.4 | 1.05 (1.00–1.11) | 0.058 |
Cephalosporins (J01D) | ||||
No therapy | 88.4 | 89.0 | Reference | |
≤6000 mg | 6.3 | 6.3 | 1.02 (0.98–1.06) | 0.394 |
>6000 mg | 5.3 | 4.7 | 1.16 (1.11–1.22) | <0.001 |
Sulfonamides and trimethoprim (J01E) | ||||
No therapy | 97.1 | 96.7 | Reference | |
≤9600 mg | 1.8 | 2.1 | 0.87 (0.81–0.93) | <0.001 |
>9600 mg | 1.1 | 1.2 | 0.94 (0.86–1.03) | 0.188 |
Macrolides (J01F) | ||||
No therapy | 87.5 | 86.6 | Reference | |
≤3000 mg | 6.4 | 7.2 | 0.87 (0.84–0.91) | <0.001 |
>3000 mg | 6.1 | 6.2 | 0.96 (0.92–1.00) | 0.045 |
Quinolones (J01M) | ||||
No therapy | 84.6 | 84.4 | Reference | |
≤5000 mg | 8.7 | 9.2 | 0.96 (0.93–0.99) | 0.017 |
>5000 mg | 6.7 | 6.4 | 1.04 (1.00–1.09) | 0.055 |
OR (95% CI) | ||||||
---|---|---|---|---|---|---|
Antibiotic Therapy | Women (n = 83,432) | Men (n = 78,756) | Age ≤ 60 (n = 23,066) | Age 61–70 (n = 29,094) | Age 71–80 (n = 56,500) | Age > 80 (n = 53,528) |
Any antibiotic drug | ||||||
≤6000 mg | 0.86 (0.83–0.90) * | 0.88 (0.84–0.92) * | 0.75 (0.70–0.81) * | 0.81 (0.76–0.87) * | 0.87 (0.83–0.91) * | 0.98 (0.93–1.03) |
>6000 mg | 0.99 (0.96–1.02) | 1.01 (0.97–1.04) | 0.90 (0.85–0.95) * | 0.94 (0.89–1.00) | 1.04 (0.99–1.08) | 1.05 (1.01–1.10) |
Tetracyclines (J01A) | ||||||
≤2000 mg | 0.97 (0.90–1.05) | 0.98 (0.91–1.06) | 0.89 (0.79–1.01) | 0.88 (0.78–0.98) | 1.00 (0.91–1.10) | 1.15 (1.03–1.28) |
>2000 mg | 0.97 (0.87–1.08) | 0.90 (0.81–0.99) | 0.95 (0.81–1.11) | 0.87 (0.75–1.01) | 0.97 (0.86–1.10) | 0.95 (0.80–1.13) |
Penicillins (J01C) | ||||||
≤20,000 mg | 1.02 (0.97–1.07) | 1.03 (0.97–1.08) | 1.01 (0.93–1.10) | 0.98 (0.90–1.07) | 1.01 (0.94–1.07) | 1.08 (1.01–1.15) |
>20,000 mg | 1.02 (0.95–1.11) | 1.08 (1.01–1.17) | 0.97 (0.87–1.08) | 1.07 (0.95–1.20) | 1.15 (1.04–1.26) | 1.05 (0.93–1.17) |
Cephalosporins (J01D) | ||||||
≤6000 mg | 1.03 (0.97–1.09) | 1.01 (0.95–1.07) | 0.98 (0.89–1.09) | 1.05 (0.96–1.16) | 1.03 (0.95–1.10) | 1.01 (0.94–1.09) |
>6000 mg | 1.23 (1.15–1.31) * | 1.10 (1.03–1.17) | 1.18 (1.07–1.31) | 1.16 (1.04–1.28) | 1.15 (1.06–1.25) * | 1.17 (1.07–1.28) * |
Sulfonamides and trimethoprim (J01E) | ||||||
≤9600 mg | 0.88 (0,81–0.95) | 0.81 (0.69–0.95) | 0.77 (0.63–0.96) | 0.81 (0.68–0.98) | 0.85 (0,75–0,96) | 0.92 (0.82–1.03) |
>9600 mg | 0.90 (0.81–1.00) | 1.07 (0.89–1.29) | 1.05 (0.81–1.36) | 1.12 (0.89–1.42) | 0.93 (0.79–1.09) | 0.83 (0.71–0.97) |
Macrolides (J01F) | ||||||
≤3000 mg | 0.89 (0.84–0.94) * | 0.86 (0.81–0.91) * | 0.82 (0.76–0.90) * | 0.81 (0.74–0.88) * | 0.88 (0,82–0.94) * | 0.98 (0.91–1.06) |
>3000 mg | 0.97 (0.91–1.02) | 0.95 (0.90–1.01) | 0.93 (0.85–1.02) | 0.90 (0.82–0.99) | 1.00 (0.93–1.08) | 1.00 (0.92–1.09) |
Quinolones (J01M) | ||||||
≤5000 mg | 0.95 (0.90–0.99) | 0.97 (0.92–1.03) | 0.83 (0.75–0.91) * | 0.97 (0.89–1.06) | 1.00 (0.94–1.06) | 0.95 (0.90–1.01) |
>5000 mg | 1.03 (0.97–1.09) | 1.06 (0.99–1.13) | 1.02 (0.92–1.13) | 1.02 (0.93–1.12) | 1.07 (1.00–1.15) | 1.03 (0.95–1.11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loosen, S.H.; Krieg, S.; Gaensbacher, J.; Doege, C.; Krieg, A.; Luedde, T.; Luedde, M.; Roderburg, C.; Kostev, K. The Association between Antibiotic Use and the Incidence of Heart Failure: A Retrospective Case-Control Study of 162,188 Outpatients. Biomedicines 2023, 11, 260. https://doi.org/10.3390/biomedicines11020260
Loosen SH, Krieg S, Gaensbacher J, Doege C, Krieg A, Luedde T, Luedde M, Roderburg C, Kostev K. The Association between Antibiotic Use and the Incidence of Heart Failure: A Retrospective Case-Control Study of 162,188 Outpatients. Biomedicines. 2023; 11(2):260. https://doi.org/10.3390/biomedicines11020260
Chicago/Turabian StyleLoosen, Sven H., Sarah Krieg, Julia Gaensbacher, Corinna Doege, Andreas Krieg, Tom Luedde, Mark Luedde, Christoph Roderburg, and Karel Kostev. 2023. "The Association between Antibiotic Use and the Incidence of Heart Failure: A Retrospective Case-Control Study of 162,188 Outpatients" Biomedicines 11, no. 2: 260. https://doi.org/10.3390/biomedicines11020260
APA StyleLoosen, S. H., Krieg, S., Gaensbacher, J., Doege, C., Krieg, A., Luedde, T., Luedde, M., Roderburg, C., & Kostev, K. (2023). The Association between Antibiotic Use and the Incidence of Heart Failure: A Retrospective Case-Control Study of 162,188 Outpatients. Biomedicines, 11(2), 260. https://doi.org/10.3390/biomedicines11020260