Prognostic Impact of LAG-3 mRNA Expression in Early Breast Cancer
<p>(<b>a</b>) Kaplan–Meier plot shows no significant effect of LAG-3 expression on MFS in the whole cohort. (<b>b</b>) Within the subgroup analyses, a trend is apparent that a higher LAG-3 expression was associated with a more favorable outcome (longer MFS) in the luminal B (<span class="html-italic">p</span> = 0.217, log-rank), basal-like (<span class="html-italic">p</span> = 0.370 log-rank) and HER2 (<span class="html-italic">p</span> = 0.089 log-rank) subtypes, although significance was not reached.</p> "> Figure 2
<p>(<b>a</b>) CPS could not achieve significance for MFS in the whole cohort. (<b>b</b>) In contrast, there was a significant effect in the basal-like subtype (<span class="html-italic">p</span> = 0.050 log-rank).</p> "> Figure 2 Cont.
<p>(<b>a</b>) CPS could not achieve significance for MFS in the whole cohort. (<b>b</b>) In contrast, there was a significant effect in the basal-like subtype (<span class="html-italic">p</span> = 0.050 log-rank).</p> "> Figure 3
<p>Scatter plot visualizing the correlation between CD8 and LAG-3 expression (ρ = 0.571; <span class="html-italic">p</span> < 0.001).</p> "> Figure 4
<p>Scatter plot demonstrating the correlation between CD8 and CTLA-4 expression (ρ = 0.447; <span class="html-italic">p</span> < 0.001).</p> "> Figure 5
<p>Scatter plot of correlation between CTLA-4 and LAG-3 expression (ρ = 0.453; <span class="html-italic">p</span> < 0.001).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient’s Characteristics
2.2. mRNA Isolation and Gene-Expression Analysis
- LAG-3: 206486_at
- CTLA-4: 221331_x_at
- PD-1: 207634_at
- CD8: 205758_at
2.3. Molecular Subtypes
- −
- ESR1-positive, HER2-negative, low proliferation (AURKA low) luminal-A-like.
- −
- ESR1-positive, HER2-negative, high proliferation (AURKA high) luminal-B-like.
- −
- HER2-positive.
- −
- ESR1 negative HER2 negative basal-like.
2.4. Statistical Analysis
3. Results
3.1. Prognostic Impact of LAG-3, CTLA-4, PD-1 and CD8 mRNA Expression
3.2. Validation of the Prognostic Impact of LAG-3 mRNA Expression in an Independent Cohort
3.3. Prognostic Impact of an Immune Checkpoint Associated Signature (CPS)
3.4. Correlation Effects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Antibody drug conjuagte |
CD8 | Cluster of differentiation 8 |
CPS | Immune checkpoint signature |
CTLA-4 | Cytotoxic T-lymphocyte-associated protein 4 |
ER | Estrogen receptor |
HER2 | Human epidermal growth factor receptor 2 |
HR | Hazard ratio |
LAG-3 | Lymphocyte activation gene-3 |
ICP | Immune checkpoints |
ICPi | Immune checkpoint inhibitors |
MFS | Metastasis-free survival |
NACT | Neoadjuvant cytotoxic therapy |
OS | Overall survival |
PD-1 | Programmed cell-death protein 1 |
PD-L1 | Programmed death-ligand 1 |
PR | Progesteron receptor |
RFS | Recurrence-free survival |
TILs | Tumor-infiltrating lymphocytes |
TNBC | Triple-negative breast cancer |
References
- Hafeez, U.; Parakh, S.; Gan, H.K.; Scott, A.M. Antibody-Drug Conjugates for Cancer Therapy. Molecules 2020, 25, 4764. [Google Scholar] [CrossRef]
- Yi, M.; Jiao, D.; Xu, H.; Liu, Q.; Zhao, W.; Han, X.; Wu, K. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol. Cancer 2018, 17, 129. [Google Scholar] [CrossRef]
- La-Beck, N.M.; Jean, G.W.; Huynh, C.; Alzghari, S.K.; Lowe, D.B. Immune Checkpoint Inhibitors: New Insights and Current Place in Cancer Therapy. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2015, 35, 963–976. [Google Scholar] [CrossRef]
- Burstein, H.; Curigliano, G.; Thürlimann, B.; Weber, W.; Poortmans, P.; Regan, M.; Senn, H.; Winer, E.; Gnant, M.; Aebi, S.; et al. Customizing local and systemic therapies for women with early breast cancer: The St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann. Oncol. 2021, 32, 1216–1235. [Google Scholar] [CrossRef]
- Metzger-Filho, O.; Tutt, A.; de Azambuja, E.; Saini, K.S.; Viale, G.; Loi, S.; Bradbury, I.; Bliss, J.M.; Azim, H.A.; Ellis, P.; et al. Dissecting the Heterogeneity of Triple-Negative Breast Cancer. J. Clin. Oncol. 2012, 30, 1879–1887. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Heimes, A.-S. Immunomodulating Therapies in Breast Cancer—From Prognosis to Clinical Practice. Cancers 2021, 13, 4883. [Google Scholar] [CrossRef]
- Schmid, P.; Salgado, R.; Park, Y.; Muñoz-Couselo, E.; Kim, S.; Sohn, J.; Im, S.-A.; Foukakis, T.; Kuemmel, S.; Dent, R.; et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: Results from the phase 1b open-label, multicohort KEYNOTE-173 study. Ann. Oncol. 2020, 31, 569–581. [Google Scholar] [CrossRef]
- Mittendorf, E.A.; Zhang, H.; Barrios, C.H.; Saji, S.; Jung, K.H.; Hegg, R.; Koehler, A.; Sohn, J.; Iwata, H.; Telli, M.L.; et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 trial. Lancet 2020, 396, 1090–1100. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.A.; Shaw Wright, G.; et al. IMpassion130 Trial Investigators. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef]
- Miles, D.; Gligorov, J.; André, F.; Cameron, D.; Schneeweiss, A.; Barrios, C.; Xu, B.; Wardley, A.; Kaen, D.; Andrade, L.; et al. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Ann. Oncol. 2021, 32, 994–1004. [Google Scholar] [CrossRef]
- Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 2020, 396, 1817–1828. [Google Scholar] [CrossRef]
- Emens, L.A. Breast Cancer Immunotherapy: Facts and Hopes. Clin. Cancer Res. 2018, 24, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Pujade-Lauraine, E.; Fujiwara, K.; Ledermann, J.A.; Oza, A.M.; Kristeleit, R.; Ray-Coquard, I.-L.; Richardson, G.E.; Sessa, C.; Yonemori, K.; Banerjee, S.; et al. Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): An open-label, three-arm, randomised, phase 3 study. Lancet Oncol. 2021, 22, 1034–1046. [Google Scholar] [CrossRef]
- Huang, R.-Y.; Francois, A.; McGray, A.R.; Miliotto, A.; Odunsi, K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. OncoImmunology 2016, 6, e1249561. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.-Y.; Eppolito, C.; Lele, S.; Shrikant, P.; Matsuzaki, J.; Odunsi, K. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget 2015, 6, 27359–27377. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.-W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]
- Hodi, F.S.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1480–1492. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Gutiérrez, E.C.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef]
- Triebel, F.; Jitsukawa, S.; Baixeras, E.; Roman-Roman, S.; Genevee, C.; Viegas-Pequignot, E.; Hercend, T. LAG-3, a novel lymphocyte activation gene closely related to CD4. J. Exp. Med. 1990, 171, 1393–1405. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-T.; Workman, C.J.; Flies, D.; Pan, X.; Marson, A.L.; Zhou, G.; Hipkiss, E.L.; Ravi, S.; Kowalski, J.; Levitsky, H.I.; et al. Role of LAG-3 in Regulatory T Cells. Immunity 2004, 21, 503–513. [Google Scholar] [CrossRef]
- Kisielow, M.; Kisielow, J.; Capoferri-Sollami, G.; Karjalainen, K. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur. J. Immunol. 2005, 35, 2081–2088. [Google Scholar] [CrossRef]
- Heimes, A.S.; Härtner, F.; Almstedt, K.; Krajnak, S.; Lebrecht, A.; Battista, M.J.; Edlund, K.; Brenner, W.; Hasenburg, A.; Sahin, U.; et al. Prognostic Significance of Interferon-gamma and Its Signaling Pathway in Early Breast Cancer Depends on the Molecular Subtypes. Int. J. Mol. Sci. 2020, 21, 7178. [Google Scholar] [CrossRef]
- Haibe-Kains, B.; Desmedt, C.; Loi, S.; Culhane, A.C.; Bontempi, G.; Quackenbush, J.; Sotiriou, C. A three-gene model to robustly identify breast cancer molecular subtypes. J. Natl. Cancer Inst. 2012, 104, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Gyorffy, B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput. Struct. Biotechnol. J. 2021, 19, 4101–4109. [Google Scholar] [CrossRef]
- Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer 2019, 18, 155. [Google Scholar] [CrossRef] [Green Version]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, e108. [Google Scholar] [CrossRef]
- Woo, S.-R.; Turnis, M.E.; Goldberg, M.V.; Bankoti, J.; Selby, M.; Nirschl, C.J.; Bettini, M.L.; Gravano, D.M.; Vogel, P.; Liu, C.L.; et al. Immune Inhibitory Molecules LAG-3 and PD-1 Synergistically Regulate T-cell Function to Promote Tumoral Immune Escape. Cancer Res. 2012, 72, 917–927. [Google Scholar] [CrossRef] [Green Version]
- Denkert, C.; Loibl, S.; Noske, A.; Roller, M.; Müller, B.M.; Komor, M.; Budczies, J.; Darb-Esfahani, S.; Kronenwett, R.; Hanusch, C.; et al. Tumor-Associated Lymphocytes As an Independent Predictor of Response to Neoadjuvant Chemotherapy in Breast Cancer. J. Clin. Oncol. 2010, 28, 105–113. [Google Scholar] [CrossRef]
- Denkert, C.; Von Minckwitz, G.; Brase, J.C.; Sinn, B.V.; Gade, S.; Kronenwett, R.; Pfitzner, B.M.; Salat, C.; Loi, S.; Schmitt, W.; et al. Tumor-Infiltrating Lymphocytes and Response to Neoadjuvant Chemotherapy with or without Carboplatin in Human Epidermal Growth Factor Receptor 2–Positive and Triple-Negative Primary Breast Cancers. J. Clin. Oncol. 2015, 33, 983–991. [Google Scholar] [CrossRef]
- Heimes, A.-S.; Madjar, K.; Edlund, K.; Battista, M.J.; Almstedt, K.; Elger, T.; Krajnak, S.; Rahnenführer, J.; Brenner, W.; Hasenburg, A.; et al. Subtype-specific prognostic impact of different immune signatures in node-negative breast cancer. Breast Cancer Res. Treat. 2017, 165, 293–300. [Google Scholar] [CrossRef]
- Stovgaard, E.S.; Kümler, I.; List-Jensen, K.; Roslind, A.; Christensen, I.J.; Høgdall, E.; Nielsen, D.; Balslev, E. Prognostic and Clinicopathologic Associations of LAG-3 Expression in Triple-negative Breast Cancer. Appl. Immunohistochem. Mol. Morphol. 2021, 30, 62–71. [Google Scholar] [CrossRef]
- Sarradin, V.; Lusque, A.; Filleron, T.; Dalenc, F.; Franchet, C. Immune microenvironment changes induced by neoadjuvant chemotherapy in triple-negative breast cancers: The MIMOSA-1 study. Breast Cancer Res. 2021, 23, 61. [Google Scholar] [CrossRef]
- Saleh, R.; Toor, S.M.; Khalaf, S.; Elkord, E. Breast Cancer Cells and PD-1/PD-L1 Blockade Upregulate the Expression of PD-1, CTLA-4, TIM-3 and LAG-3 Immune Checkpoints in CD4(+) T Cells. Vaccines 2019, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Carey, L.A.; Pierga, J.; Kümmel, S.; Jerusalem, G.; de Laurentiis, M.; Miller, M.; Li, Z.; Kaper, M.; Su, F.; Loi, S. A Phase 2 Study of LAG525 in Combination with Spartalizumab (PDR001), PDR001 and Carboplatin (Car-bo), or Carbo, as First- or Second-Line Therapy in Patients (Pts) with Advanced (Adv) Triple- Negative Breast Cancer (TNBC). Ann. Oncol. 2021, 32 (Suppl. 5), S457–S515. [Google Scholar] [CrossRef]
Number of Patients (n = 461) | Percentage (%) | |
Age at diagnosis | ||
</=50 >50 | 104 357 | 22.6 77.4 |
Tumor size | ||
T1 T2 T3 T4 Missing value | 188 214 19 39 1 | 40.8 46.4 4.1 8.5 0.2 |
Tumor grade | ||
GI GII GIII | 63 287 111 | 13.7 62.3 24 |
Lymph node status | ||
N0 N1 N2 Nx | 254 140 49 18 | 55.1 30.4 10.6 3.9 |
Tumor type | ||
Invasive ductal (NST) Invasive lobular Others | 291 79 91 | 63.1 17.1 19.7 |
ER | ||
Positive Negative Missing value | 381 79 1 | 82.6 17.1 0.2 |
PR | ||
Positive Negative Missing value | 346 114 1 | 75.1 24.7 0.2 |
HER2 | ||
Positive Negative Missing value | 46 358 57 | 10 77.7 12.3 |
Ki-67 | ||
>20% ≤20% Missing value | 138 250 73 | 29.9 54.2 15.8 |
Molecular subtypes | ||
Lumina-A-like Luminal-B-like Basal-like HER2-positive | 189 182 51 39 | 41 39.5 11.0 8.5 |
Distant metastasis | ||
Yes No | 133 328 | 28.9 71.1 |
Treatment collective | ||
N0, untreated Tamoxifen Chemotherapy:
| 200 165 96:
| 43.4 35.8 20.8:
|
HR | 95% CI | p-Value | |||
---|---|---|---|---|---|
Lower | Upper | ||||
LAG3 | High vs. low | 0.574 | 0.369 | 0.894 | 0.014 |
Age | <50 vs. >50 | 1.176 | 0.681 | 2.031 | 0.561 |
Tumor size | T2–4 vs. T1 | 1.626 | 1.020 | 2.591 | 0.041 |
Lymph node status | N1,2,3 vs. N0 | 1.494 | 0.965 | 2.313 | 0.071 |
Grade | GIII vs. GI/II | 2.583 | 1.591 | 4.192 | <0.001 |
Ki-67 | >20% vs. <20% | 1.350 | 0.856 | 2.130 | 0.197 |
Subtype | Univariate Model HR (95% CI) | p-Value | Multivariate Model HR (95% CI) | p-Value |
---|---|---|---|---|
Luminal-A-like | 0.855 (0.421–1.739) | 0.666 | 0.614 (0.252–1.496) | 0.283 |
Luminal-B-like | 0.723 (0.430–1.216) | 0.221 | 0.504 (0.258–0.985) | 0.045 |
HER2-positive | 0.455 (0.179–1.160) | 0.099 | 0.276 (0.074–1.032) | 0.056 |
Basal-like | 0.638 (0.235–1.731) | 0.377 | 0.459 (0.097–2.159) | 0.324 |
HR | 95% CI | p-Value | |||
---|---|---|---|---|---|
Lower | Upper | ||||
CD8 | High vs. Low | 0.642 | 0.421 | 0.979 | 0.040 |
Age | <50 vs. ≥50 | 1.102 | 0.635 | 1.910 | 0.730 |
Tumor size | T2–4 vs. T1 | 1.529 | 0.959 | 2.436 | 0.074 |
Lymph node status | N1,2,3 vs. N0 | 1.486 | 0.958 | 2.395 | 0.077 |
Grade | GIII vs. GI/II | 2.245 | 1.413 | 3.568 | 0.001 |
Ki-67 | >20% vs. <20% | 1.393 | 0.880 | 2.203 | 0.157 |
Subtype | Univariate Model HR (95% CI) | p-Value | Multivariate Model HR (95% CI) | p-Value |
---|---|---|---|---|
Luminal-A-like | 1.591 (0.824–3.071) | 0.166 | 0.984 (0.426–2.273) | 0.984 |
Luminal-B-like | 0.948 (0.564–1.595) | 0.841 | 0.536 (0.277–1.036) | 0.064 |
HER2-positive | 0.616 (0.237–1.604) | 0.321 | 0.705 (0.219–2.274) | 0.558 |
Basal-like | 0.420 (0.171–1.034) | 0.059 | 0.195 (0.043–0.881) | 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heimes, A.-S.; Almstedt, K.; Krajnak, S.; Runkel, A.; Droste, A.; Schwab, R.; Stewen, K.; Lebrecht, A.; Battista, M.J.; Brenner, W.; et al. Prognostic Impact of LAG-3 mRNA Expression in Early Breast Cancer. Biomedicines 2022, 10, 2656. https://doi.org/10.3390/biomedicines10102656
Heimes A-S, Almstedt K, Krajnak S, Runkel A, Droste A, Schwab R, Stewen K, Lebrecht A, Battista MJ, Brenner W, et al. Prognostic Impact of LAG-3 mRNA Expression in Early Breast Cancer. Biomedicines. 2022; 10(10):2656. https://doi.org/10.3390/biomedicines10102656
Chicago/Turabian StyleHeimes, Anne-Sophie, Katrin Almstedt, Slavomir Krajnak, Anne Runkel, Annika Droste, Roxana Schwab, Kathrin Stewen, Antje Lebrecht, Marco J. Battista, Walburgis Brenner, and et al. 2022. "Prognostic Impact of LAG-3 mRNA Expression in Early Breast Cancer" Biomedicines 10, no. 10: 2656. https://doi.org/10.3390/biomedicines10102656
APA StyleHeimes, A. -S., Almstedt, K., Krajnak, S., Runkel, A., Droste, A., Schwab, R., Stewen, K., Lebrecht, A., Battista, M. J., Brenner, W., Hasenburg, A., Gehrmann, M., Hengstler, J. G., & Schmidt, M. (2022). Prognostic Impact of LAG-3 mRNA Expression in Early Breast Cancer. Biomedicines, 10(10), 2656. https://doi.org/10.3390/biomedicines10102656