The Interplay of Dual Tasks, Sleep Quality and Load Carriage on Postural Stability in Young, Healthy Adults
<p>Box plots of median values of center of pressure variables by load, task, and sleep conditions. Note: Good sleepers were defined as having a PSQI global score ≤ 5.</p> "> Figure 1 Cont.
<p>Box plots of median values of center of pressure variables by load, task, and sleep conditions. Note: Good sleepers were defined as having a PSQI global score ≤ 5.</p> "> Figure 1 Cont.
<p>Box plots of median values of center of pressure variables by load, task, and sleep conditions. Note: Good sleepers were defined as having a PSQI global score ≤ 5.</p> "> Figure A1
<p>Box plots of median values of center of pressure variables by load, task and sleep conditions. Note: Good sleepers were defined as having a PSQI global score ≤ 6.</p> "> Figure A1 Cont.
<p>Box plots of median values of center of pressure variables by load, task and sleep conditions. Note: Good sleepers were defined as having a PSQI global score ≤ 6.</p> "> Figure A1 Cont.
<p>Box plots of median values of center of pressure variables by load, task and sleep conditions. Note: Good sleepers were defined as having a PSQI global score ≤ 6.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Protocol
2.4. Measurements
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Main Analyses
3.3. Sleep Cut-Off Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | All Participants (n = 23) | Good Sleepers (n = 14) | Bad Sleepers (n = 9) | p-Value |
---|---|---|---|---|
Age (years) | 23.0 (20, 26.5) | 25.5 (20.2, 31.8) | 21.0 (20.0, 23.0) | 0.059 |
Height (cm) | 168.5 (161.5, 175.3) | 172.0 (166.1, 177.5) | 162.0 (159.5, 168.5) | 0.095 |
Mass (kg) | 73.3 (68.1, 83.8) | 76.3 (71.1, 84.0) | 68.0 (59.8, 71.5) | 0.056 |
BMI (kg/m2) | 25.8 (24.1, 27.4) | 26.1 (24.2, 27.4) | 25.2 (23.5, 25.8) | 0.213 |
PSQI | 4.0 (3.0, 5.0) | 3.0 (3.0, 4.0) | 6.0 (5.0, 6.0) | <0.001 |
Main Effect | Interaction Effects | ||||
---|---|---|---|---|---|
COP Measure | Sleep | L × T | L × S | T × S | L × T × S |
Range—AP (mm) | 0.491 | 0.455 | 0.971 | 0.606 | 0.964 |
Range—ML (mm) | 0.560 | 0.929 | 0.715 | 0.480 | 0.640 |
Mean Velocity (mm/s) | 0.679 | 0.171 | 0.705 | 0.230 | 0.846 |
Mean Velocity—AP (mm/s) | 0.653 | 0.108 | 0.736 | 0.191 | 0.956 |
Mean Velocity—ML (mm/s) | 0.540 | 0.492 | 0.938 | 0.958 | 0.922 |
95% Ellipse Area (mm2) | 0.427 | 0.531 | 0.906 | 0.432 | 0.819 |
References
- Verma, S.K.; Willetts, J.L.; Corns, H.L.; Marucci-Wellman, H.R.; Lombardi, D.A.; Courtney, T.K. Falls and Fall-Related Injuries among Community-Dwelling Adults in the United States. PLoS ONE 2016, 11, e0150939. [Google Scholar] [CrossRef]
- Woollacott, M.; Shumway-Cook, A. Attention and the Control of Posture and Gait: A Review of an Emerging Area of Research. Gait Posture 2002, 16, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shumway-Cook, A.; Woollacott, M. Attentional Demands and Postural Control: The Effect of Sensory Context. J. Gerontol. A. Biol. Sci. Med. Sci. 2000, 55, M10–M16. [Google Scholar] [CrossRef] [PubMed]
- Forbes, P.A.; Chen, A.; Blouin, J.-S. Sensorimotor Control of Standing Balance. Handb. Clin. Neurol. 2018, 159, 61–83. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, M.; Chou, L.-S. Dynamic Balance Control during Sit-to-Stand Movement: An Examination with the Center of Mass Acceleration. J. Biomech. 2012, 45, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Siragy, T.; Nantel, J. Quantifying Dynamic Balance in Young, Elderly and Parkinson’s Individuals: A Systematic Review. Front. Aging Neurosci. 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Gribble, P.A.; Hertel, J.; Plisky, P. Using the Star Excursion Balance Test to Assess Dynamic Postural-Control Deficits and Outcomes in Lower Extremity Injury: A Literature and Systematic Review. J. Athl. Train. 2012, 47, 339–357. [Google Scholar] [CrossRef] [PubMed]
- de la Motte, S.J.; Lisman, P.; Gribbin, T.C.; Murphy, K.; Deuster, P.A. A Systematic Review of the Association Between Physical Fitness and Musculoskeletal Injury Risk: Part 3—Flexibility, Power, Speed, Balance, and Agility. J. Strength Cond. Res. 2017, 33, 1724–1735. [Google Scholar] [CrossRef]
- Kozinc, Ž.; Löfler, S.; Hofer, C.; Carraro, U.; Šarabon, N. Diagnostic Balance Tests for Assessing Risk of Falls and Distinguishing Older Adult Fallers and Non-Fallers: A Systematic Review with Meta-Analysis. Diagnostics 2020, 10, 667. [Google Scholar] [CrossRef]
- Horak, F.B. Clinical Measurement of Postural Control in Adults. Phys Ther 1987, 67, 1881–1885. [Google Scholar] [CrossRef]
- Paillard, T.; Noé, F. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects. Available online: https://www.hindawi.com/journals/bmri/2015/891390/ (accessed on 25 August 2020).
- Prieto, T.E.; Myklebust, J.B.; Hoffmann, R.G.; Lovett, E.G.; Myklebust, B.M. Measures of Postural Steadiness: Differences between Healthy Young and Elderly Adults. IEEE Trans. Biomed. Eng. 1996, 43, 956–966. [Google Scholar] [CrossRef]
- Palakurthi, B.; Burugupally, S.P. Postural Instability in Parkinson’s Disease: A Review. Brain Sci. 2019, 9, 239. [Google Scholar] [CrossRef]
- Núñez-Fuentes, D.; Obrero-Gaitán, E.; Zagalaz-Anula, N.; Ibáñez-Vera, A.J.; Achalandabaso-Ochoa, A.; López-Ruiz, M.d.C.; Rodríguez-Almagro, D.; Lomas-Vega, R. Alteration of Postural Balance in Patients with Fibromyalgia Syndrome—A Systematic Review and Meta-Analysis. Diagnostics 2021, 11, 127. [Google Scholar] [CrossRef]
- Guskiewicz, K.M. Assessment of Postural Stability Following Sport-Related Concussion. Curr. Sports Med. Rep. 2003, 2, 24. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, T.; Paschen, L.; Baumeister, J. Single-Leg Assessment of Postural Stability After Anterior Cruciate Ligament Injury: A Systematic Review and Meta-Analysis. Sports Med.-Open 2017, 3, 32. [Google Scholar] [CrossRef] [PubMed]
- Paillard, T. Effects of General and Local Fatigue on Postural Control: A Review. Neurosci. Biobehav. Rev. 2012, 36, 162–176. [Google Scholar] [CrossRef]
- Martin, J.; Kearney, J.; Nestrowitz, S.; Burke, A.; Sax van der Weyden, M. Effects of Load Carriage on Measures of Postural Sway in Healthy, Young Adults: A Systematic Review and Meta-Analysis. Appl. Ergon. 2023, 106, 103893. [Google Scholar] [CrossRef] [PubMed]
- Salihu, A.T.; Hill, K.D.; Jaberzadeh, S. Effect of Cognitive Task Complexity on Dual Task Postural Stability: A Systematic Review and Meta-Analysis. Exp. Brain Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Furtado, F.; Gonçalves, B. da S.B.; Abranches, I.L.L.; Abrantes, A.F.; Forner-Cordero, A. Chronic Low Quality Sleep Impairs Postural Control in Healthy Adults. PLoS ONE 2016, 11, e0163310. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.; Marouvo, J.; Fernandes, O.; Castro, M.A.; Vilas-Boas, J.P. Postural Control and Sleep Quality in Cognitive Dual Tasking in Healthy Young Adults. J 2021, 4, 257–265. [Google Scholar] [CrossRef]
- Kong, J.; Zhou, L.; Li, X.; Ren, Q. Sleep Disorders Affect Cognitive Function in Adults: An Overview of Systematic Reviews and Meta-Analyses. Sleep Biol. Rhythms 2023, 21, 133–142. [Google Scholar] [CrossRef]
- Chaput, J.-P.; Dutil, C.; Sampasa-Kanyinga, H. Sleeping Hours: What Is the Ideal Number and How Does Age Impact This? Nat. Sci. Sleep 2018, 10, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Youngstedt, S.D.; Goff, E.E.; Reynolds, A.M.; Kripke, D.F.; Irwin, M.R.; Bootzin, R.R.; Khan, N.; Jean-Louis, G. Has Adult Sleep Duration Declined Over the Last 50+ Years? Sleep Med. Rev. 2016, 28, 69–85. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Committee on Sleep Medicine and Research. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem; Colten, H.R., Altevogt, B.M., Eds.; The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press (US): Washington, DC, USA, 2006; ISBN 978-0-309-10111-0. [Google Scholar]
- Aguiar, S.A.; Barela, J.A. Sleep Deprivation Affects Sensorimotor Coupling in Postural Control of Young Adults. Neurosci. Lett. 2014, 574, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Yao, Y.-J.; Ma, R.-M.; Li, J.-Q.; Wang, T.; Li, X.-J.; Han, W.-Q.; Hu, W.-D.; Zhang, Z.-M. Effects of Sleep Deprivation on Human Postural Control, Subjective Fatigue Assessment and Psychomotor Performance. J. Int. Med. Res. 2009, 37, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Gomez, S.; Berg, S.; Almbladh, P.; Lindblad, J.; Petersen, H.; Magnusson, M.; Johansson, R.; Fransson, P.A. Effects of 24-h and 36-h Sleep Deprivation on Human Postural Control and Adaptation. Exp Brain Res 2008, 185, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, T.; Veqar, Z.; Ghrouz, A.K.; Spence, D.W.; Pandi-Perumal, S.R. Is Poor Sleep Quality Associated with a Deterioration in Postural Control? Sleep Sci. 2021, 14, 207–213. [Google Scholar] [PubMed]
- Knapik, J.J.; Reynolds, K.L.; Harman, E. Soldier Load Carriage: Historical, Physiological, Biomechanical, and Medical Aspects. Mil. Med. 2004, 169, 45–56. [Google Scholar] [CrossRef]
- Orr, R.; Simas, V.; Canetti, E.; Schram, B. A Profile of Injuries Sustained by Firefighters: A Critical Review. Int. J. Environ. Res. Public. Health 2019, 16. [Google Scholar] [CrossRef] [PubMed]
- Orr, R.; Pope, R.; Lopes, T.J.A.; Leyk, D.; Blacker, S.; Bustillo-Aguirre, B.S.; Knapik, J.J. Soldier Load Carriage, Injuries, Rehabilitation and Physical Conditioning: An International Approach. Int. J. Environ. Res. Public. Health 2021, 18, 4010. [Google Scholar] [CrossRef]
- Boffey, D.; Harat, I.; Gepner, Y.; Frosti, C.L.; Funk, S.; Hoffman, J.R. The Physiology and Biomechanics of Load Carriage Performance. Mil. Med. 2019, 184, e83–e90. [Google Scholar] [CrossRef]
- Montesinos, L.; Castaldo, R.; Cappuccio, F.P.; Pecchia, L. Day-to-Day Variations in Sleep Quality Affect Standing Balance in Healthy Adults. Sci. Rep. 2018, 8, 17504. [Google Scholar] [CrossRef] [PubMed]
- Ghai, S.; Ghai, I.; Effenberg, A.O. Effects of Dual Tasks and Dual-Task Training on Postural Stability: A Systematic Review and Meta-Analysis. Clin. Interv. Aging 2017, 12, 557–577. [Google Scholar] [CrossRef]
- Billings, J.; Focht, W. Firefighter Shift Schedules Affect Sleep Quality. J. Occup. Environ. Med. 2016, 58, 294–298. [Google Scholar] [CrossRef]
- Murphy, M.C.; Stannard, J.; Sutton, V.R.; Owen, P.J.; Park, B.; Chivers, P.T.; Hart, N.H. Epidemiology of Musculoskeletal Injury in Military Recruits: A Systematic Review and Meta-Analysis. BMC Sports Sci. Med. Rehabil. 2023, 15, 144. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.A.; Gatien, G.; Hagerty, B.M. The Need for Reform of Human Subjects Protections in Military Health Research. Mil. Med. 2012, 177, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Sax van der Weyden, M.N.; Kearney, J.W.; Cortes, N.; Fernandes, O.; Martin, J.R. Common Law Enforcement Load Carriage Systems Have Limited Acute Effects on Postural Stability and Muscle Activity. Appl. Ergon. 2023, 113, 104091. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Mollayeva, T.; Thurairajah, P.; Burton, K.; Mollayeva, S.; Shapiro, C.M.; Colantonio, A. The Pittsburgh Sleep Quality Index as a Screening Tool for Sleep Dysfunction in Clinical and Non-Clinical Samples: A Systematic Review and Meta-Analysis. Sleep Med. Rev. 2016, 25, 52–73. [Google Scholar] [CrossRef]
- Taber, K.S. The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef]
- Williams, M.A.; LaMarche, J.A.; Alexander, R.W.; Stanford, L.D.; Fielstein, E.M.; Boll, T.J. Serial 7s and Alphabet Backwards as Brief Measures of Information ProcessingSpeed. Arch. Clin. Neuropsychol. 1996, 11, 651–659. [Google Scholar] [CrossRef]
- Bucci, M.P.; Villeneuve, P. Interaction between Feet and Gaze in Postural Control. Brain Sci. 2022, 12, 1459. [Google Scholar] [CrossRef] [PubMed]
- Le Clair, K.; Riach, C. Postural Stability Measures: What to Measure and for How Long. Clin. Biomech. 1996, 11, 176–178. [Google Scholar] [CrossRef] [PubMed]
- Elkin, L.A.; Kay, M.; Higgins, J.J.; Wobbrock, J.O. An Aligned Rank Transform Procedure for Multifactor Contrast Tests. In Proceedings of the The 34th Annual ACM Symposium on User Interface Software and Technology, Virtual, 10–14 October 2021; Association for Computing Machinery: New York, NY, USA, 12 October, 2021; pp. 754–768. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Naggara, O.; Raymond, J.; Guilbert, F.; Roy, D.; Weill, A.; Altman, D.G. Analysis by Categorizing or Dichotomizing Continuous Variables Is Inadvisable: An Example from the Natural History of Unruptured Aneurysms. AJNR Am. J. Neuroradiol. 2011, 32, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G. Categorising Continuous Variables. Br. J. Cancer 1991, 64, 975. [Google Scholar] [CrossRef]
- Bennette, C.; Vickers, A. Against Quantiles: Categorization of Continuous Variables in Epidemiologic Research, and Its Discontents. BMC Med. Res. Methodol. 2012, 12, 21. [Google Scholar] [CrossRef]
- Peterka, R.J. Sensory Integration for Human Balance Control. Handb. Clin. Neurol. 2018, 159, 27–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Yang, Y.; Li, J.; Xin, W.; Huang, Y.; Shao, Y.; Zhang, X. Alterations in Cerebellar Functional Connectivity Are Correlated With Decreased Psychomotor Vigilance Following Total Sleep Deprivation. Front. Neurosci. 2019, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Lee, T.; Winstein, C.; Wulf, G.; Zelaznik, H. Motor Control and Learning, 6th ed.; Human Kinetics: Champaign, IL, USA, 2016; ISBN 978-1-4925-4775-4. [Google Scholar]
- Martin, J.; Huang, H.; Johnson, R.; Yu, L.-F.; Jansen, E.; Martin, R.; Yager, C.; Boolani, A. Association between Self-Reported Sleep Quality and Single-Task Gait in Young Adults: A Study Using Machine Learning. Sleep Sci. Sao Paulo Braz. 2023, 16, e399–e407. [Google Scholar] [CrossRef] [PubMed]
- Rusticus, S.A.; Lovato, C.Y. Impact of Sample Size and Variability on the Power and Type I Error Rates of Equivalence Tests: A Simulation Study. Pract. Assess. Res. Eval. 2019, 19, 11. [Google Scholar]
- Lauderdale, D.S.; Knutson, K.L.; Yan, L.L.; Liu, K.; Rathouz, P.J. Sleep Duration: How Well Do Self-Reports Reflect Objective Measures? The CARDIA Sleep Study. Epidemiol. Camb. Mass 2008, 19, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Mesquida, C.; Murphy, J.; Lakens, D.; Warne, J. Replication Concerns in Sports and Exercise Science: A Narrative Review of Selected Methodological Issues in the Field. R. Soc. Open Sci. 2022, 9, 220946. [Google Scholar] [CrossRef]
- Guillodo, E.; Lemey, C.; Simonnet, M.; Walter, M.; Baca-García, E.; Masetti, V.; Moga, S.; Larsen, M.; Network, H.; Ropars, J.; et al. Clinical Applications of Mobile Health Wearable–Based Sleep Monitoring: Systematic Review. JMIR MHealth UHealth 2020, 8, e10733. [Google Scholar] [CrossRef]
Variable | All Participants (n = 23) | Good Sleepers (n = 18) | Bad Sleepers (n = 5) | p-Value |
---|---|---|---|---|
Age (years) | 23.0 (20, 26.5) | 22.5 (20, 27.8) | 23.5 (20.8, 24.8) | 0.453 |
Height (cm) | 168.5 (161.5, 175.3) | 168.8 (162.5, 175.5) | 166.3 (161.8, 173.0) | 0.684 |
Mass (kg) | 73.3 (68.1, 83.8) | 74.1 (68.0, 82.7) | 75.6 (70.2, 84.2) | 0.489 |
BMI (kg/m2) | 25.8 (24.1, 27.4) | 25.1 (23.8, 27.2) | 27.2 (25.4, 29.6) | 0.160 |
PSQI | 4.0 (3.0, 5.0) | 4 (3, 4.0) | 6 (6, 6.75) | <0.001 |
Main Effect | Interaction Effects | ||||
---|---|---|---|---|---|
COP Measure | Sleep | L × T | L × S | T × S | L × T × S |
Range-AP (mm) | 0.336 | 0.170 | 0.325 | 0.148 | 0.313 |
Range-ML (mm) | 0.988 | 0.750 | 0.142 | 0.929 | 0.175 |
Mean Velocity (mm/s) | 0.732 | 0.055 | 0.323 | 0.069 | 0.304 |
Mean Velocity-AP (mm/s) | 0.669 | 0.025 (Medium) | 0.428 | 0.049 (Small) | 0.312 |
Mean Velocity-ML (mm/s) | 0.744 | 0.743 | 0.400 | 0.931 | 0.357 |
95% Ellipse Area (mm2) | 0.016 (Large) | 0.046 (Medium) | 0.112 | 0.056 | 0.116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, J.; Sax van der Weyden, M.; Estep, A. The Interplay of Dual Tasks, Sleep Quality and Load Carriage on Postural Stability in Young, Healthy Adults. Biomechanics 2025, 5, 1. https://doi.org/10.3390/biomechanics5010001
Martin J, Sax van der Weyden M, Estep A. The Interplay of Dual Tasks, Sleep Quality and Load Carriage on Postural Stability in Young, Healthy Adults. Biomechanics. 2025; 5(1):1. https://doi.org/10.3390/biomechanics5010001
Chicago/Turabian StyleMartin, Joel, Megan Sax van der Weyden, and Amanda Estep. 2025. "The Interplay of Dual Tasks, Sleep Quality and Load Carriage on Postural Stability in Young, Healthy Adults" Biomechanics 5, no. 1: 1. https://doi.org/10.3390/biomechanics5010001
APA StyleMartin, J., Sax van der Weyden, M., & Estep, A. (2025). The Interplay of Dual Tasks, Sleep Quality and Load Carriage on Postural Stability in Young, Healthy Adults. Biomechanics, 5(1), 1. https://doi.org/10.3390/biomechanics5010001