A Hydroxypropyl Methylcellulose-Based Solid Dispersion of Curcumin with Enhanced Bioavailability and Its Hepatoprotective Activity
<p>SEM images of (<b>a</b>) curcumin and (<b>b</b>) DW-CUR 20.</p> "> Figure 2
<p>DSC thermograms of (<b>a</b>) curcumin, (<b>b</b>) HPMC, (<b>c</b>) physical mixture, and (<b>d</b>) DW-CUR 20.</p> "> Figure 3
<p>Plasma concentration–time profile of curcumin after oral administration of curcumin (50 mg/kg) and DW-CUR 20 curcumin (250 mg/kg; 50 mg/kg as curcumin) to rats (<span class="html-italic">n</span> = 5). Data are expressed as mean ± SD.</p> "> Figure 4
<p>Cytotoxicity of DW-CUR 20 in HepG2 cells. Cell viability was determined using the EZ-CYTOX cell viability kit. Cells were pretreated with the indicated concentrations of (<b>a</b>) DW-CUR 20 (20, 40, and 80 μg/mL) or of (<b>b</b>) curcumin (4, 8 and 16 μg/mL) for 12 h. Data shown represent mean ± SD of triplicate experiments. * <span class="html-italic">p</span> < 0.05 vs. the control group.</p> "> Figure 5
<p>Protective effect of DW-CUR 20 against t-BHP-induced cell death in HepG2 cells. Cells were pretreated with the indicated concentrations of DW-CUR 20 (10, 20, and 40 μg/mL) or curcumin (2, 4, and 8 μg/mL) for 6 h in FBS-free medium, followed by addition of t-BHP (final concentration 1 mM). After 6 h, cells were washed twice with PBS then analyzed for cell viability using EZ-CYTOX cell viability kit (<b>a</b>). Cells were pretreated with the indicated concentrations (10, 20, and 40 μg/mL) of DW-CUR 20 for 6 h in FBS-free medium, followed by addition of t-BHP (final concentration 1000 µM). After 90 min, supernatants were collected for LDH analysis. LDH was analyzed using CytoTox96 non-radioactive cytotoxicity assay kit and calculated according to manufacturer’s protocol (<b>b</b>). Data are presented as the mean ± SD of three independent experiments. * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001 vs. the t-BHP group. <sup>a</sup> <span class="html-italic">p</span> < 0.05, <sup>b</sup> <span class="html-italic">p</span> < 0.01 vs. the corresponding curcumin group.</p> "> Figure 6
<p>Effects of DW-CUR 20 on cleavage of caspases-7, -8 and PARP in HepG2 cells. Curcumin (4 µg/mL) was used as a positive control. Whole cell lysates were separated by electrophoresis, transferred onto membranes, and probed with the indicated antibodies. Cleaved caspase-7, -8 and PARP were detected using specific primary antibodies. β-Actin served as an internal loading control. All immunoblot bands were obtained from the same cell lysates (<b>a</b>). The bar charts display the intensity of Cleaved caspase-7, -8 or PARP after being normalized by β-Actin using ImageJ software (<b>b</b>–<b>d</b>). Data are presented as the means ± SD of three independent experiments. *** <span class="html-italic">p</span> < 0.001 vs the t-BHP treatment group.</p> "> Figure 7
<p>Effects of DW-CUR 20 on serum biochemical parameters. (<b>a</b>) Alanine aminotransferase (ALT) and (<b>b</b>) aspartate aminotransferase (AST) levels in t-BHP-induced hepatotoxicity in mice. Data were expressed as mean ± SE (<span class="html-italic">n</span> = 6). * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 compared to the t-BHP group.</p> "> Figure 8
<p>Representative micrograph of hematoxylin and eosin (H&E) stained liver section. (<b>a</b>) Liver section of normal mouse. (<b>b</b>) Liver section of t-BHP injected mouse showed a wide area of necrotic lesion from the margin of the liver (circle), and excessive cell infiltration and necrosis around the blood vessel (rectangle). (<b>c</b>) Liver section of curcumin (80 mg/kg) treated mice showed a reduced necrotic area and cell infiltration. (<b>d</b>,<b>e</b>) DW-CUR 20 (200 and 400 mg/kg) treatment resulted in limitation of the cell necrosis area only at the margin of the liver.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of an Amorphous Solid Dispersion of Curcumin
2.3. Scanning Electron Microscope (SEM)
2.4. Differential Scanning Calorimetry (DSC)
2.5. Pharmacokinetic (PK) Experiments
2.6. Sample Preparation for PK Experiments
2.7. UPLC–MS/MS Analysis
2.8. PK Analysis
2.9. Cell Culture
2.10. Cytotoxicity Assay
2.11. Cytoprotective Effects
2.12. Immunoblotting Analysis
2.13. Hepatoprotection in a t-BHP-Induced Hepatotoxicity Mouse Model
2.14. Histopathological Examination
2.15. Statistical Analysis
3. Results
3.1. Curcumin/HPMC Solid Dispersions
3.2. Plasma PK Studies
3.3. Effect of DW-CUR 20 on the Viability of HepG2 Cells
3.4. Protective Effect Against t-BHP-Induced Cytotoxicity by DW-CUR 20 in HepG2 Cells
3.5. Effect of DW-CUR 20 on t-BHP-Induced Apoptosis in HepG2 Cells
3.6. Effect of DW-CUR 20 on t-BHP-Induced Hepatotoxicity in Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Burdock, G.A. Safety assessment of hydroxypropyl methylcellulose as a food ingredient. Food Chem. Toxicol. 2007, 45, 2341–2351. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Martini, L.G.; Ford, J.L.; Roberts, M. The use of hypromellose in oral drug delivery. J. Pharm. Pharmacol. 2005, 57, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003, 23, 363–398. [Google Scholar] [PubMed]
- Krausz, A.E.; Adler, B.L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R.A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A.; et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 2015, 11, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol. 2007, 595, 105–125. [Google Scholar] [CrossRef]
- Farzaei, M.H.; Zobeiri, M.; Parvizi, F.; El-Senduny, F.F.; Marmouzi, I.; Coy-Barrera, E.; Naseri, R.; Nabavi, S.M.; Rahimi, R.; Abdollahi, M. Curcumin in Liver Diseases: A Systematic Review of the Cellular Mechanisms of Oxidative Stress and Clinical Perspective. Nutrients 2018, 10, E855. [Google Scholar] [CrossRef]
- Ak, T.; Gulcin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact 2008, 174, 27–37. [Google Scholar] [CrossRef]
- Afrin, R.; Arumugam, S.; Rahman, A.; Wahed, M.I.; Karuppagounder, V.; Harima, M.; Suzuki, H.; Miyashita, S.; Suzuki, K.; Yoneyama, H.; et al. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-kappaB translocation. Int. Immunopharmacol. 2017, 44, 174–182. [Google Scholar] [CrossRef]
- Lee, H.I.; McGregor, R.A.; Choi, M.S.; Seo, K.I.; Jung, U.J.; Yeo, J.; Kim, M.J.; Lee, M.K. Low doses of curcumin protect alcohol-induced liver damage by modulation of the alcohol metabolic pathway, CYP2E1 and AMPK. Life Sci 2013, 93, 693–699. [Google Scholar] [CrossRef]
- Mortezaee, K.; Khanlarkhani, N. Melatonin application in targeting oxidative-induced liver injuries: A review. J. Cell Physiol. 2018, 233, 4015–4032. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, D.; Zhu, L.; Gan, Q.; Le, X. Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome. Food Res. Int. 2015, 74, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Sari, T.P.; Mann, B.; Kumar, R.; Singh, R.R.B.; Sharma, R.; Bhardwaj, M.; Athira, S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloid. 2015, 43, 540–546. [Google Scholar] [CrossRef]
- Li, J.; Shin, G.H.; Chen, X.G.; Park, H.J. Modified curcumin with hyaluronic acid: Combination of pro-drug and nano-micelle strategy to address the curcumin challenge. Food Res. Int. 2015, 69, 202–208. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, L.; Jiang, M.; Li, D.; Jin, L. Nanostructured lipid carriers enhance the bioavailability and brain cancer inhibitory efficacy of curcumin both in vitro and in vivo. Drug Deliv. 2016, 23, 1383–1392. [Google Scholar] [CrossRef]
- Li, J.L.; Shin, G.H.; Lee, I.W.; Chen, X.G.; Park, H.J. Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocolloid 2016, 56, 41–49. [Google Scholar] [CrossRef]
- Roy, A.; Park, H.J.; Jung, H.A.; Choi, J.S. Estragole Exhibits Anti-inflammatory Activity with the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-induced RAW 264.7 cells. Nat. Prod. Sci. 2018, 24, 13–20. [Google Scholar] [CrossRef]
- Shin, M.S.; Song, J.H.; Choi, P.; Lee, J.H.; Kim, S.Y.; Shin, K.S.; Ham, J.; Kang, K.S. Stimulation of Innate Immune Function by Panax ginseng after Heat Processing. J. Agric. Food Chem. 2018, 66, 4652–4659. [Google Scholar] [CrossRef]
- Hwang, S.H.; Wang, Z.; Kang, I.J.; Lim, S.S. Synergetic Hepatoprotective Effects of Korean Red Ginseng and Pueraria Radix on the Liver Damaged-Induced by Carbon Tetrachloride (CCl4) in Mice. Nat. Prod. Sci. 2017, 23, 132–138. [Google Scholar] [CrossRef]
- Masaki, N.; Kyle, M.E.; Farber, J.L. Tert-butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids. Arch Biochem. Biophys. 1989, 269, 390–399. [Google Scholar] [CrossRef]
- Cohen, G.M. Caspases: the executioners of apoptosis. Biochem. J. 1997, 326, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Locksley, R.M.; Killeen, N.; Lenardo, M.J. The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell 2001, 104, 487–501. [Google Scholar] [CrossRef]
- Igney, F.H.; Krammer, P.H. Death and anti-death: Tumour resistance to apoptosis. Nat. Rev. Cancer 2002, 2, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, V.; Singh, S.; Singla, D.; Sahwney, S.; Chauhan, A.S.; Singh, G.; Kaur, I.P. Pharmacokinetic applicability of a validated liquid chromatography tandem mass spectroscopy method for orally administered curcumin loaded solid lipid nanoparticles to rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 3427–3431. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.S.; Inbaraj, B.S.; Chen, B.H. Determination of oral bioavailability of curcuminoid dispersions and nanoemulsions prepared from Curcuma longa Linnaeus. J. Sci. Food Agric. 2018, 98, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Tang, J.; Li, M.; Ren, J.; Zheng, N.; Wu, L. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Drug Deliv. 2016, 23, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Alkhader, E.; Roberts, C.J.; Rosli, R.; Yuen, K.H.; Seow, E.K.; Lee, Y.Z.; Billa, N. Pharmacokinetic and anti-colon cancer properties of curcumin-containing chitosan-pectinate composite nanoparticles. J. Biomater. Sci. Polym. Ed. 2018, 29, 2281–2298. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zhao, J.; Ding, Y.; Li, L. A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability. J. Colloid. Interface Sci. 2017, 485, 91–98. [Google Scholar] [CrossRef]
- Liu, A.; Lou, H.; Zhao, L.; Fan, P. Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J. Pharm. Biomed. Anal. 2006, 40, 720–727. [Google Scholar] [CrossRef]
- Shaikh, J.; Ankola, D.D.; Beniwal, V.; Singh, D.; Kumar, M.N. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci. 2009, 37, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, H.; Shakeri, A.; Rashidi, B.; Jalili, A.; Banikazemi, Z.; Sahebkar, A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed. Pharmacother. 2017, 85, 102–112. [Google Scholar] [CrossRef]
- Fan, N.; Ma, P.; Wang, X.; Li, C.; Zhang, X.; Zhang, K.; Li, J.; He, Z. Storage stability and solubilization ability of HPMC in curcumin amorphous solid dispersions formulated by Eudragit E100. Carbohydr. Polym. 2018, 199, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.; He, Z.; Ma, P.; Wang, X.; Li, C.; Sun, J.; Sun, Y.; Li, J. Impact of HPMC on inhibiting crystallization and improving permeability of curcumin amorphous solid dispersions. Carbohydr. Polym. 2018, 181, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Rush, G.F.; Gorski, J.R.; Ripple, M.G.; Sowinski, J.; Bugelski, P.; Hewitt, W.R. Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes. Toxicol. Appl. Pharmacol. 1985, 78, 473–483. [Google Scholar] [CrossRef]
- Altman, S.A.; Zastawny, T.H.; Randers, L.; Lin, Z.; Lumpkin, J.A.; Remacle, J.; Dizdaroglu, M.; Rao, G. Tert.-butyl hydroperoxide-mediated DNA base damage in cultured mammalian cells. Mutat. Res. 1994, 306, 35–44. [Google Scholar] [CrossRef]
- Masaki, N.; Kyle, M.E.; Serroni, A.; Farber, J.L. Mitochondrial damage as a mechanism of cell injury in the killing of cultured hepatocytes by tert-butyl hydroperoxide. Arch. Biochem. Biophys. 1989, 270, 672–680. [Google Scholar] [CrossRef]
- Kucera, O.; Endlicher, R.; Rousar, T.; Lotkova, H.; Garnol, T.; Drahota, Z.; Cervinkova, Z. The effect of tert-butyl hydroperoxide-induced oxidative stress on lean and steatotic rat hepatocytes in vitro. Oxid. Med. Cell Longev. 2014, 2014, 752506. [Google Scholar] [CrossRef]
- Yang, Y.C.; Lii, C.K.; Lin, A.H.; Yeh, Y.W.; Yao, H.T.; Li, C.C.; Liu, K.L.; Chen, H.W. Induction of glutathione synthesis and heme oxygenase 1 by the flavonoids butein and phloretin is mediated through the ERK/Nrf2 pathway and protects against oxidative stress. Free Radic. Biol. Med. 2011, 51, 2073–2081. [Google Scholar] [CrossRef]
Parameter | Value | |
---|---|---|
Curcumin | Cmax (ng/mL) | 65.8 ± 21.5 |
Tmax (h) | 7.54 ± 9.07 | |
AUClast (ng⋅h/mL) | 781.8 ± 256.5 | |
DW-CUR 20 | Cmax (ng/mL) | 4135.0 ± 808.9 *** |
Tmax (h) | 1.6 ± 0.55 | |
AUClast (ng⋅h/mL) | 13,528.4 ± 3025.8 *** |
Formulations | Dose (as Curcumin) | Cmax (ng/mL) | AUC (ng·h/mL) | Fold Change in AUC | Ref. |
---|---|---|---|---|---|
Curcumin with tween 80 | 50 mg/kg | 292 ± 100 | 1075 ± 120 | 39 | [25] |
Curcumin solid lipid nanoparticle | 50 mg/kg | 14290 ± 4290 | 41990 ± 6180 | ||
Curcumin dispersion | 100 mg/kg | 120 | 2588 | 1.6 | [26] |
Curcumin nanoemulsion | 100 mg/kg | 140 | 4113 | ||
Curcumin suspension with 4% CMC | 50 mg/kg | 2120 ± 340 | 10140 ± 610 | 12.3 | [27] |
Curcumin solid lipid nanoparticle | 50 mg/kg | 7510 ± 440 | 124510 ± 14530 | ||
Free curcumin | 10 mg/kg | 704.68 ± 73.18 | 2181.91 ± 195.04 | 2.0 | [28] |
Curcumin-chitosan-pectinate-nanoparticle | 10 mg/kg | 1000.57 ± 15.23 | 4479.50 ± 137.00 | ||
Curcumin with 0.5 % CMC | 50 mg/kg | 5.08 ± 1.18 | 27.45 ± 8.09 | 3.7 | [29] |
Curcumin nanosuspension (Brij78) | 50 mg/kg | 110.01 ± 30.71 | 101.59 ± 35.29 | ||
Curcumin | 100 mg/kg | 266.7 | 2609.04 | 3.3 | [30] |
Phospholipid complex | 100 mg/kg | 600.93 | 8772.57 | ||
Curcumin suspension (non-formulated) | 250 mg/kg | 90.3 ± 15.5 | 312 ± 43 | 10.3 | [31] |
Curcumin nanoparticle (w/piperine) | 100 mg/kg | 260.5 ± 26.4 | 3224 ± 329 | ||
Curcumin in water (non-formulated) | 50 mg/kg | 65.8 ± 21.5 | 781.8 ± 256.5 | 17.3 | This study |
DW-CUR 20 | 50 mg/kg | 4135.0 ± 808.9 | 13,528.4 ± 3025.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, M.-S.; Yu, J.S.; Lee, J.; Ji, Y.S.; Joung, H.J.; Han, Y.-M.; Yoo, H.H.; Kang, K.S. A Hydroxypropyl Methylcellulose-Based Solid Dispersion of Curcumin with Enhanced Bioavailability and Its Hepatoprotective Activity. Biomolecules 2019, 9, 281. https://doi.org/10.3390/biom9070281
Shin M-S, Yu JS, Lee J, Ji YS, Joung HJ, Han Y-M, Yoo HH, Kang KS. A Hydroxypropyl Methylcellulose-Based Solid Dispersion of Curcumin with Enhanced Bioavailability and Its Hepatoprotective Activity. Biomolecules. 2019; 9(7):281. https://doi.org/10.3390/biom9070281
Chicago/Turabian StyleShin, Myoung-Sook, Jun Sang Yu, Jaemin Lee, Young Seok Ji, Hee Joung Joung, Yu-Mee Han, Hye Hyun Yoo, and Ki Sung Kang. 2019. "A Hydroxypropyl Methylcellulose-Based Solid Dispersion of Curcumin with Enhanced Bioavailability and Its Hepatoprotective Activity" Biomolecules 9, no. 7: 281. https://doi.org/10.3390/biom9070281
APA StyleShin, M. -S., Yu, J. S., Lee, J., Ji, Y. S., Joung, H. J., Han, Y. -M., Yoo, H. H., & Kang, K. S. (2019). A Hydroxypropyl Methylcellulose-Based Solid Dispersion of Curcumin with Enhanced Bioavailability and Its Hepatoprotective Activity. Biomolecules, 9(7), 281. https://doi.org/10.3390/biom9070281