Why YRNAs? About Versatile RNAs and Their Functions
<p>Y RNA structure. A schematic structure of Y RNAs illustrates the important features common to these RNAs (<b>A</b>). Furthermore, the secondary structure of the human Y RNAs (Y1, Y3, Y4 and Y5) was visualized with VARNA [<a href="#B17-biomolecules-03-00143" class="html-bibr">17</a>], referring to published structure probing experiments (<b>B</b>; [<a href="#B18-biomolecules-03-00143" class="html-bibr">18</a>,<a href="#B19-biomolecules-03-00143" class="html-bibr">19</a>]). According to this data, alternative structures, at least for Y3, are likely [<a href="#B19-biomolecules-03-00143" class="html-bibr">19</a>].</p> "> Figure 2
<p>Sequence alignments of human Y RNA stems. The terminal Y RNA stem sequences were aligned using the TCoffee web server [<a href="#B25-biomolecules-03-00143" class="html-bibr">25</a>,<a href="#B26-biomolecules-03-00143" class="html-bibr">26</a>]. Perfectly conserved nucleotides are marked with asterisks. The remarkably conserved cytosine base at position 9 within the 5’-part of the Y RNAs is highlighted in green.</p> "> Figure 3
<p>Y RNA expression in mouse tissues. A representative Northern blot for murine Y RNA tissue expression is shown. 7SL and 5S rRNA served as a loading control. Note that in mice, just Y1 and Y3 are expressed.</p> "> Figure 4
<p>Lifecycle of Y RNAs. The proposed cellular functions of Y RNAs rely mostly on the association with their core proteins Ro60 and La. These interactions influence various parts of the Y RNA lifecycle (e.g., nuclear export together with Ro60). Additional functions and interactions with RNA binding proteins (RBPs) have to be assumed in the nucleus, as well as the cytoplasm.</p> ">
Abstract
:1. Introduction
2. Structure and Evolution of Y RNAs
Gene Symbol | Alternative Names | Y RNA | Binding Region | Proposed Function | Reference |
---|---|---|---|---|---|
SSB | La | 1,3,4,5 | OligoU | nuclear retention, protection of Y RNA 3’ends | [15] |
TROVE2 | Ro60 | 1,3,4,5 | stem | stabilization, | [15,23,34,35,36,37] |
nuclear export, | |||||
RNA quality control | |||||
APOBEC3G | 1,3,4,5 | ? | ? | [38,39,40] | |
NCL | nucleolin | 1,3 | loop | ? | [41] |
PTBP1 | hnRNP I | 1,3 | loop | ? | [42] |
HNRNPK | 1,3 | loop | ? | [42] | |
IGF2BP1 | ZBP1, Imp1 | (1),3 | loop | nuclear Export of Ro60 and Y3 | [43,44] |
PUF60 | RoBP1 | (1,3),5 | ? | ? | [45,46] |
3. Y RNA Localization and Expression
4. Is the Functional Role of Y RNA Determined by Associated Proteins?
4.1. Y RNP Core Proteins
4.2. Accessory Y RNA Binding Proteins
5. Future Perspectives and Conclusions
6. Materials and Methods: Isolation of Total RNA and Northern Blot
Acknowledgments
Conflict of Interest
References
- Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010, 11, 597–610. [Google Scholar]
- Bond, C.S.; Fox, A.H. Paraspeckles: nuclear bodies built on long noncoding RNA. J. Cell Biol. 2009, 186, 637–644. [Google Scholar] [CrossRef]
- Lerner, M.R.; Boyle, J.A.; Hardin, J.A.; Steitz, J.A. Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science 1981, 211, 400–402. [Google Scholar]
- Franceschini, F.; Cavazzana, I. Anti-Ro/SSA and La/SSB antibodies. Autoimmunity 2005, 38, 55–63. [Google Scholar] [CrossRef]
- Hendrick, J.P.; Wolin, S.L.; Rinke, J.; Lerner, M.R.; Steitz, J.A. Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol. Cell. Biol. 1981, 1, 1138–1149. [Google Scholar]
- Francoeur, A.M.; Mathews, M.B. Interaction between VA RNA and the lupus antigen La: formation of a ribonucleoprotein particle in vitro. Proc. Natl. Acad. Sci. USA 1982, 79, 6772–6776. [Google Scholar] [CrossRef]
- Wolin, S.L.; Steitz, J.A. The Ro small cytoplasmic ribonucleoproteins: identification of the antigenic protein and its binding site on the Ro RNAs. Proc. Natl. Acad. Sci. USA 1984, 81, 1996–2000. [Google Scholar] [CrossRef]
- Will, C.L.; Lührmann, R. Splicing of a rare class of introns by the U12-dependent spliceosome. Biol. Chem. 2005, 386, 713–724. [Google Scholar]
- Wolin, S.L.; Steitz, J.A. Genes for two small cytoplasmic Ro RNAs are adjacent and appear to be single-copy in the human genome. Cell 1983, 32, 735–744. [Google Scholar] [CrossRef]
- Stefano, J.E. Purified lupus antigen La recognizes an oligouridylate stretch common to the 3' termini of RNA polymerase III transcripts. Cell 1984, 36, 145–154. [Google Scholar]
- Mathews, M.B.; Francoeur, A.M. La antigen recognizes and binds to the 3'-oligouridylate tail of a small RNA. Mol. Cell. Biol. 1984, 4, 1134–1140. [Google Scholar]
- Pruijn, G.J.; Slobbe, R.L.; van Venrooij, W.J. Analysis of protein--RNA interactions within Ro ribonucleoprotein complexes. Nucleic Acids Res. 1991, 19, 5173–5180. [Google Scholar]
- Garcia, E.L.; Onafuwa-Nuga, A.; Sim, S.; King, S.R.; Wolin, S.L.; Telesnitsky, A. Packaging of host mY RNAs by murine leukemia virus may occur early in Y RNA biogenesis. J. Virol. 2009, 83, 12526–12534. [Google Scholar]
- van Hoof, A.; Lennertz, P.; Parker, R. Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO J. 2000, 19, 1357–1365. [Google Scholar] [CrossRef]
- Simons, F.H.; Rutjes, S.A.; van Venrooij, W.J.; Pruijn, G.J. The interactions with Ro60 and La differentially affect nuclear export of hY1 RNA. RNA 1996, 2, 264–273. [Google Scholar]
- Gruber, A.R.; Lorenz, R.; Bernhart, S.H.; Neuböck, R.; Hofacker, I.L. The Vienna RNA websuite. Nucleic Acids Res. 2008, 36, W70–W74. [Google Scholar]
- Darty, K.; Denise, A.; Ponty, Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009, 25, 1974–1975. [Google Scholar] [Green Version]
- van Gelder, C.W.; Thijssen, J.P.; Klaassen, E.C.; Sturchler, C.; Krol, A.; van Venrooij, W.J.; Pruijn, G.J. Common structural features of the Ro RNP associated hY1 and hY5 RNAs. Nucleic Acids Res. 1994, 22, 2498–2506. [Google Scholar]
- Teunissen, S.W.; Kruithof, M.J.; Farris, A.D.; Harley, J.B.; Venrooij, W.J.; Pruijn, G.J. Conserved features of Y RNAs: a comparison of experimentally derived secondary structures. Nucleic Acids Res. 2000, 28, 610–619. [Google Scholar]
- Green, C.D.; Long, K.S.; Shi, H.; Wolin, S.L. Binding of the 60-kDa Ro autoantigen to Y RNAs: evidence for recognition in the major groove of a conserved helix. RNA 1998, 4, 750–765. [Google Scholar]
- Sim, S.; Wolin, S.L. Emerging roles for the Ro 60-kDa autoantigen in noncoding RNA metabolism. Wiley Interdiscip. Rev. RNA 2011, 2, 686–699. [Google Scholar]
- Perreault, J.; Perreault, J.-P.; Boire, G. Ro-associated Y RNAs in metazoans: evolution and diversification. Mol. Biol. Evol. 2007, 24, 1678–1689. [Google Scholar]
- Chen, X.; Quinn, A.M.; Wolin, S.L. Ro ribonucleoproteins contribute to the resistance of Deinococcus radiodurans to ultraviolet irradiation. Genes Dev. 2000, 14, 777–782. [Google Scholar]
- Mosig, A.; Guofeng, M.; Stadler, B.M.R.; Stadler, P.F. Evolution of the vertebrate Y RNA cluster. Theory Biosci. 2007, 126, 9–14. [Google Scholar]
- Poirot, O.; O'Toole, E.; Notredame, C. Tcoffee@igs: A web server for computing, evaluating and combining multiple sequence alignments. Nucleic Acids Res. 2003, 31, 3503–3506. [Google Scholar]
- Notredame, C.; Higgins, D.G.; Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000, 302, 205–217. [Google Scholar]
- Liao, J.-Y.; Ma, L.-M.; Guo, Y.-H.; Zhang, Y.-C.; Zhou, H.; Shao, P.; Chen, Y.-Q.; Qu, L.-H. Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3' trailers. PLoS ONE 2010, 5, e10563. [Google Scholar]
- Meiri, E.; Levy, A.; Benjamin, H.; Ben-David, M.; Cohen, L.; Dov, A.; Dromi, N.; Elyakim, E.; Yerushalmi, N.; Zion, O.; et al. Discovery of microRNAs and other small RNAs in solid tumors. Nucleic Acids Res. 2010, 38, 6234–6246. [Google Scholar] [CrossRef]
- Verhagen, A.P.M.; Pruijn, G.J.M. Are the Ro RNP-associated Y RNAs concealing microRNAs? Y RNA-derived miRNAs may be involved in autoimmunity. Bioessays 2011, 33, 674–682. [Google Scholar]
- Rutjes, S.A.; van der Heijden, A.; Utz, P.J.; van Venrooij, W.J.; Pruijn, G.J. Rapid nucleolytic degradation of the small cytoplasmic Y RNAs during apoptosis. J. Biol. Chem. 1999, 274, 24799–24807. [Google Scholar]
- Nicolas, F.E.; Hall, A.E.; Csorba, T.; Turnbull, C.; Dalmay, T. Biogenesis of Y RNA-derived small RNAs is independent of the microRNA pathway. FEBS Lett. 2012, 586, 1226–1230. [Google Scholar]
- Farris, A.D.; Koelsch, G.; Pruijn, G.J.; van Venrooij, W.J.; Harley, J.B. Conserved features of Y RNAs revealed by automated phylogenetic secondary structure analysis. Nucleic Acids Res. 1999, 27, 1070–1078. [Google Scholar] [CrossRef]
- Farris, A.D.; O'Brien, C.A.; Harley, J.B. Y3 is the most conserved small RNA component of Ro ribonucleoprotein complexes in vertebrate species. Gene 1995, 154, 193–198. [Google Scholar] [CrossRef]
- Xue, D.; Shi, H.; Smith, J.D.; Chen, X.; Noe, D.A.; Cedervall, T.; Yang, D.D.; Eynon, E.; Brash, D.E.; Kashgarian, M.; et al. A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein, a major lupus autoantigen. Proc. Natl. Acad. Sci. USA 2003, 100, 7503–7508. [Google Scholar]
- Sim, S.; Weinberg, D.E.; Fuchs, G.; Choi, K.; Chung, J.; Wolin, S.L. The subcellular distribution of an RNA quality control protein, the Ro autoantigen, is regulated by noncoding Y RNA binding. Mol. Biol. Cell 2009, 20, 1555–1564. [Google Scholar] [CrossRef]
- Labbé, J.C.; Hekimi, S.; Rokeach, L.A. The levels of the RoRNP-associated Y RNA are dependent upon the presence of ROP-1, the Caenorhabditis elegans Ro60 protein. Genetics 1999, 151, 143–150. [Google Scholar]
- Chen, X.; Wurtmann, E.J.; van Batavia, J.; Zybailov, B.; Washburn, M.P.; Wolin, S.L. An ortholog of the Ro autoantigen functions in 23S rRNA maturation in D. radiodurans. Genes Dev. 2007, 21, 1328–1339. [Google Scholar] [CrossRef]
- Wang, T.; Tian, C.; Zhang, W.; Luo, K.; Sarkis, P.T.N.; Yu, L.; Liu, B.; Yu, Y.; Yu, X.-F. 7SL RNA mediates virion packaging of the antiviral cytidine deaminase APOBEC3G. J. Virol. 2007, 81, 13112–13124. [Google Scholar] [CrossRef]
- Chiu, Y.-L.; Witkowska, H.E.; Hall, S.C.; Santiago, M.; Soros, V.B.; Esnault, C.; Heidmann, T.; Greene, W.C. High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc. Natl. Acad. Sci. USA 2006, 103, 15588–15593. [Google Scholar]
- Gallois-Montbrun, S.; Holmes, R.K.; Swanson, C.M.; Fernández-Ocaña, M.; Byers, H.L.; Ward, M.A.; Malim, M.H. Comparison of cellular ribonucleoprotein complexes associated with the APOBEC3F and APOBEC3G antiviral proteins. J. Virol. 2008, 82, 5636–5642. [Google Scholar]
- Fouraux, M.A.; Bouvet, P.; Verkaart, S.; van Venrooij, W.J.; Pruijn, G.J.M. Nucleolin associates with a subset of the human Ro ribonucleoprotein complexes. J. Mol. Biol. 2002, 320, 475–488. [Google Scholar]
- Fabini, G.; Raijmakers, R.; Hayer, S.; Fouraux, M.A.; Pruijn, G.J.; Steiner, G. The heterogeneous nuclear ribonucleoproteins I and K interact with a subset of the ro ribonucleoprotein-associated Y RNAs in vitro and in vivo. J. Biol. Chem. 2001, 276, 20711–20718. [Google Scholar]
- Köhn, M.; Lederer, M.; Wächter, K.; Hüttelmaier, S. Near-infrared (NIR) dye-labeled RNAs identify binding of ZBP1 to the noncoding Y3-RNA. RNA 2010, 16, 1420–1428. [Google Scholar]
- Sim, S.; Yao, J.; Weinberg, D.E.; Niessen, S.; Yates, J.R.; Wolin, S.L. The zipcode-binding protein ZBP1 influences the subcellular location of the Ro 60-kDa autoantigen and the noncoding Y3 RNA. RNA 2012, 18, 100–110. [Google Scholar] [CrossRef]
- Bouffard, P.; Barbar, E.; Brière, F.; Boire, G. Interaction cloning and characterization of RoBPI, a novel protein binding to human Ro ribonucleoproteins. RNA 2000, 6, 66–78. [Google Scholar]
- Hogg, J.R.; Collins, K. Human Y5 RNA specializes a Ro ribonucleoprotein for 5S ribosomal RNA quality control. Genes Dev. 2007, 21, 3067–3072. [Google Scholar]
- Okada, C.; Yamashita, E.; Lee, S.J.; Shibata, S.; Katahira, J.; Nakagawa, A.; Yoneda, Y.; Tsukihara, T. A high-resolution structure of the pre-microRNA nuclear export machinery. Science 2009, 326, 1275–1279. [Google Scholar]
- Murdoch, K.; Loop, S.; Rudt, F.; Pieler, T. Nuclear export of 5S rRNA-containing ribonucleoprotein complexes requires CRM1 and the RanGTPase cycle. Eur. J. Cell Biol. 2002, 81, 549–556. [Google Scholar] [CrossRef]
- Peterlin, B.M.; Brogie, J.E.; Price, D.H. 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. Wiley Interdiscip. Rev. RNA 2012, 3, 92–103. [Google Scholar]
- Spiller, M.P.; Boon, K.-L.; Reijns, M.A.M.; Beggs, J.D. The Lsm2-8 complex determines nuclear localization of the spliceosomal U6 snRNA. Nucleic Acids Res. 2007, 35, 923–929. [Google Scholar]
- Gendron, M.; Roberge, D.; Boire, G. Heterogeneity of human Ro ribonucleoproteins (RNPS): nuclear retention of Ro RNPS containing the human hY5 RNA in human and mouse cells. Clin. Exp. Immunol. 2001, 125, 162–168. [Google Scholar] [CrossRef]
- Farris, A.D.; Puvion-Dutilleul, F.; Puvion, E.; Harley, J.B.; Lee, L.A. The ultrastructural localization of 60-kDa Ro protein and human cytoplasmic RNAs: association with novel electron-dense bodies. Proc. Natl. Acad. Sci. USA 1997, 94, 3040–3045. [Google Scholar]
- Wang, C.; Politz, J.C.; Pederson, T.; Huang, S. RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol. Biol. Cell 2003, 14, 2425–2435. [Google Scholar]
- Pollock, C.; Huang, S. The perinucleolar compartment. J. Cell. Biochem. 2009, 107, 189–193. [Google Scholar]
- Matera, A.G.; Frey, M.R.; Margelot, K.; Wolin, S.L. A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J. Cell Biol. 1995, 129, 1181–1193. [Google Scholar]
- Zhang, A.T.; Langley, A.R.; Christov, C.P.; Kheir, E.; Shafee, T.; Gardiner, T.J.; Krude, T. Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J. Cell. Sci. 2011, 124, 2058–2069. [Google Scholar]
- Rutjes, S.A.; Lund, E.; van der Heijden, A.; Grimm, C.; van Venrooij, W.J.; Pruijn, G.J. Identification of a novel cis-acting RNA element involved in nuclear export of hY RNAs. RNA 2001, 7, 741–752. [Google Scholar]
- Gwizdek, C.; Ossareh-Nazari, B.; Brownawell, A.M.; Doglio, A.; Bertrand, E.; Macara, I.G.; Dargemont, C. Exportin-5 mediates nuclear export of minihelix-containing RNAs. J. Biol. Chem. 2003, 278, 5505–5508. [Google Scholar]
- Calado, A.; Treichel, N.; Müller, E.-C.; Otto, A.; Kutay, U. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J. 2002, 21, 6216–6224. [Google Scholar]
- Chen, X.; Smith, J.D.; Shi, H.; Yang, D.D.; Flavell, R.A.; Wolin, S.L. The Ro autoantigen binds misfolded U2 small nuclear RNAs and assists mammalian cell survival after UV irradiation. Curr. Biol. 2003, 13, 2206–2211. [Google Scholar]
- Miyamoto, Y.; Saiwaki, T.; Yamashita, J.; Yasuda, Y.; Kotera, I.; Shibata, S.; Shigeta, M.; Hiraoka, Y.; Haraguchi, T.; Yoneda, Y. Cellular stresses induce the nuclear accumulation of importin alpha and cause a conventional nuclear import block. J. Cell Biol. 2004, 165, 617–623. [Google Scholar] [CrossRef]
- Pruijn, G.J.; Wingens, P.A.; Peters, S.L.; Thijssen, J.P.; van Venrooij, W.J. Ro RNP associated Y RNAs are highly conserved among mammals. Biochim. Biophys. Acta 1993, 1216, 395–401. [Google Scholar]
- Christov, C.P.; Trivier, E.; Krude, T. Noncoding human Y RNAs are overexpressed in tumours and required for cell proliferation. Br. J. Cancer 2008, 98, 981–988. [Google Scholar]
- Wang, D.; Buyon, J.P.; Chan, E.K. Cloning and expression of mouse 60 kDa ribonucleoprotein SS-A/Ro. Mol. Biol. Rep. 1996, 23, 205–210. [Google Scholar]
- Christov, C.P.; Gardiner, T.J.; Szüts, D.; Krude, T. Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol. Cell. Biol. 2006, 26, 6993–7004. [Google Scholar]
- Collart, C.; Christov, C.P.; Smith, J.C.; Krude, T. The midblastula transition defines the onset of Y RNA-dependent DNA replication in Xenopus laevis. Mol. Cell. Biol. 2011, 31, 3857–3870. [Google Scholar]
- Fairley, J.A.; Kantidakis, T.; Kenneth, N.S.; Intine, R.V.; Maraia, R.J.; White, R.J. Human La is found at RNA polymerase III-transcribed genes in vivo. Proc. Natl. Acad. Sci. USA 2005, 102, 18350–18355. [Google Scholar]
- Simons, F.H.; Pruijn, G.J.; van Venrooij, W.J. Analysis of the intracellular localization and assembly of Ro ribonucleoprotein particles by microinjection into Xenopus laevis oocytes. J. Cell Biol. 1994, 125, 981–988. [Google Scholar]
- Stein, A.J.; Fuchs, G.; Fu, C.; Wolin, S.L.; Reinisch, K.M. Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity. Cell 2005, 121, 529–539. [Google Scholar]
- Hogg, J.R.; Collins, K. Structured non-coding RNAs and the RNP Renaissance. Curr. Opin. Chem. Biol. 2008, 12, 684–689. [Google Scholar]
- Macrae, I.J.; Doudna, J.A. Ro's role in RNA reconnaissance. Cell 2005, 121, 495–496. [Google Scholar]
- Perreault, J.; Noël, J.-F.; Brière, F.; Cousineau, B.; Lucier, J.-F.; Perreault, J.-P.; Boire, G. Retropseudogenes derived from the human Ro/SS-A autoantigen-associated hY RNAs. Nucleic Acids Res. 2005, 33, 2032–2041. [Google Scholar]
- Gardiner, T.J.; Christov, C.P.; Langley, A.R.; Krude, T. A conserved motif of vertebrate Y RNAs essential for chromosomal DNA replication. RNA 2009, 15, 1375–1385. [Google Scholar] [CrossRef]
- Langley, A.R.; Chambers, H.; Christov, C.P.; Krude, T. Ribonucleoprotein particles containing non-coding Y RNAs, Ro60, La and nucleolin are not required for Y RNA function in DNA replication. PLoS ONE 2010, 5, e13673. [Google Scholar]
- Shi, H.; O'Brien, C.A.; van Horn, D.J.; Wolin, S.L. A misfolded form of 5S rRNA is complexed with the Ro and La autoantigens. RNA 1996, 2, 769–784. [Google Scholar]
- O'Brien, C.A.; Wolin, S.L. A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors. Genes Dev. 1994, 8, 2891–2903. [Google Scholar]
- Jønson, L.; Vikesaa, J.; Krogh, A.; Nielsen, L.K.; Hansen, T.v.; Borup, R.; Johnsen, A.H.; Christiansen, J.; Nielsen, F.C. Molecular composition of IMP1 ribonucleoprotein granules. Mol. Cell Proteomics 2007, 6, 798–811. [Google Scholar] [CrossRef]
- Fabini, G.; Rutjes, S.A.; Zimmermann, C.; Pruijn, G.J.; Steiner, G. Analysis of the molecular composition of Ro ribonucleoprotein complexes. Identification of novel Y RNA-binding proteins. Eur. J. Biochem. 2000, 267, 2778–2789. [Google Scholar] [CrossRef]
- Krude, T.; Christov, C.P.; Hyrien, O.; Marheineke, K. Y RNA functions at the initiation step of mammalian chromosomal DNA replication. J. Cell. Sci. 2009, 122, 2836–2845. [Google Scholar]
- Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 2011, 43, 904–914. [Google Scholar]
- Bell, J.L.; Wächter, K.; Mühleck, B.; Pazaitis, N.; Köhn, M.; Lederer, M.; Hüttelmaier, S. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell. Mol. Life Sci. 2012. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Köhn, M.; Pazaitis, N.; Hüttelmaier, S. Why YRNAs? About Versatile RNAs and Their Functions. Biomolecules 2013, 3, 143-156. https://doi.org/10.3390/biom3010143
Köhn M, Pazaitis N, Hüttelmaier S. Why YRNAs? About Versatile RNAs and Their Functions. Biomolecules. 2013; 3(1):143-156. https://doi.org/10.3390/biom3010143
Chicago/Turabian StyleKöhn, Marcel, Nikolaos Pazaitis, and Stefan Hüttelmaier. 2013. "Why YRNAs? About Versatile RNAs and Their Functions" Biomolecules 3, no. 1: 143-156. https://doi.org/10.3390/biom3010143
APA StyleKöhn, M., Pazaitis, N., & Hüttelmaier, S. (2013). Why YRNAs? About Versatile RNAs and Their Functions. Biomolecules, 3(1), 143-156. https://doi.org/10.3390/biom3010143