Deep-Learning Algorithm and Concomitant Biomarker Identification for NSCLC Prediction Using Multi-Omics Data Integration
<p>Data schema characterized by directed acyclic graph (DAG) structure. The DAG architecture is implemented to label the multi-omics data. This data-label flow is to avoid potential data duplication derived from graph-based preprocessing.</p> "> Figure 2
<p>Overview of preprocessing module and graph convolutional network (GCN)-based non-small-cell lung cancer (NSCLC) prediction deep learning model. (<b>a</b>) GCN-based preprocessing module for weight optimization. (<b>b</b>) GCN-based NSCLC prediction algorithm. DNA sequencing data including targetable gene aberrations are served as discriminating predictors to match the most suitable therapeutic agents in the Mutation FC layer.</p> "> Figure 3
<p>Performance comparisons of NSCLC prediction model with alternative classifier models. Pairwise comparisons of the implemented algorithm performances were analyzed via five-fold cross-validation. To improve discrimination, the metric cut-off was set at 90%. The standard deviation of each performance is illustrated by a vertical error bar. AUC of ROC denotes area under the receiver operating characteristic curve.</p> "> Figure 4
<p>GO enrichment and pathway analysis of NSCLC features. (<b>a</b>) Visualized networks of enriched GO “Biological Process” terms of NSCLC were grouped based on shared genes (Kappa score threshold = 0.4). Enriched terms by <span class="html-italic">p</span> value corrected with Bonferroni were retained as the functional description. The node size is proportional to the degree of significance. (<b>b</b>) % terms per group represents the proportion of GO terms in the NSCLC features.</p> "> Figure 5
<p>GO enrichment and pathway analysis of LUAD features. (<b>a</b>) Enriched GO “Biological Process” terms of LUAD were grouped based on shared genes (Kappa score threshold = 0.4). Enriched terms by <span class="html-italic">p</span> value corrected with Bonferroni were retained as the functional description. The node size is proportional to the degree of significance. (<b>b</b>) % terms per group represents the proportion of GO terms in the LUAD features.</p> "> Figure 6
<p>GO enrichment and pathway analysis of LUSC features. (<b>a</b>) Enriched GO “Biological Process” terms of LUSC were grouped based on shared genes (Kappa score threshold = 0.4). Enriched terms by <span class="html-italic">p</span> value corrected with Bonferroni were retained as the functional description. The node size is proportional to the degree of significance. (<b>b</b>) % terms per group represents the proportion of GO terms in the LUSC features.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Mathematical Concepts
2.3. DL Model Architecture and Weight Optimization
2.4. Feature Identification
2.5. Algorithm Comparisons
2.6. Functional Annotation and Pathway Analysis
2.7. Statistics
3. Results
3.1. Multi-Omics Datasets, Preprocessing, and Model Training
3.2. NSCLC Prediction Model Validation
3.3. Comparison of NSCLC Prediction Model with Other Classifier Models
3.4. Functional Annotation and Pathway Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N. Engl. J. Med. 2020, 383, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Jenkins, C.; Iyer, S.; Schoenfeld, A.; Keddy, C.; Davare, M.A. ROS1-dependent cancers—Biology, diagnostics and therapeutics. Nat. Rev. Clin. Oncol. 2021, 18, 35–55. [Google Scholar] [CrossRef] [PubMed]
- Kheder, E.S.; Hong, D.S. Emerging Targeted Therapy for Tumors with NTRK Fusion Proteins. Clin. Cancer Res. 2018, 24, 5807–5814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurie, S.A. Targeted therapy in BRAF-mutated lung adenocarcinoma. Lancet Oncol. 2016, 17, 550–551. [Google Scholar] [CrossRef]
- Paez, J.G.; Janne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004, 304, 1497–1500. [Google Scholar] [CrossRef] [Green Version]
- Shaw, A.T.; Bauer, T.M.; de Marinis, F.; Felip, E.; Goto, Y.; Liu, G.; Mazieres, J.; Kim, D.W.; Mok, T.; Polli, A.; et al. First-Line Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N. Engl. J. Med. 2020, 383, 2018–2029. [Google Scholar] [CrossRef]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef]
- Takeuchi, K.; Soda, M.; Togashi, Y.; Suzuki, R.; Sakata, S.; Hatano, S.; Asaka, R.; Hamanaka, W.; Ninomiya, H.; Uehara, H.; et al. RET, ROS1 and ALK fusions in lung cancer. Nat. Med. 2012, 18, 378–381. [Google Scholar] [CrossRef]
- El Ayachy, R.; Giraud, N.; Giraud, P.; Durdux, C.; Giraud, P.; Burgun, A.; Bibault, J.E. The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up. Front. Oncol. 2021, 11, 603595. [Google Scholar] [CrossRef]
- Gillies, R.J.; Schabath, M.B. Radiomics Improves Cancer Screening and Early Detection. Cancer Epidemiol. Biomarkers Prev. 2020, 29, 2556–2567. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, L.; Li, C.; Cai, Y.; Liang, Y.; Mo, X.; Lu, Q.; Dong, L.; Liu, Y. DeepLRHE: A Deep Convolutional Neural Network Framework to Evaluate the Risk of Lung Cancer Recurrence and Metastasis from Histopathology Images. Front. Genet. 2020, 11, 768. [Google Scholar] [CrossRef] [PubMed]
- Jurmeister, P.; Bockmayr, M.; Seegerer, P.; Bockmayr, T.; Treue, D.; Montavon, G.; Vollbrecht, C.; Arnold, A.; Teichmann, D.; Bressem, K.; et al. Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases. Sci. Transl. Med. 2019, 11, eaaw8513. [Google Scholar] [CrossRef] [PubMed]
- Grewal, J.K.; Tessier-Cloutier, B.; Jones, M.; Gakkhar, S.; Ma, Y.; Moore, R.; Mungall, A.J.; Zhao, Y.; Taylor, M.D.; Gelmon, K.; et al. Application of a Neural Network Whole Transcriptome-Based Pan-Cancer Method for Diagnosis of Primary and Metastatic Cancers. JAMA Netw. Open 2019, 2, e192597. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Shannon, C.P.; Gautier, B.; Rohart, F.; Vacher, M.; Tebbutt, S.J.; Le Cao, K.A. DIABLO: An integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 2019, 35, 3055–3062. [Google Scholar] [CrossRef]
- Mallik, S.; Seth, S.; Bhadra, T.; Zhao, Z. A Linear Regression and Deep Learning Approach for Detecting Reliable Genetic Alterations in Cancer Using DNA Methylation and Gene Expression Data. Genes 2020, 11, 931. [Google Scholar] [CrossRef]
- Zhang, G.; Xue, Z.; Yan, C.; Wang, J.; Luo, H. A Novel Biomarker Identification Approach for Gastric Cancer Using Gene Expression and DNA Methylation Dataset. Front. Genet. 2021, 12, 644378. [Google Scholar] [CrossRef]
- Fang, C.; Xu, D.; Su, J.; Dry, J.R.; Linghu, B. DeePaN: Deep patient graph convolutional network integrating clinico-genomic evidence to stratify lung cancers for immunotherapy. NPJ Digit. Med. 2021, 4, 14. [Google Scholar] [CrossRef]
- Wang, T.; Shao, W.; Huang, Z.; Tang, H.; Zhang, J.; Ding, Z.; Huang, K. MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nat. Commun. 2021, 12, 3445. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M.J.a.e.-p. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Picard, M.; Scott-Boyer, M.P.; Bodein, A.; Perin, O.; Droit, A. Integration strategies of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J. 2021, 19, 3735–3746. [Google Scholar] [CrossRef] [PubMed]
- Rappoport, N.; Shamir, R. Multi-omic and multi-view clustering algorithms: Review and cancer benchmark. Nucleic Acids Res. 2018, 46, 10546–10562. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, R.; Chiu, Y.C.; Hererra, A.; Mostavi, M.; Ramirez, J.; Chen, Y.; Huang, Y.; Jin, Y.F. Classification of Cancer Types Using Graph Convolutional Neural Networks. Front. Phys. 2020, 8, 203. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.A.; Kondrashova, O.; Bradley, A.; Williams, E.D.; Pearson, J.V.; Waddell, N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med. 2021, 13, 152. [Google Scholar] [CrossRef]
- Kleppe, A.; Skrede, O.J.; De Raedt, S.; Liestol, K.; Kerr, D.J.; Danielsen, H.E. Designing deep learning studies in cancer diagnostics. Nat. Rev. Cancer 2021, 21, 199–211. [Google Scholar] [CrossRef]
- De Angeli, K.; Gao, S.; Alawad, M.; Yoon, H.J.; Schaefferkoetter, N.; Wu, X.C.; Durbin, E.B.; Doherty, J.; Stroup, A.; Coyle, L.; et al. Deep active learning for classifying cancer pathology reports. BMC Bioinform. 2021, 22, 113. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Eckhart, L.; Lippens, S.; Tschachler, E.; Declercq, W. Cell death by cornification. Biochim. Biophys. Acta 2013, 1833, 3471–3480. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, W. Small proline-rich protein 1A promotes lung adenocarcinoma progression and indicates unfavorable clinical outcomes. Biochem. Cell Biol. 2022, 100, 199–212. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, R.; Xu, S.; Li, Y.; Zhang, H.; Liu, M.; Zhu, G.; Chen, C.; Pan, Z.; Liu, H.; et al. Identification of small proline-rich protein 1B (SPRR1B) as a prognostically predictive biomarker for lung adenocarcinoma by integrative bioinformatic analysis. Thorac. Cancer 2021, 12, 796–806. [Google Scholar] [CrossRef]
- Patterson, T.; Vuong, H.; Liaw, Y.S.; Wu, R.; Kalvakolanu, D.V.; Reddy, S.P. Mechanism of repression of squamous differentiation marker, SPRR1B, in malignant bronchial epithelial cells: Role of critical TRE-sites and its transacting factors. Oncogene 2001, 20, 634–644. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.W.; Dhahbi, J. Lung adenocarcinoma and lung squamous cell carcinoma cancer classification, biomarker identification, and gene expression analysis using overlapping feature selection methods. Sci. Rep. 2021, 11, 13323. [Google Scholar] [CrossRef]
Data | RNA Sequencing | DNA Methylation | DNA Sequencing |
---|---|---|---|
Dataset accession ID | TCGA-LUAD, TCGA-LUSC, GSE40419, GTEx v8 Lung | TCGA-LUAD, TCGA-LUSC | TCGA-LUAD, TCGA-LUSC |
Features | 957 | 423 | 230 |
Cancer patients | 1122 | 1117 | 818 |
Healthy subjects | 763 | 28 | 22 |
Data | RNA Sequencing | NSCLC | Non-Cancer | ||||
---|---|---|---|---|---|---|---|
TCGA, GSE40419 | TCGA, GSE40419 | GTEx | |||||
Subjects | n | 1122 | 185 | 578 | |||
Female, n (%) | 451 (40.2) | 81 (43.8) | 183 (31.6) | ||||
Age | Mean (SD) | 66.09 (9.44) | 67.24 (9.87) | - | |||
≥50, n (%) | 1033 (92.1) | 174 (94.1) | 412 (71.2) | ||||
Race/ethnicity | White, non-Hispanic (%) | 737 (65.7) | 97 (52.4) | - | |||
Black, non-Hispanic (%) | 84 (7.5) | 6 (3.2) | - | ||||
Asian incl. Hawaiian or Pacific islander (%) | 103 (9.2) | 77 (41.6) | - | ||||
Hispanic (%) | 19 (1.7) | 0 (0) | - | ||||
Others (%) | 179 (15.9) | 5 (2.7) | - | ||||
Cancer stage | I (%) | 592 (52.8) | - | - | |||
II (%) | 298 (26.6) | - | - | ||||
III (%) | 181 (16.1) | - | - | ||||
IV (%) | 37 (3.3) | - | - | ||||
Missing (%) | 14 (1.2) | - | - | ||||
Data | DNA Methylation | NSCLC | Non-Cancer | ||||
Subjects | n | 843 | 74 | ||||
Female, n (%) | 350 (41.5) | 28 (37.8) | |||||
Age | Mean (SD) | 66.09 (9.66) | 66.86 (10.82) | ||||
≥50, n (%) | 768 (91.1) | 68 (91.8) | |||||
Race/ethnicity | White, non-Hispanic (%) | 624 (74) | 58 (78.5) | ||||
Black, non-Hispanic (%) | 76 (9) | 6 (8.1) | |||||
Asian incl. Hawaiian or Pacific islander (%) | 13 (1.6) | 1 (1.3) | |||||
Hispanic (%) | 16 (1.9) | 2 (2.7) | |||||
Others (%) | 114 (13.5) | 7 (9.4) | |||||
Cancer stage | I (%) | 432 (51.2) | - | ||||
II (%) | 250 (29.6) | - | |||||
III (%) | 129 (15.3) | - | |||||
IV (%) | 24 (2.9) | - | |||||
Missing (%) | 8 (1.0) | - |
Ensemble Gene ID | Gene Symbol | Log2 Fold Change | Chromosome | GRCh38, Start | GRCh38, End | Length | Strand | Gene Type | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSG00000171564 | FGB | 8.861 | 4 | 154,563,011 | 154,572,807 | 9796 | + | Protein coding | ||||||
ENSG00000110680 | CALCA | 8.266 | 11 | 14,966,668 | 14,972,351 | 5683 | - | Protein coding | ||||||
ENSG00000164266 | SPINK1 | 6.680 | 5 | 147,824,572 | 147,831,671 | 7099 | - | Protein coding | ||||||
ENSG00000169469 | SPRR1B | 5.858 | 1 | 153,031,203 | 153,032,900 | 1697 | + | Protein coding | ||||||
ENSG00000176153 | GPX2 | 5.854 | 14 | 64,939,152 | 64,942,905 | 3753 | - | Protein coding | ||||||
ENSG00000167656 | LY6D | 5.698 | 8 | 142,784,882 | 142,786,539 | 1657 | - | Protein coding | ||||||
ENSG00000143320 | CRABP2 | 5.559 | 1 | 156,699,606 | 156,705,816 | 6210 | - | Protein coding | ||||||
ENSG00000205420 | KRT6A | 5.473 | 12 | 52,487,176 | 52,493,257 | 6081 | - | Protein coding | ||||||
ENSG00000099953 | MMP11 | 5.135 | 22 | 23,768,226 | 23,784,316 | 16,090 | + | Protein coding | ||||||
ENSG00000196611 | MMP1 | 5.042 | 11 | 102,789,401 | 102,798,160 | 8759 | - | Protein coding | ||||||
ENSG00000204305 | AGER | −5.001 | 6 | 32,180,968 | 32,184,322 | 3354 | - | Protein coding | ||||||
ENSG00000168484 | SFTPC | −4.729 | 8 | 22,156,913 | 22,164,479 | 7566 | + | Protein coding | ||||||
ENSG00000165197 | VEGFD | −3.585 | X | 15,345,596 | 15,384,413 | 38,817 | - | Protein coding | ||||||
ENSG00000164530 | PI16 | −3.539 | 6 | 36,948,263 | 36,964,837 | 16,574 | + | Protein coding | ||||||
ENSG00000133800 | LYVE1 | −3.304 | 11 | 10,556,966 | 10,611,689 | 54,723 | - | Protein coding | ||||||
CpG site_ID | Abs. Diff. 1 | Methyl. Pattern | Chromosome | UCSC_RefGene_Name | UCSC_RefGene_Group | UCSC_CpG_Islands_Name 2 | ||||||||
cg25774643 | 0.561 | Hypermethylation | 11 | SCT | TSS200 | chr11:626728-628037 | ||||||||
cg03502002 | 0.464 | Hypermethylation | 18 | GALR1;GALR1 | 1stExon;5′UTR | chr18:74961556-74963822 | ||||||||
cg22674699 | 0.532 | Hypermethylation | 2 | HOXD9 | 1stExon | chr2:176986424-176988291 | ||||||||
cg18322569 | 0.495 | Hypermethylation | 1 | BARHL2;BARHL2 | 5′UTR;1stExon | chr1:91182509-91182857 | ||||||||
cg19760241 | 0.501 | Hypermethylation | 17 | LHX1 | Body | chr17:35291899-35300875 | ||||||||
cg20399616 | 0.474 | Hypermethylation | 12 | BCAT1 | Body | chr12:25055599-25056246 | ||||||||
cg21472506 | 0.517 | Hypermethylation | 2 | OTX1 | 3′UTR | chr2:63283936-63284147 | ||||||||
cg04415798 | 0.490 | Hypermethylation | 14 | PAX9 | 5′UTR | chr14:37126786-37128274 | ||||||||
cg18077971 | 0.469 | Hypermethylation | 2 | PAX3 | TSS1500 | chr2:223162946-223163912 | ||||||||
cg27071152 | 0.474 | Hypermethylation | 7 | LOC646999 | Body | chr7:39649253-39649510 | ||||||||
cg07860213 | 0.486 | Hypermethylation | 8 | PRDM14 | Body | chr8:70981873-70984888 | ||||||||
cg26799474 | 0.387 | Hypomethylation | 2 | CASP8 | 5′UTR | Not applicable | ||||||||
cg25247520 | 0.432 | Hypomethylation | 8 | MIR1204;PVT1 | TSS200;Body | chr8:128806081-128806899 | ||||||||
cg07551060 | 0.399 | Hypomethylation | 10 | GRK5 | Body | chr10:121075133-121075401 | ||||||||
cg06051311 | 0.404 | Hypomethylation | 6 | TRIM15 | 5′UTR;1stExon | chr6:30130969-30131093 |
ID | Category | Term | Group p Value Corrected with Bonferroni | % Associated Genes 1 | Nr. Genes 2 | |
---|---|---|---|---|---|---|
NSCLC | GO:0070268 | GO biological process | Cornification | 2.7 × 10−6 | 13.79 | 16 |
GO:0008544 | GO biological process | Epidermis development | 2.7 × 10−6 | 4.03 | 20 | |
GO:0032732 | GO biological process | Positive regulation of interleukin-1 production | 1.1 × 10−4 | 6.25 | 5 | |
GO:0032655 | GO biological process | Regulation of interleukin-12 production | 2.8 × 10−4 | 8.06 | 5 | |
GO:0010811 | GO biological process | Positive regulation of cell-substrate adhesion | 1.6 × 10−3 | 5.22 | 7 | |
KEGG:04657 | KEGG pathway | IL-17 signaling pathway | 9.3 × 10−4 | 5.32 | 5 | |
KEGG:04915 | KEGG pathway | Estrogen signaling pathway | 1.1 × 10−3 | 5.07 | 7 | |
R-HSA:6809371 | Reactome pathway | Formation of the cornified envelope | 6.2 × 10−9 | 12.31 | 16 | |
LUAD | GO:0070268 | GO biological process | Cornification | 2.4 × 10-7 | 8.62 | 10 |
GO:0019730 | GO biological process | Antimicrobial humoral response | 7.0 × 10−6 | 4.73 | 7 | |
GO:0045814 | GO biological process | Negative regulation of gene expression, epigenetic | 1.2 × 10−3 | 4.84 | 6 | |
GO:0016266 | GO biological process | O-glycan processing | 1.3 × 10−3 | 7.58 | 5 | |
GO:0007091 | GO biological process | Metaphase/anaphase transition of mitotic cell cycle | 7.8 × 10−3 | 4.76 | 3 | |
GO:0071300 | GO biological process | Cellular response to retinoic acid | 9.4 × 10−3 | 4.17 | 3 | |
KEGG:04613 | KEGG pathway | Neutrophil extracellular trap formation | 5.5 × 10−5 | 5.26 | 10 | |
R-HSA:6809371 | Reactome pathway | Formation of the cornified envelope | 2.8 × 10−6 | 7.69 | 10 | |
R-HSA:5173105 | Reactome pathway | O-linked glycosylation | 1.4 × 10−3 | 5.41 | 6 | |
LUSC | GO:0008544 | GO biological process | Epidermis development | 1.4 × 10−18 | 6.65 | 33 |
GO:1901616 | GO biological process | Organic hydroxy compound catabolic process | 3.0 × 10−7 | 9.64 | 8 | |
GO:0030198 | GO biological process | Extracellular matrix organization | 2.2 × 10−6 | 4.04 | 18 | |
GO:0019730 | GO biological process | Antimicrobial humoral response | 3.9 × 10−3 | 4.73 | 7 | |
GO:0005344 | GO biological process | Oxygen carrier activity | 4.8 × 10−3 | 15.79 | 3 | |
GO:0071300 | GO biological process | Cellular response to retinoic acid | 3.0 × 10−2 | 4.17 | 3 | |
KEGG:04915 | KEGG pathway | Estrogen signaling pathway | 7.4 × 10−3 | 5.07 | 7 | |
R-HSA:6809371 | Reactome pathway | Formation of the cornified envelope | 5.9 × 10−12 | 15.38 | 20 | |
R-HSA:1474228 | Reactome pathway | Degradation of the extracellualr matrix | 4.2 × 10−4 | 7.86 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.-K.; Lim, J.-M.; Jeong, J.; Jang, Y.; Lee, J.-W.; Lee, J.-C.; Kim, H.; Koh, E.; Hwang, S.-J.; Kim, H.-G.; et al. Deep-Learning Algorithm and Concomitant Biomarker Identification for NSCLC Prediction Using Multi-Omics Data Integration. Biomolecules 2022, 12, 1839. https://doi.org/10.3390/biom12121839
Park M-K, Lim J-M, Jeong J, Jang Y, Lee J-W, Lee J-C, Kim H, Koh E, Hwang S-J, Kim H-G, et al. Deep-Learning Algorithm and Concomitant Biomarker Identification for NSCLC Prediction Using Multi-Omics Data Integration. Biomolecules. 2022; 12(12):1839. https://doi.org/10.3390/biom12121839
Chicago/Turabian StylePark, Min-Koo, Jin-Muk Lim, Jinwoo Jeong, Yeongjae Jang, Ji-Won Lee, Jeong-Chan Lee, Hyungyu Kim, Euiyul Koh, Sung-Joo Hwang, Hong-Gee Kim, and et al. 2022. "Deep-Learning Algorithm and Concomitant Biomarker Identification for NSCLC Prediction Using Multi-Omics Data Integration" Biomolecules 12, no. 12: 1839. https://doi.org/10.3390/biom12121839
APA StylePark, M.-K., Lim, J.-M., Jeong, J., Jang, Y., Lee, J.-W., Lee, J.-C., Kim, H., Koh, E., Hwang, S.-J., Kim, H.-G., & Kim, K.-C. (2022). Deep-Learning Algorithm and Concomitant Biomarker Identification for NSCLC Prediction Using Multi-Omics Data Integration. Biomolecules, 12(12), 1839. https://doi.org/10.3390/biom12121839